xref: /illumos-gate/usr/src/cmd/mdb/intel/mdb/proc_ia32dep.c (revision 9c3024a3457d2d1269be18124a1ac69e33000da7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /*
27  * Copyright 2019 Doma Gergő Mihály <doma.gergo.mihaly@gmail.com>
28  * Copyright 2018 Joyent, Inc.
29  */
30 
31 /*
32  * User Process Target Intel 32-bit component
33  *
34  * This file provides the ISA-dependent portion of the user process target.
35  * For more details on the implementation refer to mdb_proc.c.
36  */
37 
38 #include <mdb/mdb_proc.h>
39 #include <mdb/mdb_kreg.h>
40 #include <mdb/mdb_err.h>
41 #include <mdb/mdb_isautil.h>
42 #include <mdb/mdb_ia32util.h>
43 #include <mdb/mdb.h>
44 
45 #include <sys/ucontext.h>
46 #include <sys/frame.h>
47 #include <libproc.h>
48 #include <sys/fp.h>
49 #include <ieeefp.h>
50 
51 #include <stddef.h>
52 
53 const mdb_tgt_regdesc_t pt_regdesc[] = {
54 	{ "gs", GS, MDB_TGT_R_EXPORT },
55 	{ "fs", FS, MDB_TGT_R_EXPORT },
56 	{ "es", ES, MDB_TGT_R_EXPORT },
57 	{ "ds", DS, MDB_TGT_R_EXPORT },
58 	{ "edi", EDI, MDB_TGT_R_EXPORT },
59 	{ "di",	EDI, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
60 	{ "esi", ESI, MDB_TGT_R_EXPORT },
61 	{ "si", ESI, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
62 	{ "ebp", EBP, MDB_TGT_R_EXPORT },
63 	{ "bp", EBP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
64 	{ "kesp", ESP, MDB_TGT_R_EXPORT },
65 	{ "ksp", ESP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
66 	{ "ebx", EBX, MDB_TGT_R_EXPORT },
67 	{ "bx", EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
68 	{ "bh", EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
69 	{ "bl", EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
70 	{ "edx", EDX, MDB_TGT_R_EXPORT },
71 	{ "dx", EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
72 	{ "dh", EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
73 	{ "dl", EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
74 	{ "ecx", ECX, MDB_TGT_R_EXPORT },
75 	{ "cx", ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
76 	{ "ch", ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
77 	{ "cl", ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
78 	{ "eax", EAX, MDB_TGT_R_EXPORT },
79 	{ "ax", EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
80 	{ "ah", EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
81 	{ "al", EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
82 	{ "trapno", TRAPNO, MDB_TGT_R_EXPORT },
83 	{ "err", ERR, MDB_TGT_R_EXPORT },
84 	{ "eip", EIP, MDB_TGT_R_EXPORT },
85 	{ "cs", CS, MDB_TGT_R_EXPORT },
86 	{ "eflags", EFL, MDB_TGT_R_EXPORT },
87 	{ "esp", UESP, MDB_TGT_R_EXPORT },
88 	{ "sp", UESP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
89 	{ "ss", SS, MDB_TGT_R_EXPORT },
90 	{ NULL, 0, 0 }
91 };
92 
93 /*
94  * We cannot rely on pr_instr, because if we hit a breakpoint or the user has
95  * artifically modified memory, it will no longer be correct.
96  */
97 static uint8_t
98 pt_read_instr(mdb_tgt_t *t)
99 {
100 	const lwpstatus_t *psp = &Pstatus(t->t_pshandle)->pr_lwp;
101 	uint8_t ret = 0;
102 
103 	(void) mdb_tgt_aread(t, MDB_TGT_AS_VIRT_I, &ret, sizeof (ret),
104 	    psp->pr_reg[EIP]);
105 
106 	return (ret);
107 }
108 
109 /*ARGSUSED*/
110 int
111 pt_regs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
112 {
113 	mdb_tgt_t *t = mdb.m_target;
114 	mdb_tgt_tid_t tid;
115 	prgregset_t grs;
116 	prgreg_t eflags;
117 	boolean_t from_ucontext = B_FALSE;
118 
119 	if (mdb_getopts(argc, argv,
120 	    'u', MDB_OPT_SETBITS, B_TRUE, &from_ucontext, NULL) != argc) {
121 		return (DCMD_USAGE);
122 	}
123 
124 	if (from_ucontext) {
125 		int off;
126 		int o0, o1;
127 
128 		if (!(flags & DCMD_ADDRSPEC)) {
129 			mdb_warn("-u requires a ucontext_t address\n");
130 			return (DCMD_ERR);
131 		}
132 
133 		o0 = mdb_ctf_offsetof_by_name("ucontext_t", "uc_mcontext");
134 		o1 = mdb_ctf_offsetof_by_name("mcontext_t", "gregs");
135 		if (o0 == -1 || o1 == -1) {
136 			off = offsetof(ucontext_t, uc_mcontext) +
137 			    offsetof(mcontext_t, gregs);
138 		} else {
139 			off = o0 + o1;
140 		}
141 
142 		if (mdb_vread(&grs, sizeof (grs), addr + off) != sizeof (grs)) {
143 			mdb_warn("failed to read from ucontext_t %p", addr);
144 			return (DCMD_ERR);
145 		}
146 		goto print_regs;
147 	}
148 
149 	if (t->t_pshandle == NULL || Pstate(t->t_pshandle) == PS_UNDEAD) {
150 		mdb_warn("no process active\n");
151 		return (DCMD_ERR);
152 	}
153 
154 	if (Pstate(t->t_pshandle) == PS_LOST) {
155 		mdb_warn("debugger has lost control of process\n");
156 		return (DCMD_ERR);
157 	}
158 
159 	if (flags & DCMD_ADDRSPEC)
160 		tid = (mdb_tgt_tid_t)addr;
161 	else
162 		tid = PTL_TID(t);
163 
164 	if (PTL_GETREGS(t, tid, grs) != 0) {
165 		mdb_warn("failed to get current register set");
166 		return (DCMD_ERR);
167 	}
168 
169 print_regs:
170 	eflags = grs[EFL];
171 
172 	mdb_printf("%%cs = 0x%04x\t\t%%eax = 0x%0?p %A\n",
173 	    grs[CS], grs[EAX], grs[EAX]);
174 
175 	mdb_printf("%%ds = 0x%04x\t\t%%ebx = 0x%0?p %A\n",
176 	    grs[DS], grs[EBX], grs[EBX]);
177 
178 	mdb_printf("%%ss = 0x%04x\t\t%%ecx = 0x%0?p %A\n",
179 	    grs[SS], grs[ECX], grs[ECX]);
180 
181 	mdb_printf("%%es = 0x%04x\t\t%%edx = 0x%0?p %A\n",
182 	    grs[ES], grs[EDX], grs[EDX]);
183 
184 	mdb_printf("%%fs = 0x%04x\t\t%%esi = 0x%0?p %A\n",
185 	    grs[FS], grs[ESI], grs[ESI]);
186 
187 	mdb_printf("%%gs = 0x%04x\t\t%%edi = 0x%0?p %A\n\n",
188 	    grs[GS], grs[EDI], grs[EDI]);
189 
190 	mdb_printf(" %%eip = 0x%0?p %A\n", grs[EIP], grs[EIP]);
191 	mdb_printf(" %%ebp = 0x%0?p\n", grs[EBP]);
192 	mdb_printf("%%kesp = 0x%0?p\n\n", grs[ESP]);
193 	mdb_printf("%%eflags = 0x%08x\n", eflags);
194 
195 	mdb_printf("  id=%u vip=%u vif=%u ac=%u vm=%u rf=%u nt=%u iopl=0x%x\n",
196 	    (eflags & KREG_EFLAGS_ID_MASK) >> KREG_EFLAGS_ID_SHIFT,
197 	    (eflags & KREG_EFLAGS_VIP_MASK) >> KREG_EFLAGS_VIP_SHIFT,
198 	    (eflags & KREG_EFLAGS_VIF_MASK) >> KREG_EFLAGS_VIF_SHIFT,
199 	    (eflags & KREG_EFLAGS_AC_MASK) >> KREG_EFLAGS_AC_SHIFT,
200 	    (eflags & KREG_EFLAGS_VM_MASK) >> KREG_EFLAGS_VM_SHIFT,
201 	    (eflags & KREG_EFLAGS_RF_MASK) >> KREG_EFLAGS_RF_SHIFT,
202 	    (eflags & KREG_EFLAGS_NT_MASK) >> KREG_EFLAGS_NT_SHIFT,
203 	    (eflags & KREG_EFLAGS_IOPL_MASK) >> KREG_EFLAGS_IOPL_SHIFT);
204 
205 	mdb_printf("  status=<%s,%s,%s,%s,%s,%s,%s,%s,%s>\n\n",
206 	    (eflags & KREG_EFLAGS_OF_MASK) ? "OF" : "of",
207 	    (eflags & KREG_EFLAGS_DF_MASK) ? "DF" : "df",
208 	    (eflags & KREG_EFLAGS_IF_MASK) ? "IF" : "if",
209 	    (eflags & KREG_EFLAGS_TF_MASK) ? "TF" : "tf",
210 	    (eflags & KREG_EFLAGS_SF_MASK) ? "SF" : "sf",
211 	    (eflags & KREG_EFLAGS_ZF_MASK) ? "ZF" : "zf",
212 	    (eflags & KREG_EFLAGS_AF_MASK) ? "AF" : "af",
213 	    (eflags & KREG_EFLAGS_PF_MASK) ? "PF" : "pf",
214 	    (eflags & KREG_EFLAGS_CF_MASK) ? "CF" : "cf");
215 
216 	mdb_printf("   %%esp = 0x%0?x\n", grs[UESP]);
217 	mdb_printf("%%trapno = 0x%x\n", grs[TRAPNO]);
218 	mdb_printf("   %%err = 0x%x\n", grs[ERR]);
219 
220 	return (DCMD_OK);
221 }
222 
223 static const char *
224 fpcw2str(uint32_t cw, char *buf, size_t nbytes)
225 {
226 	char *end = buf + nbytes;
227 	char *p = buf;
228 
229 	buf[0] = '\0';
230 
231 	/*
232 	 * Decode all exception masks in the x87 FPU Control Word.
233 	 *
234 	 * See here:
235 	 * Intel® 64 and IA-32 Architectures Software Developer’s Manual,
236 	 * Volume 1: Basic Architecture, 8.1.5 x87 FPU Control Word
237 	 */
238 	if (cw & FPIM)	/* Invalid operation mask. */
239 		p += mdb_snprintf(p, (size_t)(end - p), "|IM");
240 	if (cw & FPDM)	/* Denormalized operand mask. */
241 		p += mdb_snprintf(p, (size_t)(end - p), "|DM");
242 	if (cw & FPZM)	/* Zero divide mask. */
243 		p += mdb_snprintf(p, (size_t)(end - p), "|ZM");
244 	if (cw & FPOM)	/* Overflow mask. */
245 		p += mdb_snprintf(p, (size_t)(end - p), "|OM");
246 	if (cw & FPUM)	/* Underflow mask. */
247 		p += mdb_snprintf(p, (size_t)(end - p), "|UM");
248 	if (cw & FPPM)	/* Precision mask. */
249 		p += mdb_snprintf(p, (size_t)(end - p), "|PM");
250 
251 	/*
252 	 * Decode precision control options.
253 	 */
254 	switch (cw & FPPC) {
255 	case FPSIG24:
256 		/* 24-bit significand, single precision. */
257 		p += mdb_snprintf(p, (size_t)(end - p), "|SIG24");
258 		break;
259 	case FPSIG53:
260 		/* 53-bit significand, double precision. */
261 		p += mdb_snprintf(p, (size_t)(end - p), "|SIG53");
262 		break;
263 	case FPSIG64:
264 		/* 64-bit significand, double extended precision. */
265 		p += mdb_snprintf(p, (size_t)(end - p), "|SIG64");
266 		break;
267 	default:
268 		/*
269 		 * Should never happen.
270 		 * Value 0x00000100 is 'Reserved'.
271 		 */
272 		break;
273 	}
274 
275 	/*
276 	 * Decode rounding control options.
277 	 */
278 	switch (cw & FPRC) {
279 	case FPRTN:
280 		/* Round to nearest, or to even if equidistant. */
281 		p += mdb_snprintf(p, (size_t)(end - p), "|RTN");
282 		break;
283 	case FPRD:
284 		/* Round down. */
285 		p += mdb_snprintf(p, (size_t)(end - p), "|RD");
286 		break;
287 	case FPRU:
288 		/* Round up. */
289 		p += mdb_snprintf(p, (size_t)(end - p), "|RU");
290 		break;
291 	case FPCHOP:
292 		/* Truncate. */
293 		p += mdb_snprintf(p, (size_t)(end - p), "|RTZ");
294 		break;
295 	default:
296 		/*
297 		 * This is a two-bit field.
298 		 * No other options left.
299 		 */
300 		break;
301 	}
302 
303 	/*
304 	 * Decode infinity control options.
305 	 *
306 	 * This field has been retained for compatibility with
307 	 * the 287 and earlier co-processors.
308 	 * In the more modern FPUs, this bit is disregarded and
309 	 * both -infinity and +infinity are respected.
310 	 * Comment source: SIMPLY FPU by Raymond Filiatreault
311 	 */
312 	switch (cw & FPIC) {
313 	case FPP:
314 		/*
315 		 * Projective infinity.
316 		 * Both -infinity and +infinity are treated as
317 		 * unsigned infinity.
318 		 */
319 		p += mdb_snprintf(p, (size_t)(end - p), "|P");
320 		break;
321 	case FPA:
322 		/*
323 		 * Affine infinity.
324 		 * Respects both -infinity and +infinity.
325 		 */
326 		p += mdb_snprintf(p, (size_t)(end - p), "|A");
327 		break;
328 	default:
329 		/*
330 		 * This is a one-bit field.
331 		 * No other options left.
332 		 */
333 		break;
334 	}
335 
336 	if (cw & WFPB17)
337 		p += mdb_snprintf(p, (size_t)(end - p), "|WFPB17");
338 	if (cw & WFPB24)
339 		p += mdb_snprintf(p, (size_t)(end - p), "|WFPB24");
340 
341 	if (buf[0] == '|')
342 		return (buf + 1);
343 
344 	return ("0");
345 }
346 
347 static const char *
348 fpsw2str(uint32_t cw, char *buf, size_t nbytes)
349 {
350 	char *end = buf + nbytes;
351 	char *p = buf;
352 
353 	buf[0] = '\0';
354 
355 	/*
356 	 * Decode all masks in the 80387 status word.
357 	 */
358 	if (cw & FPS_IE)
359 		p += mdb_snprintf(p, (size_t)(end - p), "|IE");
360 	if (cw & FPS_DE)
361 		p += mdb_snprintf(p, (size_t)(end - p), "|DE");
362 	if (cw & FPS_ZE)
363 		p += mdb_snprintf(p, (size_t)(end - p), "|ZE");
364 	if (cw & FPS_OE)
365 		p += mdb_snprintf(p, (size_t)(end - p), "|OE");
366 	if (cw & FPS_UE)
367 		p += mdb_snprintf(p, (size_t)(end - p), "|UE");
368 	if (cw & FPS_PE)
369 		p += mdb_snprintf(p, (size_t)(end - p), "|PE");
370 	if (cw & FPS_SF)
371 		p += mdb_snprintf(p, (size_t)(end - p), "|SF");
372 	if (cw & FPS_ES)
373 		p += mdb_snprintf(p, (size_t)(end - p), "|ES");
374 	if (cw & FPS_C0)
375 		p += mdb_snprintf(p, (size_t)(end - p), "|C0");
376 	if (cw & FPS_C1)
377 		p += mdb_snprintf(p, (size_t)(end - p), "|C1");
378 	if (cw & FPS_C2)
379 		p += mdb_snprintf(p, (size_t)(end - p), "|C2");
380 	if (cw & FPS_C3)
381 		p += mdb_snprintf(p, (size_t)(end - p), "|C3");
382 	if (cw & FPS_B)
383 		p += mdb_snprintf(p, (size_t)(end - p), "|B");
384 
385 	if (buf[0] == '|')
386 		return (buf + 1);
387 
388 	return ("0");
389 }
390 
391 static const char *
392 fpmxcsr2str(uint32_t mxcsr, char *buf, size_t nbytes)
393 {
394 	char *end = buf + nbytes;
395 	char *p = buf;
396 
397 	buf[0] = '\0';
398 
399 	/*
400 	 * Decode the MXCSR word
401 	 */
402 	if (mxcsr & SSE_IE)
403 		p += mdb_snprintf(p, (size_t)(end - p), "|IE");
404 	if (mxcsr & SSE_DE)
405 		p += mdb_snprintf(p, (size_t)(end - p), "|DE");
406 	if (mxcsr & SSE_ZE)
407 		p += mdb_snprintf(p, (size_t)(end - p), "|ZE");
408 	if (mxcsr & SSE_OE)
409 		p += mdb_snprintf(p, (size_t)(end - p), "|OE");
410 	if (mxcsr & SSE_UE)
411 		p += mdb_snprintf(p, (size_t)(end - p), "|UE");
412 	if (mxcsr & SSE_PE)
413 		p += mdb_snprintf(p, (size_t)(end - p), "|PE");
414 
415 	if (mxcsr & SSE_DAZ)
416 		p += mdb_snprintf(p, (size_t)(end - p), "|DAZ");
417 
418 	if (mxcsr & SSE_IM)
419 		p += mdb_snprintf(p, (size_t)(end - p), "|IM");
420 	if (mxcsr & SSE_DM)
421 		p += mdb_snprintf(p, (size_t)(end - p), "|DM");
422 	if (mxcsr & SSE_ZM)
423 		p += mdb_snprintf(p, (size_t)(end - p), "|ZM");
424 	if (mxcsr & SSE_OM)
425 		p += mdb_snprintf(p, (size_t)(end - p), "|OM");
426 	if (mxcsr & SSE_UM)
427 		p += mdb_snprintf(p, (size_t)(end - p), "|UM");
428 	if (mxcsr & SSE_PM)
429 		p += mdb_snprintf(p, (size_t)(end - p), "|PM");
430 
431 	if ((mxcsr & SSE_RC) == (SSE_RD|SSE_RU))
432 		p += mdb_snprintf(p, (size_t)(end - p), "|RTZ");
433 	else if (mxcsr & SSE_RD)
434 		p += mdb_snprintf(p, (size_t)(end - p), "|RD");
435 	else if (mxcsr & SSE_RU)
436 		p += mdb_snprintf(p, (size_t)(end - p), "|RU");
437 	else
438 		p += mdb_snprintf(p, (size_t)(end - p), "|RTN");
439 
440 	if (mxcsr & SSE_FZ)
441 		p += mdb_snprintf(p, (size_t)(end - p), "|FZ");
442 
443 	if (buf[0] == '|')
444 		return (buf + 1);
445 	return ("0");
446 }
447 
448 /*ARGSUSED*/
449 int
450 pt_fpregs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
451 {
452 	mdb_tgt_t *t = mdb.m_target;
453 	mdb_tgt_tid_t tid;
454 	uint32_t hw = FP_NO;
455 	uint_t sse = 0;
456 	prfpregset_t fprs;
457 	struct _fpstate fps;
458 	char buf[256];
459 	uint_t top;
460 	int i;
461 
462 	/*
463 	 * Union for overlaying _fpreg structure on to quad-precision
464 	 * floating-point value (long double).
465 	 */
466 	union {
467 		struct _fpreg reg;
468 		long double ld;
469 	} fpru;
470 
471 	/*
472 	 * Array of strings corresponding to FPU tag word values (see
473 	 * section 7.3.6 of the Intel Programmer's Reference Manual).
474 	 */
475 	const char *tag_strings[] = { "valid", "zero", "special", "empty" };
476 
477 	if (argc != 0)
478 		return (DCMD_USAGE);
479 
480 	if (t->t_pshandle == NULL || Pstate(t->t_pshandle) == PS_UNDEAD) {
481 		mdb_warn("no process active\n");
482 		return (DCMD_ERR);
483 	}
484 
485 	if (Pstate(t->t_pshandle) == PS_LOST) {
486 		mdb_warn("debugger has lost control of process\n");
487 		return (DCMD_ERR);
488 	}
489 
490 	if (flags & DCMD_ADDRSPEC)
491 		tid = (mdb_tgt_tid_t)addr;
492 	else
493 		tid = PTL_TID(t);
494 
495 	if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &hw,
496 	    sizeof (hw), "libc.so", "_fp_hw") < 0 &&
497 	    mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &hw,
498 	    sizeof (hw), MDB_TGT_OBJ_EXEC, "_fp_hw") < 0)
499 		mdb_warn("failed to read _fp_hw value");
500 
501 	if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &sse,
502 	    sizeof (sse), "libc.so", "_sse_hw") < 0 &&
503 	    mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &sse,
504 	    sizeof (sse), MDB_TGT_OBJ_EXEC, "_sse_hw") < 0)
505 		mdb_warn("failed to read _sse_hw value");
506 
507 	mdb_printf("_fp_hw 0x%02x (", hw);
508 	switch (hw) {
509 	case FP_SW:
510 		mdb_printf("80387 software emulator");
511 		break;
512 	case FP_287:
513 		mdb_printf("80287 chip");
514 		break;
515 	case FP_387:
516 		mdb_printf("80387 chip");
517 		break;
518 	case FP_486:
519 		mdb_printf("80486 chip");
520 		break;
521 	default:
522 		mdb_printf("no floating point support");
523 		break;
524 	}
525 	if (sse)
526 		mdb_printf(" with SSE");
527 	mdb_printf(")\n");
528 
529 	if (!(hw & FP_HW))
530 		return (DCMD_OK); /* just abort if no hardware present */
531 
532 	if (PTL_GETFPREGS(t, tid, &fprs) != 0) {
533 		mdb_warn("failed to get floating point registers");
534 		return (DCMD_ERR);
535 	}
536 
537 	bcopy(&fprs.fp_reg_set.fpchip_state, &fps, sizeof (fps));
538 
539 	fps.cw &= 0xffff;	/* control word is really 16 bits */
540 	fps.sw &= 0xffff;	/* status word is really 16 bits */
541 	fps.status &= 0xffff;	/* saved status word is really 16 bits */
542 	fps.cssel &= 0xffff;	/* %cs is really 16-bits */
543 	fps.datasel &= 0xffff;	/* %ds is really 16-bits too */
544 
545 	mdb_printf("cw     0x%04x (%s)\n", fps.cw,
546 	    fpcw2str(fps.cw, buf, sizeof (buf)));
547 
548 	top = (fps.sw & FPS_TOP) >> 11;
549 	mdb_printf("sw     0x%04x (TOP=0t%u) (%s)\n", fps.sw,
550 	    top, fpsw2str(fps.sw, buf, sizeof (buf)));
551 
552 	mdb_printf("xcp sw 0x%04x (%s)\n\n", fps.status,
553 	    fpsw2str(fps.status, buf, sizeof (buf)));
554 
555 	mdb_printf("ipoff  %a\n", fps.ipoff);
556 	mdb_printf("cssel  0x%x\n", fps.cssel);
557 	mdb_printf("dtoff  %a\n", fps.dataoff);
558 	mdb_printf("dtsel  0x%x\n\n", fps.datasel);
559 
560 	for (i = 0; i < 8; i++) {
561 		/*
562 		 * Recall that we need to use the current TOP-of-stack value to
563 		 * associate the _st[] index back to a physical register number,
564 		 * since tag word indices are physical register numbers.  Then
565 		 * to get the tag value, we shift over two bits for each tag
566 		 * index, and then grab the bottom two bits.
567 		 */
568 		uint_t tag_index = (i + top) & 7;
569 		uint_t tag_value = (fps.tag >> (tag_index * 2)) & 3;
570 
571 		fpru.reg = fps._st[i];
572 		mdb_printf("%%st%d   0x%04x.%04x%04x%04x%04x = %lg %s\n",
573 		    i, fpru.reg.exponent,
574 		    fpru.reg.significand[3], fpru.reg.significand[2],
575 		    fpru.reg.significand[1], fpru.reg.significand[0],
576 		    fpru.ld, tag_strings[tag_value]);
577 	}
578 
579 	if (!sse)
580 		return (DCMD_OK);
581 
582 	mdb_printf("\nmxcsr  0x%04x (%s)\n", fps.mxcsr,
583 	    fpmxcsr2str(fps.mxcsr, buf, sizeof (buf)));
584 	mdb_printf("xcp    0x%04x (%s)\n\n", fps.xstatus,
585 	    fpmxcsr2str(fps.xstatus, buf, sizeof (buf)));
586 
587 	for (i = 0; i < 8; i++)
588 		mdb_printf("%%xmm%d  0x%08x%08x%08x%08x\n", i,
589 		    fps.xmm[i][3], fps.xmm[i][2],
590 		    fps.xmm[i][1], fps.xmm[i][0]);
591 
592 	return (DCMD_OK);
593 }
594 
595 /*ARGSUSED*/
596 int
597 pt_getfpreg(mdb_tgt_t *t, mdb_tgt_tid_t tid, ushort_t rd_num,
598     ushort_t rd_flags, mdb_tgt_reg_t *rp)
599 {
600 	return (set_errno(ENOTSUP));
601 }
602 
603 /*ARGSUSED*/
604 int
605 pt_putfpreg(mdb_tgt_t *t, mdb_tgt_tid_t tid, ushort_t rd_num,
606     ushort_t rd_flags, mdb_tgt_reg_t rval)
607 {
608 	return (set_errno(ENOTSUP));
609 }
610 
611 /*ARGSUSED*/
612 void
613 pt_addfpregs(mdb_tgt_t *t)
614 {
615 	/* not implemented */
616 }
617 
618 /*ARGSUSED*/
619 int
620 pt_frameregs(void *arglim, uintptr_t pc, uint_t argc, const long *argv,
621     const mdb_tgt_gregset_t *gregs, boolean_t pc_faked)
622 {
623 	return (set_errno(ENOTSUP));
624 }
625 
626 /*ARGSUSED*/
627 const char *
628 pt_disasm(const GElf_Ehdr *ehp)
629 {
630 	return ("ia32");
631 }
632 
633 /*
634  * Determine the return address for the current frame.
635  */
636 int
637 pt_step_out(mdb_tgt_t *t, uintptr_t *p)
638 {
639 	const lwpstatus_t *psp = &Pstatus(t->t_pshandle)->pr_lwp;
640 
641 	if (Pstate(t->t_pshandle) != PS_STOP)
642 		return (set_errno(EMDB_TGTBUSY));
643 
644 	return (mdb_ia32_step_out(t, p, psp->pr_reg[EIP], psp->pr_reg[EBP],
645 	    psp->pr_reg[UESP], pt_read_instr(t)));
646 }
647 
648 /*
649  * Return the address of the next instruction following a call, or return -1
650  * and set errno to EAGAIN if the target should just single-step.
651  */
652 int
653 pt_next(mdb_tgt_t *t, uintptr_t *p)
654 {
655 	const lwpstatus_t *psp = &Pstatus(t->t_pshandle)->pr_lwp;
656 
657 	if (Pstate(t->t_pshandle) != PS_STOP)
658 		return (set_errno(EMDB_TGTBUSY));
659 
660 	return (mdb_ia32_next(t, p, psp->pr_reg[EIP], pt_read_instr(t)));
661 }
662