xref: /illumos-gate/usr/src/cmd/mdb/intel/mdb/proc_ia32dep.c (revision 0a47c91c895e274dd0990009919e30e984364a8b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /*
27  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
28  */
29 
30 /*
31  * User Process Target Intel 32-bit component
32  *
33  * This file provides the ISA-dependent portion of the user process target.
34  * For more details on the implementation refer to mdb_proc.c.
35  */
36 
37 #include <mdb/mdb_proc.h>
38 #include <mdb/mdb_kreg.h>
39 #include <mdb/mdb_err.h>
40 #include <mdb/mdb_ia32util.h>
41 #include <mdb/mdb.h>
42 
43 #include <sys/frame.h>
44 #include <libproc.h>
45 #include <sys/fp.h>
46 #include <ieeefp.h>
47 
48 const mdb_tgt_regdesc_t pt_regdesc[] = {
49 	{ "gs", GS, MDB_TGT_R_EXPORT },
50 	{ "fs", FS, MDB_TGT_R_EXPORT },
51 	{ "es", ES, MDB_TGT_R_EXPORT },
52 	{ "ds", DS, MDB_TGT_R_EXPORT },
53 	{ "edi", EDI, MDB_TGT_R_EXPORT },
54 	{ "di",	EDI, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
55 	{ "esi", ESI, MDB_TGT_R_EXPORT },
56 	{ "si", ESI, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
57 	{ "ebp", EBP, MDB_TGT_R_EXPORT },
58 	{ "bp", EBP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
59 	{ "kesp", ESP, MDB_TGT_R_EXPORT },
60 	{ "ksp", ESP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
61 	{ "ebx", EBX, MDB_TGT_R_EXPORT },
62 	{ "bx", EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
63 	{ "bh", EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
64 	{ "bl", EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
65 	{ "edx", EDX, MDB_TGT_R_EXPORT },
66 	{ "dx", EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
67 	{ "dh", EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
68 	{ "dl", EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
69 	{ "ecx", ECX, MDB_TGT_R_EXPORT },
70 	{ "cx", ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
71 	{ "ch", ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
72 	{ "cl", ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
73 	{ "eax", EAX, MDB_TGT_R_EXPORT },
74 	{ "ax", EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
75 	{ "ah", EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
76 	{ "al", EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
77 	{ "trapno", TRAPNO, MDB_TGT_R_EXPORT },
78 	{ "err", ERR, MDB_TGT_R_EXPORT },
79 	{ "eip", EIP, MDB_TGT_R_EXPORT },
80 	{ "cs", CS, MDB_TGT_R_EXPORT },
81 	{ "eflags", EFL, MDB_TGT_R_EXPORT },
82 	{ "esp", UESP, MDB_TGT_R_EXPORT },
83 	{ "sp", UESP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
84 	{ "ss", SS, MDB_TGT_R_EXPORT },
85 	{ NULL, 0, 0 }
86 };
87 
88 /*
89  * We cannot rely on pr_instr, because if we hit a breakpoint or the user has
90  * artifically modified memory, it will no longer be correct.
91  */
92 static uint8_t
93 pt_read_instr(mdb_tgt_t *t)
94 {
95 	const lwpstatus_t *psp = &Pstatus(t->t_pshandle)->pr_lwp;
96 	uint8_t ret = 0;
97 
98 	(void) mdb_tgt_vread(t, &ret, sizeof (ret), psp->pr_reg[EIP]);
99 
100 	return (ret);
101 }
102 
103 /*ARGSUSED*/
104 int
105 pt_regs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
106 {
107 	mdb_tgt_t *t = mdb.m_target;
108 	mdb_tgt_tid_t tid;
109 	prgregset_t grs;
110 	prgreg_t eflags;
111 
112 	if (argc != 0)
113 		return (DCMD_USAGE);
114 
115 	if (t->t_pshandle == NULL || Pstate(t->t_pshandle) == PS_UNDEAD) {
116 		mdb_warn("no process active\n");
117 		return (DCMD_ERR);
118 	}
119 
120 	if (Pstate(t->t_pshandle) == PS_LOST) {
121 		mdb_warn("debugger has lost control of process\n");
122 		return (DCMD_ERR);
123 	}
124 
125 	if (flags & DCMD_ADDRSPEC)
126 		tid = (mdb_tgt_tid_t)addr;
127 	else
128 		tid = PTL_TID(t);
129 
130 	if (PTL_GETREGS(t, tid, grs) != 0) {
131 		mdb_warn("failed to get current register set");
132 		return (DCMD_ERR);
133 	}
134 
135 	eflags = grs[EFL];
136 
137 	mdb_printf("%%cs = 0x%04x\t\t%%eax = 0x%0?p %A\n",
138 	    grs[CS], grs[EAX], grs[EAX]);
139 
140 	mdb_printf("%%ds = 0x%04x\t\t%%ebx = 0x%0?p %A\n",
141 	    grs[DS], grs[EBX], grs[EBX]);
142 
143 	mdb_printf("%%ss = 0x%04x\t\t%%ecx = 0x%0?p %A\n",
144 	    grs[SS], grs[ECX], grs[ECX]);
145 
146 	mdb_printf("%%es = 0x%04x\t\t%%edx = 0x%0?p %A\n",
147 	    grs[ES], grs[EDX], grs[EDX]);
148 
149 	mdb_printf("%%fs = 0x%04x\t\t%%esi = 0x%0?p %A\n",
150 	    grs[FS], grs[ESI], grs[ESI]);
151 
152 	mdb_printf("%%gs = 0x%04x\t\t%%edi = 0x%0?p %A\n\n",
153 	    grs[GS], grs[EDI], grs[EDI]);
154 
155 	mdb_printf(" %%eip = 0x%0?p %A\n", grs[EIP], grs[EIP]);
156 	mdb_printf(" %%ebp = 0x%0?p\n", grs[EBP]);
157 	mdb_printf("%%kesp = 0x%0?p\n\n", grs[ESP]);
158 	mdb_printf("%%eflags = 0x%08x\n", eflags);
159 
160 	mdb_printf("  id=%u vip=%u vif=%u ac=%u vm=%u rf=%u nt=%u iopl=0x%x\n",
161 	    (eflags & KREG_EFLAGS_ID_MASK) >> KREG_EFLAGS_ID_SHIFT,
162 	    (eflags & KREG_EFLAGS_VIP_MASK) >> KREG_EFLAGS_VIP_SHIFT,
163 	    (eflags & KREG_EFLAGS_VIF_MASK) >> KREG_EFLAGS_VIF_SHIFT,
164 	    (eflags & KREG_EFLAGS_AC_MASK) >> KREG_EFLAGS_AC_SHIFT,
165 	    (eflags & KREG_EFLAGS_VM_MASK) >> KREG_EFLAGS_VM_SHIFT,
166 	    (eflags & KREG_EFLAGS_RF_MASK) >> KREG_EFLAGS_RF_SHIFT,
167 	    (eflags & KREG_EFLAGS_NT_MASK) >> KREG_EFLAGS_NT_SHIFT,
168 	    (eflags & KREG_EFLAGS_IOPL_MASK) >> KREG_EFLAGS_IOPL_SHIFT);
169 
170 	mdb_printf("  status=<%s,%s,%s,%s,%s,%s,%s,%s,%s>\n\n",
171 	    (eflags & KREG_EFLAGS_OF_MASK) ? "OF" : "of",
172 	    (eflags & KREG_EFLAGS_DF_MASK) ? "DF" : "df",
173 	    (eflags & KREG_EFLAGS_IF_MASK) ? "IF" : "if",
174 	    (eflags & KREG_EFLAGS_TF_MASK) ? "TF" : "tf",
175 	    (eflags & KREG_EFLAGS_SF_MASK) ? "SF" : "sf",
176 	    (eflags & KREG_EFLAGS_ZF_MASK) ? "ZF" : "zf",
177 	    (eflags & KREG_EFLAGS_AF_MASK) ? "AF" : "af",
178 	    (eflags & KREG_EFLAGS_PF_MASK) ? "PF" : "pf",
179 	    (eflags & KREG_EFLAGS_CF_MASK) ? "CF" : "cf");
180 
181 	mdb_printf("   %%esp = 0x%0?x\n", grs[UESP]);
182 	mdb_printf("%%trapno = 0x%x\n", grs[TRAPNO]);
183 	mdb_printf("   %%err = 0x%x\n", grs[ERR]);
184 
185 	return (DCMD_OK);
186 }
187 
188 static const char *
189 fpcw2str(uint32_t cw, char *buf, size_t nbytes)
190 {
191 	char *end = buf + nbytes;
192 	char *p = buf;
193 
194 	buf[0] = '\0';
195 
196 	/*
197 	 * Decode all masks in the 80387 control word.
198 	 */
199 	if (cw & FPIM)
200 		p += mdb_snprintf(p, (size_t)(end - p), "|IM");
201 	if (cw & FPDM)
202 		p += mdb_snprintf(p, (size_t)(end - p), "|DM");
203 	if (cw & FPZM)
204 		p += mdb_snprintf(p, (size_t)(end - p), "|ZM");
205 	if (cw & FPOM)
206 		p += mdb_snprintf(p, (size_t)(end - p), "|OM");
207 	if (cw & FPUM)
208 		p += mdb_snprintf(p, (size_t)(end - p), "|UM");
209 	if (cw & FPPM)
210 		p += mdb_snprintf(p, (size_t)(end - p), "|PM");
211 	if (cw & FPPC)
212 		p += mdb_snprintf(p, (size_t)(end - p), "|PC");
213 	if (cw & FPRC)
214 		p += mdb_snprintf(p, (size_t)(end - p), "|RC");
215 	if (cw & FPIC)
216 		p += mdb_snprintf(p, (size_t)(end - p), "|IC");
217 
218 	/*
219 	 * Decode precision, rounding, and infinity options in control word.
220 	 */
221 	if (cw & FPSIG24)
222 		p += mdb_snprintf(p, (size_t)(end - p), "|SIG24");
223 	if (cw & FPSIG53)
224 		p += mdb_snprintf(p, (size_t)(end - p), "|SIG53");
225 	if (cw & FPSIG64)
226 		p += mdb_snprintf(p, (size_t)(end - p), "|SIG64");
227 
228 	if ((cw & FPRC) == (FPRD|FPRU))
229 		p += mdb_snprintf(p, (size_t)(end - p), "|RTZ");
230 	else if (cw & FPRD)
231 		p += mdb_snprintf(p, (size_t)(end - p), "|RD");
232 	else if (cw & FPRU)
233 		p += mdb_snprintf(p, (size_t)(end - p), "|RU");
234 	else
235 		p += mdb_snprintf(p, (size_t)(end - p), "|RTN");
236 
237 	if (cw & FPA)
238 		p += mdb_snprintf(p, (size_t)(end - p), "|A");
239 	else
240 		p += mdb_snprintf(p, (size_t)(end - p), "|P");
241 	if (cw & WFPB17)
242 		p += mdb_snprintf(p, (size_t)(end - p), "|WFPB17");
243 	if (cw & WFPB24)
244 		p += mdb_snprintf(p, (size_t)(end - p), "|WFPB24");
245 
246 	if (buf[0] == '|')
247 		return (buf + 1);
248 
249 	return ("0");
250 }
251 
252 static const char *
253 fpsw2str(uint32_t cw, char *buf, size_t nbytes)
254 {
255 	char *end = buf + nbytes;
256 	char *p = buf;
257 
258 	buf[0] = '\0';
259 
260 	/*
261 	 * Decode all masks in the 80387 status word.
262 	 */
263 	if (cw & FPS_IE)
264 		p += mdb_snprintf(p, (size_t)(end - p), "|IE");
265 	if (cw & FPS_DE)
266 		p += mdb_snprintf(p, (size_t)(end - p), "|DE");
267 	if (cw & FPS_ZE)
268 		p += mdb_snprintf(p, (size_t)(end - p), "|ZE");
269 	if (cw & FPS_OE)
270 		p += mdb_snprintf(p, (size_t)(end - p), "|OE");
271 	if (cw & FPS_UE)
272 		p += mdb_snprintf(p, (size_t)(end - p), "|UE");
273 	if (cw & FPS_PE)
274 		p += mdb_snprintf(p, (size_t)(end - p), "|PE");
275 	if (cw & FPS_SF)
276 		p += mdb_snprintf(p, (size_t)(end - p), "|SF");
277 	if (cw & FPS_ES)
278 		p += mdb_snprintf(p, (size_t)(end - p), "|ES");
279 	if (cw & FPS_C0)
280 		p += mdb_snprintf(p, (size_t)(end - p), "|C0");
281 	if (cw & FPS_C1)
282 		p += mdb_snprintf(p, (size_t)(end - p), "|C1");
283 	if (cw & FPS_C2)
284 		p += mdb_snprintf(p, (size_t)(end - p), "|C2");
285 	if (cw & FPS_C3)
286 		p += mdb_snprintf(p, (size_t)(end - p), "|C3");
287 	if (cw & FPS_B)
288 		p += mdb_snprintf(p, (size_t)(end - p), "|B");
289 
290 	if (buf[0] == '|')
291 		return (buf + 1);
292 
293 	return ("0");
294 }
295 
296 static const char *
297 fpmxcsr2str(uint32_t mxcsr, char *buf, size_t nbytes)
298 {
299 	char *end = buf + nbytes;
300 	char *p = buf;
301 
302 	buf[0] = '\0';
303 
304 	/*
305 	 * Decode the MXCSR word
306 	 */
307 	if (mxcsr & SSE_IE)
308 		p += mdb_snprintf(p, (size_t)(end - p), "|IE");
309 	if (mxcsr & SSE_DE)
310 		p += mdb_snprintf(p, (size_t)(end - p), "|DE");
311 	if (mxcsr & SSE_ZE)
312 		p += mdb_snprintf(p, (size_t)(end - p), "|ZE");
313 	if (mxcsr & SSE_OE)
314 		p += mdb_snprintf(p, (size_t)(end - p), "|OE");
315 	if (mxcsr & SSE_UE)
316 		p += mdb_snprintf(p, (size_t)(end - p), "|UE");
317 	if (mxcsr & SSE_PE)
318 		p += mdb_snprintf(p, (size_t)(end - p), "|PE");
319 
320 	if (mxcsr & SSE_DAZ)
321 		p += mdb_snprintf(p, (size_t)(end - p), "|DAZ");
322 
323 	if (mxcsr & SSE_IM)
324 		p += mdb_snprintf(p, (size_t)(end - p), "|IM");
325 	if (mxcsr & SSE_DM)
326 		p += mdb_snprintf(p, (size_t)(end - p), "|DM");
327 	if (mxcsr & SSE_ZM)
328 		p += mdb_snprintf(p, (size_t)(end - p), "|ZM");
329 	if (mxcsr & SSE_OM)
330 		p += mdb_snprintf(p, (size_t)(end - p), "|OM");
331 	if (mxcsr & SSE_UM)
332 		p += mdb_snprintf(p, (size_t)(end - p), "|UM");
333 	if (mxcsr & SSE_PM)
334 		p += mdb_snprintf(p, (size_t)(end - p), "|PM");
335 
336 	if ((mxcsr & SSE_RC) == (SSE_RD|SSE_RU))
337 		p += mdb_snprintf(p, (size_t)(end - p), "|RTZ");
338 	else if (mxcsr & SSE_RD)
339 		p += mdb_snprintf(p, (size_t)(end - p), "|RD");
340 	else if (mxcsr & SSE_RU)
341 		p += mdb_snprintf(p, (size_t)(end - p), "|RU");
342 	else
343 		p += mdb_snprintf(p, (size_t)(end - p), "|RTN");
344 
345 	if (mxcsr & SSE_FZ)
346 		p += mdb_snprintf(p, (size_t)(end - p), "|FZ");
347 
348 	if (buf[0] == '|')
349 		return (buf + 1);
350 	return ("0");
351 }
352 
353 /*ARGSUSED*/
354 int
355 pt_fpregs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
356 {
357 	mdb_tgt_t *t = mdb.m_target;
358 	mdb_tgt_tid_t tid;
359 	uint32_t hw = FP_NO;
360 	uint_t sse = 0;
361 	prfpregset_t fprs;
362 	struct _fpstate fps;
363 	char buf[256];
364 	uint_t top;
365 	int i;
366 
367 	/*
368 	 * Union for overlaying _fpreg structure on to quad-precision
369 	 * floating-point value (long double).
370 	 */
371 	union {
372 		struct _fpreg reg;
373 		long double ld;
374 	} fpru;
375 
376 	/*
377 	 * Array of strings corresponding to FPU tag word values (see
378 	 * section 7.3.6 of the Intel Programmer's Reference Manual).
379 	 */
380 	const char *tag_strings[] = { "valid", "zero", "special", "empty" };
381 
382 	if (argc != 0)
383 		return (DCMD_USAGE);
384 
385 	if (t->t_pshandle == NULL || Pstate(t->t_pshandle) == PS_UNDEAD) {
386 		mdb_warn("no process active\n");
387 		return (DCMD_ERR);
388 	}
389 
390 	if (Pstate(t->t_pshandle) == PS_LOST) {
391 		mdb_warn("debugger has lost control of process\n");
392 		return (DCMD_ERR);
393 	}
394 
395 	if (flags & DCMD_ADDRSPEC)
396 		tid = (mdb_tgt_tid_t)addr;
397 	else
398 		tid = PTL_TID(t);
399 
400 	if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &hw,
401 	    sizeof (hw), "libc.so", "_fp_hw") < 0 &&
402 	    mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &hw,
403 	    sizeof (hw), MDB_TGT_OBJ_EXEC, "_fp_hw") < 0)
404 		mdb_warn("failed to read _fp_hw value");
405 
406 	if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &sse,
407 	    sizeof (sse), "libc.so", "_sse_hw") < 0 &&
408 	    mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &sse,
409 	    sizeof (sse), MDB_TGT_OBJ_EXEC, "_sse_hw") < 0)
410 		mdb_warn("failed to read _sse_hw value");
411 
412 	mdb_printf("_fp_hw 0x%02x (", hw);
413 	switch (hw) {
414 	case FP_SW:
415 		mdb_printf("80387 software emulator");
416 		break;
417 	case FP_287:
418 		mdb_printf("80287 chip");
419 		break;
420 	case FP_387:
421 		mdb_printf("80387 chip");
422 		break;
423 	case FP_486:
424 		mdb_printf("80486 chip");
425 		break;
426 	default:
427 		mdb_printf("no floating point support");
428 		break;
429 	}
430 	if (sse)
431 		mdb_printf(" with SSE");
432 	mdb_printf(")\n");
433 
434 	if (!(hw & FP_HW))
435 		return (DCMD_OK); /* just abort if no hardware present */
436 
437 	if (PTL_GETFPREGS(t, tid, &fprs) != 0) {
438 		mdb_warn("failed to get floating point registers");
439 		return (DCMD_ERR);
440 	}
441 
442 	bcopy(&fprs.fp_reg_set.fpchip_state, &fps, sizeof (fps));
443 
444 	fps.cw &= 0xffff;	/* control word is really 16 bits */
445 	fps.sw &= 0xffff;	/* status word is really 16 bits */
446 	fps.status &= 0xffff;	/* saved status word is really 16 bits */
447 	fps.cssel &= 0xffff;	/* %cs is really 16-bits */
448 	fps.datasel &= 0xffff;	/* %ds is really 16-bits too */
449 
450 	mdb_printf("cw     0x%04x (%s)\n", fps.cw,
451 	    fpcw2str(fps.cw, buf, sizeof (buf)));
452 
453 	top = (fps.sw & FPS_TOP) >> 11;
454 	mdb_printf("sw     0x%04x (TOP=0t%u) (%s)\n", fps.sw,
455 	    top, fpsw2str(fps.sw, buf, sizeof (buf)));
456 
457 	mdb_printf("xcp sw 0x%04x (%s)\n\n", fps.status,
458 	    fpsw2str(fps.status, buf, sizeof (buf)));
459 
460 	mdb_printf("ipoff  %a\n", fps.ipoff);
461 	mdb_printf("cssel  0x%x\n", fps.cssel);
462 	mdb_printf("dtoff  %a\n", fps.dataoff);
463 	mdb_printf("dtsel  0x%x\n\n", fps.datasel);
464 
465 	for (i = 0; i < 8; i++) {
466 		/*
467 		 * Recall that we need to use the current TOP-of-stack value to
468 		 * associate the _st[] index back to a physical register number,
469 		 * since tag word indices are physical register numbers.  Then
470 		 * to get the tag value, we shift over two bits for each tag
471 		 * index, and then grab the bottom two bits.
472 		 */
473 		uint_t tag_index = (i + top) & 7;
474 		uint_t tag_value = (fps.tag >> (tag_index * 2)) & 3;
475 
476 		fpru.reg = fps._st[i];
477 		mdb_printf("%%st%d   0x%04x.%04x%04x%04x%04x = %lg %s\n",
478 		    i, fpru.reg.exponent,
479 		    fpru.reg.significand[3], fpru.reg.significand[2],
480 		    fpru.reg.significand[1], fpru.reg.significand[0],
481 		    fpru.ld, tag_strings[tag_value]);
482 	}
483 
484 	if (!sse)
485 		return (DCMD_OK);
486 
487 	mdb_printf("\nmxcsr  0x%04x (%s)\n", fps.mxcsr,
488 	    fpmxcsr2str(fps.mxcsr, buf, sizeof (buf)));
489 	mdb_printf("xcp    0x%04x (%s)\n\n", fps.xstatus,
490 	    fpmxcsr2str(fps.xstatus, buf, sizeof (buf)));
491 
492 	for (i = 0; i < 8; i++)
493 		mdb_printf("%%xmm%d  0x%08x%08x%08x%08x\n", i,
494 		    fps.xmm[i][3], fps.xmm[i][2],
495 		    fps.xmm[i][1], fps.xmm[i][0]);
496 
497 	return (DCMD_OK);
498 }
499 
500 /*ARGSUSED*/
501 int
502 pt_getfpreg(mdb_tgt_t *t, mdb_tgt_tid_t tid, ushort_t rd_num,
503     ushort_t rd_flags, mdb_tgt_reg_t *rp)
504 {
505 	return (set_errno(ENOTSUP));
506 }
507 
508 /*ARGSUSED*/
509 int
510 pt_putfpreg(mdb_tgt_t *t, mdb_tgt_tid_t tid, ushort_t rd_num,
511     ushort_t rd_flags, mdb_tgt_reg_t rval)
512 {
513 	return (set_errno(ENOTSUP));
514 }
515 
516 /*ARGSUSED*/
517 void
518 pt_addfpregs(mdb_tgt_t *t)
519 {
520 	/* not implemented */
521 }
522 
523 /*ARGSUSED*/
524 int
525 pt_frameregs(void *arglim, uintptr_t pc, uint_t argc, const long *argv,
526     const mdb_tgt_gregset_t *gregs, boolean_t pc_faked)
527 {
528 	return (set_errno(ENOTSUP));
529 }
530 
531 /*ARGSUSED*/
532 const char *
533 pt_disasm(const GElf_Ehdr *ehp)
534 {
535 	return ("ia32");
536 }
537 
538 /*
539  * Determine the return address for the current frame.
540  */
541 int
542 pt_step_out(mdb_tgt_t *t, uintptr_t *p)
543 {
544 	const lwpstatus_t *psp = &Pstatus(t->t_pshandle)->pr_lwp;
545 
546 	if (Pstate(t->t_pshandle) != PS_STOP)
547 		return (set_errno(EMDB_TGTBUSY));
548 
549 	return (mdb_ia32_step_out(t, p, psp->pr_reg[EIP], psp->pr_reg[EBP],
550 	    psp->pr_reg[UESP], pt_read_instr(t)));
551 }
552 
553 /*
554  * Return the address of the next instruction following a call, or return -1
555  * and set errno to EAGAIN if the target should just single-step.
556  */
557 int
558 pt_next(mdb_tgt_t *t, uintptr_t *p)
559 {
560 	const lwpstatus_t *psp = &Pstatus(t->t_pshandle)->pr_lwp;
561 
562 	if (Pstate(t->t_pshandle) != PS_STOP)
563 		return (set_errno(EMDB_TGTBUSY));
564 
565 	return (mdb_ia32_next(t, p, psp->pr_reg[EIP], pt_read_instr(t)));
566 }
567