xref: /illumos-gate/usr/src/cmd/mdb/common/modules/genunix/genunix.c (revision 5a382e8f92046a6ae65b810db1194fd91b59edc2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
23  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  * Copyright (c) 2013 by Delphix. All rights reserved.
26  */
27 
28 #include <mdb/mdb_param.h>
29 #include <mdb/mdb_modapi.h>
30 #include <mdb/mdb_ks.h>
31 #include <mdb/mdb_ctf.h>
32 
33 #include <sys/types.h>
34 #include <sys/thread.h>
35 #include <sys/session.h>
36 #include <sys/user.h>
37 #include <sys/proc.h>
38 #include <sys/var.h>
39 #include <sys/t_lock.h>
40 #include <sys/callo.h>
41 #include <sys/priocntl.h>
42 #include <sys/class.h>
43 #include <sys/regset.h>
44 #include <sys/stack.h>
45 #include <sys/cpuvar.h>
46 #include <sys/vnode.h>
47 #include <sys/vfs.h>
48 #include <sys/flock_impl.h>
49 #include <sys/kmem_impl.h>
50 #include <sys/vmem_impl.h>
51 #include <sys/kstat.h>
52 #include <sys/dditypes.h>
53 #include <sys/ddi_impldefs.h>
54 #include <sys/sysmacros.h>
55 #include <sys/sysconf.h>
56 #include <sys/task.h>
57 #include <sys/project.h>
58 #include <sys/errorq_impl.h>
59 #include <sys/cred_impl.h>
60 #include <sys/zone.h>
61 #include <sys/panic.h>
62 #include <regex.h>
63 #include <sys/port_impl.h>
64 
65 #include "avl.h"
66 #include "bio.h"
67 #include "bitset.h"
68 #include "combined.h"
69 #include "contract.h"
70 #include "cpupart_mdb.h"
71 #include "cred.h"
72 #include "ctxop.h"
73 #include "cyclic.h"
74 #include "damap.h"
75 #include "ddi_periodic.h"
76 #include "devinfo.h"
77 #include "dnlc.h"
78 #include "findstack.h"
79 #include "fm.h"
80 #include "gcore.h"
81 #include "group.h"
82 #include "irm.h"
83 #include "kgrep.h"
84 #include "kmem.h"
85 #include "ldi.h"
86 #include "leaky.h"
87 #include "lgrp.h"
88 #include "list.h"
89 #include "log.h"
90 #include "mdi.h"
91 #include "memory.h"
92 #include "mmd.h"
93 #include "modhash.h"
94 #include "ndievents.h"
95 #include "net.h"
96 #include "netstack.h"
97 #include "nvpair.h"
98 #include "pci.h"
99 #include "pg.h"
100 #include "rctl.h"
101 #include "sobj.h"
102 #include "streams.h"
103 #include "sysevent.h"
104 #include "taskq.h"
105 #include "thread.h"
106 #include "tsd.h"
107 #include "tsol.h"
108 #include "typegraph.h"
109 #include "vfs.h"
110 #include "zone.h"
111 #include "hotplug.h"
112 
113 /*
114  * Surely this is defined somewhere...
115  */
116 #define	NINTR		16
117 
118 #define	KILOS		10
119 #define	MEGS		20
120 #define	GIGS		30
121 
122 #ifndef STACK_BIAS
123 #define	STACK_BIAS	0
124 #endif
125 
126 static char
127 pstat2ch(uchar_t state)
128 {
129 	switch (state) {
130 		case SSLEEP: return ('S');
131 		case SRUN: return ('R');
132 		case SZOMB: return ('Z');
133 		case SIDL: return ('I');
134 		case SONPROC: return ('O');
135 		case SSTOP: return ('T');
136 		case SWAIT: return ('W');
137 		default: return ('?');
138 	}
139 }
140 
141 #define	PS_PRTTHREADS	0x1
142 #define	PS_PRTLWPS	0x2
143 #define	PS_PSARGS	0x4
144 #define	PS_TASKS	0x8
145 #define	PS_PROJECTS	0x10
146 #define	PS_ZONES	0x20
147 
148 static int
149 ps_threadprint(uintptr_t addr, const void *data, void *private)
150 {
151 	const kthread_t *t = (const kthread_t *)data;
152 	uint_t prt_flags = *((uint_t *)private);
153 
154 	static const mdb_bitmask_t t_state_bits[] = {
155 		{ "TS_FREE",	UINT_MAX,	TS_FREE		},
156 		{ "TS_SLEEP",	TS_SLEEP,	TS_SLEEP	},
157 		{ "TS_RUN",	TS_RUN,		TS_RUN		},
158 		{ "TS_ONPROC",	TS_ONPROC,	TS_ONPROC	},
159 		{ "TS_ZOMB",	TS_ZOMB,	TS_ZOMB		},
160 		{ "TS_STOPPED",	TS_STOPPED,	TS_STOPPED	},
161 		{ "TS_WAIT",	TS_WAIT,	TS_WAIT		},
162 		{ NULL,		0,		0		}
163 	};
164 
165 	if (prt_flags & PS_PRTTHREADS)
166 		mdb_printf("\tT  %?a <%b>\n", addr, t->t_state, t_state_bits);
167 
168 	if (prt_flags & PS_PRTLWPS) {
169 		char desc[128] = "";
170 
171 		(void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc));
172 
173 		mdb_printf("\tL  %?a ID: %s\n", t->t_lwp, desc);
174 	}
175 
176 	return (WALK_NEXT);
177 }
178 
179 typedef struct mdb_pflags_proc {
180 	struct pid	*p_pidp;
181 	ushort_t	p_pidflag;
182 	uint_t		p_proc_flag;
183 	uint_t		p_flag;
184 } mdb_pflags_proc_t;
185 
186 static int
187 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
188 {
189 	mdb_pflags_proc_t pr;
190 	struct pid pid;
191 
192 	static const mdb_bitmask_t p_flag_bits[] = {
193 		{ "SSYS",		SSYS,		SSYS		},
194 		{ "SEXITING",		SEXITING,	SEXITING	},
195 		{ "SITBUSY",		SITBUSY,	SITBUSY		},
196 		{ "SFORKING",		SFORKING,	SFORKING	},
197 		{ "SWATCHOK",		SWATCHOK,	SWATCHOK	},
198 		{ "SKILLED",		SKILLED,	SKILLED		},
199 		{ "SSCONT",		SSCONT,		SSCONT		},
200 		{ "SZONETOP",		SZONETOP,	SZONETOP	},
201 		{ "SEXTKILLED",		SEXTKILLED,	SEXTKILLED	},
202 		{ "SUGID",		SUGID,		SUGID		},
203 		{ "SEXECED",		SEXECED,	SEXECED		},
204 		{ "SJCTL",		SJCTL,		SJCTL		},
205 		{ "SNOWAIT",		SNOWAIT,	SNOWAIT		},
206 		{ "SVFORK",		SVFORK,		SVFORK		},
207 		{ "SVFWAIT",		SVFWAIT,	SVFWAIT		},
208 		{ "SEXITLWPS",		SEXITLWPS,	SEXITLWPS	},
209 		{ "SHOLDFORK",		SHOLDFORK,	SHOLDFORK	},
210 		{ "SHOLDFORK1",		SHOLDFORK1,	SHOLDFORK1	},
211 		{ "SCOREDUMP",		SCOREDUMP,	SCOREDUMP	},
212 		{ "SMSACCT",		SMSACCT,	SMSACCT		},
213 		{ "SLWPWRAP",		SLWPWRAP,	SLWPWRAP	},
214 		{ "SAUTOLPG",		SAUTOLPG,	SAUTOLPG	},
215 		{ "SNOCD",		SNOCD,		SNOCD		},
216 		{ "SHOLDWATCH",		SHOLDWATCH,	SHOLDWATCH	},
217 		{ "SMSFORK",		SMSFORK,	SMSFORK		},
218 		{ "SDOCORE",		SDOCORE,	SDOCORE		},
219 		{ NULL,			0,		0		}
220 	};
221 
222 	static const mdb_bitmask_t p_pidflag_bits[] = {
223 		{ "CLDPEND",		CLDPEND,	CLDPEND		},
224 		{ "CLDCONT",		CLDCONT,	CLDCONT		},
225 		{ "CLDNOSIGCHLD",	CLDNOSIGCHLD,	CLDNOSIGCHLD	},
226 		{ "CLDWAITPID",		CLDWAITPID,	CLDWAITPID	},
227 		{ NULL,			0,		0		}
228 	};
229 
230 	static const mdb_bitmask_t p_proc_flag_bits[] = {
231 		{ "P_PR_TRACE",		P_PR_TRACE,	P_PR_TRACE	},
232 		{ "P_PR_PTRACE",	P_PR_PTRACE,	P_PR_PTRACE	},
233 		{ "P_PR_FORK",		P_PR_FORK,	P_PR_FORK	},
234 		{ "P_PR_LOCK",		P_PR_LOCK,	P_PR_LOCK	},
235 		{ "P_PR_ASYNC",		P_PR_ASYNC,	P_PR_ASYNC	},
236 		{ "P_PR_EXEC",		P_PR_EXEC,	P_PR_EXEC	},
237 		{ "P_PR_BPTADJ",	P_PR_BPTADJ,	P_PR_BPTADJ	},
238 		{ "P_PR_RUNLCL",	P_PR_RUNLCL,	P_PR_RUNLCL	},
239 		{ "P_PR_KILLCL",	P_PR_KILLCL,	P_PR_KILLCL	},
240 		{ NULL,			0,		0		}
241 	};
242 
243 	if (!(flags & DCMD_ADDRSPEC)) {
244 		if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) {
245 			mdb_warn("can't walk 'proc'");
246 			return (DCMD_ERR);
247 		}
248 		return (DCMD_OK);
249 	}
250 
251 	if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 ||
252 	    mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) {
253 		mdb_warn("cannot read proc_t or pid");
254 		return (DCMD_ERR);
255 	}
256 
257 	mdb_printf("%p [pid %d]:\n", addr, pid.pid_id);
258 	mdb_printf("\tp_flag:      %08x <%b>\n", pr.p_flag, pr.p_flag,
259 	    p_flag_bits);
260 	mdb_printf("\tp_pidflag:   %08x <%b>\n", pr.p_pidflag, pr.p_pidflag,
261 	    p_pidflag_bits);
262 	mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag,
263 	    p_proc_flag_bits);
264 
265 	return (DCMD_OK);
266 }
267 
268 typedef struct mdb_ps_proc {
269 	char		p_stat;
270 	struct pid	*p_pidp;
271 	struct pid	*p_pgidp;
272 	struct cred	*p_cred;
273 	struct sess	*p_sessp;
274 	struct task	*p_task;
275 	struct zone	*p_zone;
276 	pid_t		p_ppid;
277 	uint_t		p_flag;
278 	struct {
279 		char		u_comm[MAXCOMLEN + 1];
280 		char		u_psargs[PSARGSZ];
281 	} p_user;
282 } mdb_ps_proc_t;
283 
284 int
285 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
286 {
287 	uint_t prt_flags = 0;
288 	mdb_ps_proc_t pr;
289 	struct pid pid, pgid, sid;
290 	sess_t session;
291 	cred_t cred;
292 	task_t tk;
293 	kproject_t pj;
294 	zone_t zn;
295 
296 	if (!(flags & DCMD_ADDRSPEC)) {
297 		if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
298 			mdb_warn("can't walk 'proc'");
299 			return (DCMD_ERR);
300 		}
301 		return (DCMD_OK);
302 	}
303 
304 	if (mdb_getopts(argc, argv,
305 	    'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
306 	    'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
307 	    'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
308 	    'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
309 	    'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
310 	    't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
311 		return (DCMD_USAGE);
312 
313 	if (DCMD_HDRSPEC(flags)) {
314 		mdb_printf("%<u>%1s %6s %6s %6s %6s ",
315 		    "S", "PID", "PPID", "PGID", "SID");
316 		if (prt_flags & PS_TASKS)
317 			mdb_printf("%5s ", "TASK");
318 		if (prt_flags & PS_PROJECTS)
319 			mdb_printf("%5s ", "PROJ");
320 		if (prt_flags & PS_ZONES)
321 			mdb_printf("%5s ", "ZONE");
322 		mdb_printf("%6s %10s %?s %s%</u>\n",
323 		    "UID", "FLAGS", "ADDR", "NAME");
324 	}
325 
326 	if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1)
327 		return (DCMD_ERR);
328 
329 	mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
330 	mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
331 	mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
332 	mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
333 	mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
334 	if (prt_flags & (PS_TASKS | PS_PROJECTS))
335 		mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
336 	if (prt_flags & PS_PROJECTS)
337 		mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
338 	if (prt_flags & PS_ZONES)
339 		mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone);
340 
341 	mdb_printf("%c %6d %6d %6d %6d ",
342 	    pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
343 	    sid.pid_id);
344 	if (prt_flags & PS_TASKS)
345 		mdb_printf("%5d ", tk.tk_tkid);
346 	if (prt_flags & PS_PROJECTS)
347 		mdb_printf("%5d ", pj.kpj_id);
348 	if (prt_flags & PS_ZONES)
349 		mdb_printf("%5d ", zn.zone_id);
350 	mdb_printf("%6d 0x%08x %0?p %s\n",
351 	    cred.cr_uid, pr.p_flag, addr,
352 	    (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
353 
354 	if (prt_flags & ~PS_PSARGS)
355 		(void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
356 
357 	return (DCMD_OK);
358 }
359 
360 static void
361 ps_help(void)
362 {
363 	mdb_printf("Display processes.\n\n"
364 	    "Options:\n"
365 	    "    -f\tDisplay command arguments\n"
366 	    "    -l\tDisplay LWPs\n"
367 	    "    -T\tDisplay tasks\n"
368 	    "    -P\tDisplay projects\n"
369 	    "    -z\tDisplay zones\n"
370 	    "    -t\tDisplay threads\n\n");
371 
372 	mdb_printf("The resulting output is a table of the processes on the "
373 	    "system.  The\n"
374 	    "columns in the output consist of a combination of the "
375 	    "following fields:\n\n");
376 	mdb_printf("S\tProcess state.  Possible states are:\n"
377 	    "\tS\tSleeping (SSLEEP)\n"
378 	    "\tR\tRunnable (SRUN)\n"
379 	    "\tZ\tZombie (SZOMB)\n"
380 	    "\tI\tIdle (SIDL)\n"
381 	    "\tO\tOn Cpu (SONPROC)\n"
382 	    "\tT\tStopped (SSTOP)\n"
383 	    "\tW\tWaiting (SWAIT)\n");
384 
385 	mdb_printf("PID\tProcess id.\n");
386 	mdb_printf("PPID\tParent process id.\n");
387 	mdb_printf("PGID\tProcess group id.\n");
388 	mdb_printf("SID\tProcess id of the session leader.\n");
389 	mdb_printf("TASK\tThe task id of the process.\n");
390 	mdb_printf("PROJ\tThe project id of the process.\n");
391 	mdb_printf("ZONE\tThe zone id of the process.\n");
392 	mdb_printf("UID\tThe user id of the process.\n");
393 	mdb_printf("FLAGS\tThe process flags (see ::pflags).\n");
394 	mdb_printf("ADDR\tThe kernel address of the proc_t structure of the "
395 	    "process\n");
396 	mdb_printf("NAME\tThe name (p_user.u_comm field) of the process.  If "
397 	    "the -f flag\n"
398 	    "\tis specified, the arguments of the process are displayed.\n");
399 }
400 
401 #define	PG_NEWEST	0x0001
402 #define	PG_OLDEST	0x0002
403 #define	PG_PIPE_OUT	0x0004
404 #define	PG_EXACT_MATCH	0x0008
405 
406 typedef struct pgrep_data {
407 	uint_t pg_flags;
408 	uint_t pg_psflags;
409 	uintptr_t pg_xaddr;
410 	hrtime_t pg_xstart;
411 	const char *pg_pat;
412 #ifndef _KMDB
413 	regex_t pg_reg;
414 #endif
415 } pgrep_data_t;
416 
417 typedef struct mdb_pgrep_proc {
418 	struct {
419 		timestruc_t	u_start;
420 		char		u_comm[MAXCOMLEN + 1];
421 	} p_user;
422 } mdb_pgrep_proc_t;
423 
424 /*ARGSUSED*/
425 static int
426 pgrep_cb(uintptr_t addr, const void *ignored, void *data)
427 {
428 	mdb_pgrep_proc_t p;
429 	pgrep_data_t *pgp = data;
430 #ifndef _KMDB
431 	regmatch_t pmatch;
432 #endif
433 
434 	if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1)
435 		return (WALK_ERR);
436 
437 	/*
438 	 * kmdb doesn't have access to the reg* functions, so we fall back
439 	 * to strstr/strcmp.
440 	 */
441 #ifdef _KMDB
442 	if ((pgp->pg_flags & PG_EXACT_MATCH) ?
443 	    (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) :
444 	    (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL))
445 		return (WALK_NEXT);
446 #else
447 	if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0)
448 		return (WALK_NEXT);
449 
450 	if ((pgp->pg_flags & PG_EXACT_MATCH) &&
451 	    (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0'))
452 		return (WALK_NEXT);
453 #endif
454 
455 	if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
456 		hrtime_t start;
457 
458 		start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC +
459 		    p.p_user.u_start.tv_nsec;
460 
461 		if (pgp->pg_flags & PG_NEWEST) {
462 			if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) {
463 				pgp->pg_xaddr = addr;
464 				pgp->pg_xstart = start;
465 			}
466 		} else {
467 			if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) {
468 				pgp->pg_xaddr = addr;
469 				pgp->pg_xstart = start;
470 			}
471 		}
472 
473 	} else if (pgp->pg_flags & PG_PIPE_OUT) {
474 		mdb_printf("%p\n", addr);
475 
476 	} else {
477 		if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
478 			mdb_warn("can't invoke 'ps'");
479 			return (WALK_DONE);
480 		}
481 		pgp->pg_psflags &= ~DCMD_LOOPFIRST;
482 	}
483 
484 	return (WALK_NEXT);
485 }
486 
487 /*ARGSUSED*/
488 int
489 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
490 {
491 	pgrep_data_t pg;
492 	int i;
493 #ifndef _KMDB
494 	int err;
495 #endif
496 
497 	if (flags & DCMD_ADDRSPEC)
498 		return (DCMD_USAGE);
499 
500 	pg.pg_flags = 0;
501 	pg.pg_xaddr = 0;
502 
503 	i = mdb_getopts(argc, argv,
504 	    'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
505 	    'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
506 	    'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
507 	    NULL);
508 
509 	argc -= i;
510 	argv += i;
511 
512 	if (argc != 1)
513 		return (DCMD_USAGE);
514 
515 	/*
516 	 * -n and -o are mutually exclusive.
517 	 */
518 	if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
519 		return (DCMD_USAGE);
520 
521 	if (argv->a_type != MDB_TYPE_STRING)
522 		return (DCMD_USAGE);
523 
524 	if (flags & DCMD_PIPE_OUT)
525 		pg.pg_flags |= PG_PIPE_OUT;
526 
527 	pg.pg_pat = argv->a_un.a_str;
528 	if (DCMD_HDRSPEC(flags))
529 		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
530 	else
531 		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
532 
533 #ifndef _KMDB
534 	if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
535 		size_t nbytes;
536 		char *buf;
537 
538 		nbytes = regerror(err, &pg.pg_reg, NULL, 0);
539 		buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
540 		(void) regerror(err, &pg.pg_reg, buf, nbytes);
541 		mdb_warn("%s\n", buf);
542 
543 		return (DCMD_ERR);
544 	}
545 #endif
546 
547 	if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
548 		mdb_warn("can't walk 'proc'");
549 		return (DCMD_ERR);
550 	}
551 
552 	if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
553 		if (pg.pg_flags & PG_PIPE_OUT) {
554 			mdb_printf("%p\n", pg.pg_xaddr);
555 		} else {
556 			if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
557 			    0, NULL) != 0) {
558 				mdb_warn("can't invoke 'ps'");
559 				return (DCMD_ERR);
560 			}
561 		}
562 	}
563 
564 	return (DCMD_OK);
565 }
566 
567 int
568 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
569 {
570 	task_t tk;
571 	kproject_t pj;
572 
573 	if (!(flags & DCMD_ADDRSPEC)) {
574 		if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
575 			mdb_warn("can't walk task_cache");
576 			return (DCMD_ERR);
577 		}
578 		return (DCMD_OK);
579 	}
580 	if (DCMD_HDRSPEC(flags)) {
581 		mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
582 		    "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
583 	}
584 	if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
585 		mdb_warn("can't read task_t structure at %p", addr);
586 		return (DCMD_ERR);
587 	}
588 	if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
589 		mdb_warn("can't read project_t structure at %p", addr);
590 		return (DCMD_ERR);
591 	}
592 	mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
593 	    addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
594 	    tk.tk_flags);
595 	return (DCMD_OK);
596 }
597 
598 int
599 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
600 {
601 	kproject_t pj;
602 
603 	if (!(flags & DCMD_ADDRSPEC)) {
604 		if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
605 			mdb_warn("can't walk projects");
606 			return (DCMD_ERR);
607 		}
608 		return (DCMD_OK);
609 	}
610 	if (DCMD_HDRSPEC(flags)) {
611 		mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
612 		    "ADDR", "PROJID", "ZONEID", "REFCNT");
613 	}
614 	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
615 		mdb_warn("can't read kproject_t structure at %p", addr);
616 		return (DCMD_ERR);
617 	}
618 	mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
619 	    pj.kpj_count);
620 	return (DCMD_OK);
621 }
622 
623 /* walk callouts themselves, either by list or id hash. */
624 int
625 callout_walk_init(mdb_walk_state_t *wsp)
626 {
627 	if (wsp->walk_addr == 0) {
628 		mdb_warn("callout doesn't support global walk");
629 		return (WALK_ERR);
630 	}
631 	wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
632 	return (WALK_NEXT);
633 }
634 
635 #define	CALLOUT_WALK_BYLIST	0
636 #define	CALLOUT_WALK_BYID	1
637 
638 /* the walker arg switches between walking by list (0) and walking by id (1). */
639 int
640 callout_walk_step(mdb_walk_state_t *wsp)
641 {
642 	int retval;
643 
644 	if (wsp->walk_addr == 0) {
645 		return (WALK_DONE);
646 	}
647 	if (mdb_vread(wsp->walk_data, sizeof (callout_t),
648 	    wsp->walk_addr) == -1) {
649 		mdb_warn("failed to read callout at %p", wsp->walk_addr);
650 		return (WALK_DONE);
651 	}
652 	retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
653 	    wsp->walk_cbdata);
654 
655 	if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
656 		wsp->walk_addr =
657 		    (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
658 	} else {
659 		wsp->walk_addr =
660 		    (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
661 	}
662 
663 	return (retval);
664 }
665 
666 void
667 callout_walk_fini(mdb_walk_state_t *wsp)
668 {
669 	mdb_free(wsp->walk_data, sizeof (callout_t));
670 }
671 
672 /*
673  * walker for callout lists. This is different from hashes and callouts.
674  * Thankfully, it's also simpler.
675  */
676 int
677 callout_list_walk_init(mdb_walk_state_t *wsp)
678 {
679 	if (wsp->walk_addr == 0) {
680 		mdb_warn("callout list doesn't support global walk");
681 		return (WALK_ERR);
682 	}
683 	wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
684 	return (WALK_NEXT);
685 }
686 
687 int
688 callout_list_walk_step(mdb_walk_state_t *wsp)
689 {
690 	int retval;
691 
692 	if (wsp->walk_addr == 0) {
693 		return (WALK_DONE);
694 	}
695 	if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
696 	    wsp->walk_addr) != sizeof (callout_list_t)) {
697 		mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
698 		return (WALK_ERR);
699 	}
700 	retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
701 	    wsp->walk_cbdata);
702 
703 	wsp->walk_addr = (uintptr_t)
704 	    (((callout_list_t *)wsp->walk_data)->cl_next);
705 
706 	return (retval);
707 }
708 
709 void
710 callout_list_walk_fini(mdb_walk_state_t *wsp)
711 {
712 	mdb_free(wsp->walk_data, sizeof (callout_list_t));
713 }
714 
715 /* routines/structs to walk callout table(s) */
716 typedef struct cot_data {
717 	callout_table_t *ct0;
718 	callout_table_t ct;
719 	callout_hash_t cot_idhash[CALLOUT_BUCKETS];
720 	callout_hash_t cot_clhash[CALLOUT_BUCKETS];
721 	kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
722 	int cotndx;
723 	int cotsize;
724 } cot_data_t;
725 
726 int
727 callout_table_walk_init(mdb_walk_state_t *wsp)
728 {
729 	int max_ncpus;
730 	cot_data_t *cot_walk_data;
731 
732 	cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
733 
734 	if (wsp->walk_addr == 0) {
735 		if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
736 			mdb_warn("failed to read 'callout_table'");
737 			return (WALK_ERR);
738 		}
739 		if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
740 			mdb_warn("failed to get callout_table array size");
741 			return (WALK_ERR);
742 		}
743 		cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
744 		wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
745 	} else {
746 		/* not a global walk */
747 		cot_walk_data->cotsize = 1;
748 	}
749 
750 	cot_walk_data->cotndx = 0;
751 	wsp->walk_data = cot_walk_data;
752 
753 	return (WALK_NEXT);
754 }
755 
756 int
757 callout_table_walk_step(mdb_walk_state_t *wsp)
758 {
759 	int retval;
760 	cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
761 	size_t size;
762 
763 	if (cotwd->cotndx >= cotwd->cotsize) {
764 		return (WALK_DONE);
765 	}
766 	if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
767 	    wsp->walk_addr) != sizeof (callout_table_t)) {
768 		mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
769 		return (WALK_ERR);
770 	}
771 
772 	size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
773 	if (cotwd->ct.ct_idhash != NULL) {
774 		if (mdb_vread(cotwd->cot_idhash, size,
775 		    (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
776 			mdb_warn("failed to read id_hash at %p",
777 			    cotwd->ct.ct_idhash);
778 			return (WALK_ERR);
779 		}
780 	}
781 	if (cotwd->ct.ct_clhash != NULL) {
782 		if (mdb_vread(&(cotwd->cot_clhash), size,
783 		    (uintptr_t)cotwd->ct.ct_clhash) == -1) {
784 			mdb_warn("failed to read cl_hash at %p",
785 			    cotwd->ct.ct_clhash);
786 			return (WALK_ERR);
787 		}
788 	}
789 	size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
790 	if (cotwd->ct.ct_kstat_data != NULL) {
791 		if (mdb_vread(&(cotwd->ct_kstat_data), size,
792 		    (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
793 			mdb_warn("failed to read kstats at %p",
794 			    cotwd->ct.ct_kstat_data);
795 			return (WALK_ERR);
796 		}
797 	}
798 	retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
799 	    wsp->walk_cbdata);
800 
801 	cotwd->cotndx++;
802 	if (cotwd->cotndx >= cotwd->cotsize) {
803 		return (WALK_DONE);
804 	}
805 	wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
806 	    sizeof (callout_table_t));
807 
808 	return (retval);
809 }
810 
811 void
812 callout_table_walk_fini(mdb_walk_state_t *wsp)
813 {
814 	mdb_free(wsp->walk_data, sizeof (cot_data_t));
815 }
816 
817 static const char *co_typenames[] = { "R", "N" };
818 
819 #define	CO_PLAIN_ID(xid)	((xid) & CALLOUT_ID_MASK)
820 
821 #define	TABLE_TO_SEQID(x)	((x) >> CALLOUT_TYPE_BITS)
822 
823 /* callout flags, in no particular order */
824 #define	COF_REAL	0x00000001
825 #define	COF_NORM	0x00000002
826 #define	COF_LONG	0x00000004
827 #define	COF_SHORT	0x00000008
828 #define	COF_EMPTY	0x00000010
829 #define	COF_TIME	0x00000020
830 #define	COF_BEFORE	0x00000040
831 #define	COF_AFTER	0x00000080
832 #define	COF_SEQID	0x00000100
833 #define	COF_FUNC	0x00000200
834 #define	COF_ADDR	0x00000400
835 #define	COF_EXEC	0x00000800
836 #define	COF_HIRES	0x00001000
837 #define	COF_ABS		0x00002000
838 #define	COF_TABLE	0x00004000
839 #define	COF_BYIDH	0x00008000
840 #define	COF_FREE	0x00010000
841 #define	COF_LIST	0x00020000
842 #define	COF_EXPREL	0x00040000
843 #define	COF_HDR		0x00080000
844 #define	COF_VERBOSE	0x00100000
845 #define	COF_LONGLIST	0x00200000
846 #define	COF_THDR	0x00400000
847 #define	COF_LHDR	0x00800000
848 #define	COF_CHDR	0x01000000
849 #define	COF_PARAM	0x02000000
850 #define	COF_DECODE	0x04000000
851 #define	COF_HEAP	0x08000000
852 #define	COF_QUEUE	0x10000000
853 
854 /* show real and normal, short and long, expired and unexpired. */
855 #define	COF_DEFAULT	(COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
856 
857 #define	COF_LIST_FLAGS	\
858 	(CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
859 
860 /* private callout data for callback functions */
861 typedef struct callout_data {
862 	uint_t flags;		/* COF_* */
863 	cpu_t *cpu;		/* cpu pointer if given */
864 	int seqid;		/* cpu seqid, or -1 */
865 	hrtime_t time;		/* expiration time value */
866 	hrtime_t atime;		/* expiration before value */
867 	hrtime_t btime;		/* expiration after value */
868 	uintptr_t funcaddr;	/* function address or NULL */
869 	uintptr_t param;	/* parameter to function or NULL */
870 	hrtime_t now;		/* current system time */
871 	int nsec_per_tick;	/* for conversions */
872 	ulong_t ctbits;		/* for decoding xid */
873 	callout_table_t *co_table;	/* top of callout table array */
874 	int ndx;		/* table index. */
875 	int bucket;		/* which list/id bucket are we in */
876 	hrtime_t exp;		/* expire time */
877 	int list_flags;		/* copy of cl_flags */
878 } callout_data_t;
879 
880 /* this callback does the actual callback itself (finally). */
881 /*ARGSUSED*/
882 static int
883 callouts_cb(uintptr_t addr, const void *data, void *priv)
884 {
885 	callout_data_t *coargs = (callout_data_t *)priv;
886 	callout_t *co = (callout_t *)data;
887 	int tableid, list_flags;
888 	callout_id_t coid;
889 
890 	if ((coargs == NULL) || (co == NULL)) {
891 		return (WALK_ERR);
892 	}
893 
894 	if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
895 		/*
896 		 * The callout must have been reallocated. No point in
897 		 * walking any more.
898 		 */
899 		return (WALK_DONE);
900 	}
901 	if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
902 		/*
903 		 * The callout must have been freed. No point in
904 		 * walking any more.
905 		 */
906 		return (WALK_DONE);
907 	}
908 	if ((coargs->flags & COF_FUNC) &&
909 	    (coargs->funcaddr != (uintptr_t)co->c_func)) {
910 		return (WALK_NEXT);
911 	}
912 	if ((coargs->flags & COF_PARAM) &&
913 	    (coargs->param != (uintptr_t)co->c_arg)) {
914 		return (WALK_NEXT);
915 	}
916 	if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
917 		return (WALK_NEXT);
918 	}
919 	if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
920 		return (WALK_NEXT);
921 	}
922 	if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
923 		return (WALK_NEXT);
924 	}
925 	/* it is possible we don't have the exp time or flags */
926 	if (coargs->flags & COF_BYIDH) {
927 		if (!(coargs->flags & COF_FREE)) {
928 			/* we have to fetch the expire time ourselves. */
929 			if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
930 			    (uintptr_t)co->c_list + offsetof(callout_list_t,
931 			    cl_expiration)) == -1) {
932 				mdb_warn("failed to read expiration "
933 				    "time from %p", co->c_list);
934 				coargs->exp = 0;
935 			}
936 			/* and flags. */
937 			if (mdb_vread(&coargs->list_flags, sizeof (int),
938 			    (uintptr_t)co->c_list + offsetof(callout_list_t,
939 			    cl_flags)) == -1) {
940 				mdb_warn("failed to read list flags"
941 				    "from %p", co->c_list);
942 				coargs->list_flags = 0;
943 			}
944 		} else {
945 			/* free callouts can't use list pointer. */
946 			coargs->exp = 0;
947 			coargs->list_flags = 0;
948 		}
949 		if (coargs->exp != 0) {
950 			if ((coargs->flags & COF_TIME) &&
951 			    (coargs->exp != coargs->time)) {
952 				return (WALK_NEXT);
953 			}
954 			if ((coargs->flags & COF_BEFORE) &&
955 			    (coargs->exp > coargs->btime)) {
956 				return (WALK_NEXT);
957 			}
958 			if ((coargs->flags & COF_AFTER) &&
959 			    (coargs->exp < coargs->atime)) {
960 				return (WALK_NEXT);
961 			}
962 		}
963 		/* tricky part, since both HIRES and ABS can be set */
964 		list_flags = coargs->list_flags;
965 		if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
966 			/* both flags are set, only skip "regular" ones */
967 			if (! (list_flags & COF_LIST_FLAGS)) {
968 				return (WALK_NEXT);
969 			}
970 		} else {
971 			/* individual flags, or no flags */
972 			if ((coargs->flags & COF_HIRES) &&
973 			    !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
974 				return (WALK_NEXT);
975 			}
976 			if ((coargs->flags & COF_ABS) &&
977 			    !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
978 				return (WALK_NEXT);
979 			}
980 		}
981 		/*
982 		 * We do the checks for COF_HEAP and COF_QUEUE here only if we
983 		 * are traversing BYIDH. If the traversal is by callout list,
984 		 * we do this check in callout_list_cb() to be more
985 		 * efficient.
986 		 */
987 		if ((coargs->flags & COF_HEAP) &&
988 		    !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
989 			return (WALK_NEXT);
990 		}
991 
992 		if ((coargs->flags & COF_QUEUE) &&
993 		    !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
994 			return (WALK_NEXT);
995 		}
996 	}
997 
998 #define	callout_table_mask	((1 << coargs->ctbits) - 1)
999 	tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
1000 #undef	callout_table_mask
1001 	coid = CO_PLAIN_ID(co->c_xid);
1002 
1003 	if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
1004 		/*
1005 		 * We need to print the headers. If walking by id, then
1006 		 * the list header isn't printed, so we must include
1007 		 * that info here.
1008 		 */
1009 		if (!(coargs->flags & COF_VERBOSE)) {
1010 			mdb_printf("%<u>%3s %-1s %-14s %</u>",
1011 			    "SEQ", "T", "EXP");
1012 		} else if (coargs->flags & COF_BYIDH) {
1013 			mdb_printf("%<u>%-14s %</u>", "EXP");
1014 		}
1015 		mdb_printf("%<u>%-4s %-?s %-20s%</u>",
1016 		    "XHAL", "XID", "FUNC(ARG)");
1017 		if (coargs->flags & COF_LONGLIST) {
1018 			mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
1019 			    "PREVID", "NEXTID", "PREVL", "NEXTL");
1020 			mdb_printf("%<u> %-?s %-4s %-?s%</u>",
1021 			    "DONE", "UTOS", "THREAD");
1022 		}
1023 		mdb_printf("\n");
1024 		coargs->flags &= ~COF_CHDR;
1025 		coargs->flags |= (COF_THDR | COF_LHDR);
1026 	}
1027 
1028 	if (!(coargs->flags & COF_ADDR)) {
1029 		if (!(coargs->flags & COF_VERBOSE)) {
1030 			mdb_printf("%-3d %1s %-14llx ",
1031 			    TABLE_TO_SEQID(tableid),
1032 			    co_typenames[tableid & CALLOUT_TYPE_MASK],
1033 			    (coargs->flags & COF_EXPREL) ?
1034 			    coargs->exp - coargs->now : coargs->exp);
1035 		} else if (coargs->flags & COF_BYIDH) {
1036 			mdb_printf("%-14x ",
1037 			    (coargs->flags & COF_EXPREL) ?
1038 			    coargs->exp - coargs->now : coargs->exp);
1039 		}
1040 		list_flags = coargs->list_flags;
1041 		mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
1042 		    (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
1043 		    (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
1044 		    (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
1045 		    (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
1046 		    (long long)coid, co->c_func, co->c_arg);
1047 		if (coargs->flags & COF_LONGLIST) {
1048 			mdb_printf(" %-?p %-?p %-?p %-?p",
1049 			    co->c_idprev, co->c_idnext, co->c_clprev,
1050 			    co->c_clnext);
1051 			mdb_printf(" %-?p %-4d %-0?p",
1052 			    co->c_done, co->c_waiting, co->c_executor);
1053 		}
1054 	} else {
1055 		/* address only */
1056 		mdb_printf("%-0p", addr);
1057 	}
1058 	mdb_printf("\n");
1059 	return (WALK_NEXT);
1060 }
1061 
1062 /* this callback is for callout list handling. idhash is done by callout_t_cb */
1063 /*ARGSUSED*/
1064 static int
1065 callout_list_cb(uintptr_t addr, const void *data, void *priv)
1066 {
1067 	callout_data_t *coargs = (callout_data_t *)priv;
1068 	callout_list_t *cl = (callout_list_t *)data;
1069 	callout_t *coptr;
1070 	int list_flags;
1071 
1072 	if ((coargs == NULL) || (cl == NULL)) {
1073 		return (WALK_ERR);
1074 	}
1075 
1076 	coargs->exp = cl->cl_expiration;
1077 	coargs->list_flags = cl->cl_flags;
1078 	if ((coargs->flags & COF_FREE) &&
1079 	    !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1080 		/*
1081 		 * The callout list must have been reallocated. No point in
1082 		 * walking any more.
1083 		 */
1084 		return (WALK_DONE);
1085 	}
1086 	if (!(coargs->flags & COF_FREE) &&
1087 	    (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1088 		/*
1089 		 * The callout list must have been freed. No point in
1090 		 * walking any more.
1091 		 */
1092 		return (WALK_DONE);
1093 	}
1094 	if ((coargs->flags & COF_TIME) &&
1095 	    (cl->cl_expiration != coargs->time)) {
1096 		return (WALK_NEXT);
1097 	}
1098 	if ((coargs->flags & COF_BEFORE) &&
1099 	    (cl->cl_expiration > coargs->btime)) {
1100 		return (WALK_NEXT);
1101 	}
1102 	if ((coargs->flags & COF_AFTER) &&
1103 	    (cl->cl_expiration < coargs->atime)) {
1104 		return (WALK_NEXT);
1105 	}
1106 	if (!(coargs->flags & COF_EMPTY) &&
1107 	    (cl->cl_callouts.ch_head == NULL)) {
1108 		return (WALK_NEXT);
1109 	}
1110 	/* FOUR cases, each different, !A!B, !AB, A!B, AB */
1111 	if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1112 		/* both flags are set, only skip "regular" ones */
1113 		if (! (cl->cl_flags & COF_LIST_FLAGS)) {
1114 			return (WALK_NEXT);
1115 		}
1116 	} else {
1117 		if ((coargs->flags & COF_HIRES) &&
1118 		    !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1119 			return (WALK_NEXT);
1120 		}
1121 		if ((coargs->flags & COF_ABS) &&
1122 		    !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1123 			return (WALK_NEXT);
1124 		}
1125 	}
1126 
1127 	if ((coargs->flags & COF_HEAP) &&
1128 	    !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1129 		return (WALK_NEXT);
1130 	}
1131 
1132 	if ((coargs->flags & COF_QUEUE) &&
1133 	    !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1134 		return (WALK_NEXT);
1135 	}
1136 
1137 	if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
1138 	    (coargs->flags & (COF_LIST | COF_VERBOSE))) {
1139 		if (!(coargs->flags & COF_VERBOSE)) {
1140 			/* don't be redundant again */
1141 			mdb_printf("%<u>SEQ T %</u>");
1142 		}
1143 		mdb_printf("%<u>EXP            HA BUCKET "
1144 		    "CALLOUTS         %</u>");
1145 
1146 		if (coargs->flags & COF_LONGLIST) {
1147 			mdb_printf("%<u> %-?s %-?s%</u>",
1148 			    "PREV", "NEXT");
1149 		}
1150 		mdb_printf("\n");
1151 		coargs->flags &= ~COF_LHDR;
1152 		coargs->flags |= (COF_THDR | COF_CHDR);
1153 	}
1154 	if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
1155 		if (!(coargs->flags & COF_ADDR)) {
1156 			if (!(coargs->flags & COF_VERBOSE)) {
1157 				mdb_printf("%3d %1s ",
1158 				    TABLE_TO_SEQID(coargs->ndx),
1159 				    co_typenames[coargs->ndx &
1160 				    CALLOUT_TYPE_MASK]);
1161 			}
1162 
1163 			list_flags = coargs->list_flags;
1164 			mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
1165 			    (coargs->flags & COF_EXPREL) ?
1166 			    coargs->exp - coargs->now : coargs->exp,
1167 			    (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
1168 			    "H" : " ",
1169 			    (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
1170 			    "A" : " ",
1171 			    coargs->bucket, cl->cl_callouts.ch_head);
1172 
1173 			if (coargs->flags & COF_LONGLIST) {
1174 				mdb_printf(" %-?p %-?p",
1175 				    cl->cl_prev, cl->cl_next);
1176 			}
1177 		} else {
1178 			/* address only */
1179 			mdb_printf("%-0p", addr);
1180 		}
1181 		mdb_printf("\n");
1182 		if (coargs->flags & COF_LIST) {
1183 			return (WALK_NEXT);
1184 		}
1185 	}
1186 	/* yet another layer as we walk the actual callouts via list. */
1187 	if (cl->cl_callouts.ch_head == NULL) {
1188 		return (WALK_NEXT);
1189 	}
1190 	/* free list structures do not have valid callouts off of them. */
1191 	if (coargs->flags & COF_FREE) {
1192 		return (WALK_NEXT);
1193 	}
1194 	coptr = (callout_t *)cl->cl_callouts.ch_head;
1195 
1196 	if (coargs->flags & COF_VERBOSE) {
1197 		mdb_inc_indent(4);
1198 	}
1199 	/*
1200 	 * walk callouts using yet another callback routine.
1201 	 * we use callouts_bytime because id hash is handled via
1202 	 * the callout_t_cb callback.
1203 	 */
1204 	if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1205 	    (uintptr_t)coptr) == -1) {
1206 		mdb_warn("cannot walk callouts at %p", coptr);
1207 		return (WALK_ERR);
1208 	}
1209 	if (coargs->flags & COF_VERBOSE) {
1210 		mdb_dec_indent(4);
1211 	}
1212 
1213 	return (WALK_NEXT);
1214 }
1215 
1216 /* this callback handles the details of callout table walking. */
1217 static int
1218 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1219 {
1220 	callout_data_t *coargs = (callout_data_t *)priv;
1221 	cot_data_t *cotwd = (cot_data_t *)data;
1222 	callout_table_t *ct = &(cotwd->ct);
1223 	int index, seqid, cotype;
1224 	int i;
1225 	callout_list_t *clptr;
1226 	callout_t *coptr;
1227 
1228 	if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1229 		return (WALK_ERR);
1230 	}
1231 
1232 	index =  ((char *)addr - (char *)coargs->co_table) /
1233 	    sizeof (callout_table_t);
1234 	cotype = index & CALLOUT_TYPE_MASK;
1235 	seqid = TABLE_TO_SEQID(index);
1236 
1237 	if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1238 		return (WALK_NEXT);
1239 	}
1240 
1241 	if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1242 		return (WALK_NEXT);
1243 	}
1244 
1245 	if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1246 		return (WALK_NEXT);
1247 	}
1248 
1249 	if (!(coargs->flags & COF_EMPTY) && (
1250 	    (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) {
1251 		return (WALK_NEXT);
1252 	}
1253 
1254 	if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1255 	    (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1256 		/* print table hdr */
1257 		mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1258 		    "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1259 		coargs->flags &= ~COF_THDR;
1260 		coargs->flags |= (COF_LHDR | COF_CHDR);
1261 		if (coargs->flags & COF_LONGLIST) {
1262 			/* more info! */
1263 			mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1264 			    " %-?s %-?s %-?s%</u>",
1265 			    "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1266 			    "PEND", "FREE", "LOCK");
1267 		}
1268 		mdb_printf("\n");
1269 	}
1270 	if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1271 		if (!(coargs->flags & COF_ADDR)) {
1272 			mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1273 			    seqid, co_typenames[cotype],
1274 			    ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1275 			    ct->ct_heap);
1276 			if (coargs->flags & COF_LONGLIST)  {
1277 				/* more info! */
1278 				mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1279 				    " %-?lld %-?lld %-?p",
1280 				    ct->ct_heap_num,  ct->ct_heap_max,
1281 				    ct->ct_taskq, ct->ct_expired.ch_head,
1282 				    ct->ct_queue.ch_head,
1283 				    cotwd->ct_timeouts_pending,
1284 				    cotwd->ct_allocations -
1285 				    cotwd->ct_timeouts_pending,
1286 				    ct->ct_mutex);
1287 			}
1288 		} else {
1289 			/* address only */
1290 			mdb_printf("%-0?p", addr);
1291 		}
1292 		mdb_printf("\n");
1293 		if (coargs->flags & COF_TABLE) {
1294 			return (WALK_NEXT);
1295 		}
1296 	}
1297 
1298 	coargs->ndx = index;
1299 	if (coargs->flags & COF_VERBOSE) {
1300 		mdb_inc_indent(4);
1301 	}
1302 	/* keep digging. */
1303 	if (!(coargs->flags & COF_BYIDH)) {
1304 		/* walk the list hash table */
1305 		if (coargs->flags & COF_FREE) {
1306 			clptr = ct->ct_lfree;
1307 			coargs->bucket = 0;
1308 			if (clptr == NULL) {
1309 				return (WALK_NEXT);
1310 			}
1311 			if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1312 			    (uintptr_t)clptr) == -1) {
1313 				mdb_warn("cannot walk callout free list at %p",
1314 				    clptr);
1315 				return (WALK_ERR);
1316 			}
1317 		} else {
1318 			/* first print the expired list. */
1319 			clptr = (callout_list_t *)ct->ct_expired.ch_head;
1320 			if (clptr != NULL) {
1321 				coargs->bucket = -1;
1322 				if (mdb_pwalk("callout_list", callout_list_cb,
1323 				    coargs, (uintptr_t)clptr) == -1) {
1324 					mdb_warn("cannot walk callout_list"
1325 					    " at %p", clptr);
1326 					return (WALK_ERR);
1327 				}
1328 			}
1329 			/* then, print the callout queue */
1330 			clptr = (callout_list_t *)ct->ct_queue.ch_head;
1331 			if (clptr != NULL) {
1332 				coargs->bucket = -1;
1333 				if (mdb_pwalk("callout_list", callout_list_cb,
1334 				    coargs, (uintptr_t)clptr) == -1) {
1335 					mdb_warn("cannot walk callout_list"
1336 					    " at %p", clptr);
1337 					return (WALK_ERR);
1338 				}
1339 			}
1340 			for (i = 0; i < CALLOUT_BUCKETS; i++) {
1341 				if (ct->ct_clhash == NULL) {
1342 					/* nothing to do */
1343 					break;
1344 				}
1345 				if (cotwd->cot_clhash[i].ch_head == NULL) {
1346 					continue;
1347 				}
1348 				clptr = (callout_list_t *)
1349 				    cotwd->cot_clhash[i].ch_head;
1350 				coargs->bucket = i;
1351 				/* walk list with callback routine. */
1352 				if (mdb_pwalk("callout_list", callout_list_cb,
1353 				    coargs, (uintptr_t)clptr) == -1) {
1354 					mdb_warn("cannot walk callout_list"
1355 					    " at %p", clptr);
1356 					return (WALK_ERR);
1357 				}
1358 			}
1359 		}
1360 	} else {
1361 		/* walk the id hash table. */
1362 		if (coargs->flags & COF_FREE) {
1363 			coptr = ct->ct_free;
1364 			coargs->bucket = 0;
1365 			if (coptr == NULL) {
1366 				return (WALK_NEXT);
1367 			}
1368 			if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1369 			    (uintptr_t)coptr) == -1) {
1370 				mdb_warn("cannot walk callout id free list"
1371 				    " at %p", coptr);
1372 				return (WALK_ERR);
1373 			}
1374 		} else {
1375 			for (i = 0; i < CALLOUT_BUCKETS; i++) {
1376 				if (ct->ct_idhash == NULL) {
1377 					break;
1378 				}
1379 				coptr = (callout_t *)
1380 				    cotwd->cot_idhash[i].ch_head;
1381 				if (coptr == NULL) {
1382 					continue;
1383 				}
1384 				coargs->bucket = i;
1385 
1386 				/*
1387 				 * walk callouts directly by id. For id
1388 				 * chain, the callout list is just a header,
1389 				 * so there's no need to walk it.
1390 				 */
1391 				if (mdb_pwalk("callouts_byid", callouts_cb,
1392 				    coargs, (uintptr_t)coptr) == -1) {
1393 					mdb_warn("cannot walk callouts at %p",
1394 					    coptr);
1395 					return (WALK_ERR);
1396 				}
1397 			}
1398 		}
1399 	}
1400 	if (coargs->flags & COF_VERBOSE) {
1401 		mdb_dec_indent(4);
1402 	}
1403 	return (WALK_NEXT);
1404 }
1405 
1406 /*
1407  * initialize some common info for both callout dcmds.
1408  */
1409 int
1410 callout_common_init(callout_data_t *coargs)
1411 {
1412 	/* we need a couple of things */
1413 	if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1414 		mdb_warn("failed to read 'callout_table'");
1415 		return (DCMD_ERR);
1416 	}
1417 	/* need to get now in nsecs. Approximate with hrtime vars */
1418 	if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1419 	    sizeof (hrtime_t)) {
1420 		if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1421 		    "hrtime_base") != sizeof (hrtime_t)) {
1422 			mdb_warn("Could not determine current system time");
1423 			return (DCMD_ERR);
1424 		}
1425 	}
1426 
1427 	if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1428 		mdb_warn("failed to read 'callout_table_bits'");
1429 		return (DCMD_ERR);
1430 	}
1431 	if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1432 		mdb_warn("failed to read 'nsec_per_tick'");
1433 		return (DCMD_ERR);
1434 	}
1435 	return (DCMD_OK);
1436 }
1437 
1438 /*
1439  * dcmd to print callouts.  Optional addr limits to specific table.
1440  * Parses lots of options that get passed to callbacks for walkers.
1441  * Has it's own help function.
1442  */
1443 /*ARGSUSED*/
1444 int
1445 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1446 {
1447 	callout_data_t coargs;
1448 	/* getopts doesn't help much with stuff like this */
1449 	boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1450 	char *funcname = NULL;
1451 	char *paramstr = NULL;
1452 	uintptr_t Stmp, Ctmp;	/* for getopt. */
1453 	int retval;
1454 
1455 	coargs.flags = COF_DEFAULT;
1456 	Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1457 	coargs.seqid = -1;
1458 
1459 	if (mdb_getopts(argc, argv,
1460 	    'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1461 	    'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1462 	    'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1463 	    's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1464 	    'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1465 	    'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1466 	    'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1467 	    'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1468 	    'd', MDB_OPT_SETBITS, 1, &dflag,
1469 	    'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1470 	    'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1471 	    't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1472 	    'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1473 	    'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1474 	    'k', MDB_OPT_SETBITS, 1, &kflag,
1475 	    'f', MDB_OPT_STR, &funcname,
1476 	    'p', MDB_OPT_STR, &paramstr,
1477 	    'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1478 	    'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1479 	    'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1480 	    'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1481 	    'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1482 	    'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1483 	    'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1484 	    'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1485 	    'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1486 	    'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1487 	    NULL) != argc) {
1488 		return (DCMD_USAGE);
1489 	}
1490 
1491 	/* initialize from kernel variables */
1492 	if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1493 		return (retval);
1494 	}
1495 
1496 	/* do some option post-processing */
1497 	if (kflag) {
1498 		coargs.time *= coargs.nsec_per_tick;
1499 		coargs.atime *= coargs.nsec_per_tick;
1500 		coargs.btime *= coargs.nsec_per_tick;
1501 	}
1502 
1503 	if (dflag) {
1504 		coargs.time += coargs.now;
1505 		coargs.atime += coargs.now;
1506 		coargs.btime += coargs.now;
1507 	}
1508 	if (Sflag) {
1509 		if (flags & DCMD_ADDRSPEC) {
1510 			mdb_printf("-S option conflicts with explicit"
1511 			    " address\n");
1512 			return (DCMD_USAGE);
1513 		}
1514 		coargs.flags |= COF_SEQID;
1515 		coargs.seqid = (int)Stmp;
1516 	}
1517 	if (Cflag) {
1518 		if (flags & DCMD_ADDRSPEC) {
1519 			mdb_printf("-C option conflicts with explicit"
1520 			    " address\n");
1521 			return (DCMD_USAGE);
1522 		}
1523 		if (coargs.flags & COF_SEQID) {
1524 			mdb_printf("-C and -S are mutually exclusive\n");
1525 			return (DCMD_USAGE);
1526 		}
1527 		coargs.cpu = (cpu_t *)Ctmp;
1528 		if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1529 		    (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1530 			mdb_warn("failed to read cpu_t at %p", Ctmp);
1531 			return (DCMD_ERR);
1532 		}
1533 		coargs.flags |= COF_SEQID;
1534 	}
1535 	/* avoid null outputs. */
1536 	if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1537 		coargs.flags |= COF_REAL | COF_NORM;
1538 	}
1539 	if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1540 		coargs.flags |= COF_LONG | COF_SHORT;
1541 	}
1542 	if (tflag) {
1543 		if (aflag || bflag) {
1544 			mdb_printf("-t and -a|b are mutually exclusive\n");
1545 			return (DCMD_USAGE);
1546 		}
1547 		coargs.flags |= COF_TIME;
1548 	}
1549 	if (aflag) {
1550 		coargs.flags |= COF_AFTER;
1551 	}
1552 	if (bflag) {
1553 		coargs.flags |= COF_BEFORE;
1554 	}
1555 	if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1556 		mdb_printf("value for -a must be earlier than the value"
1557 		    " for -b.\n");
1558 		return (DCMD_USAGE);
1559 	}
1560 
1561 	if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1562 		mdb_printf("-H and -Q are mutually exclusive\n");
1563 		return (DCMD_USAGE);
1564 	}
1565 
1566 	if (funcname != NULL) {
1567 		GElf_Sym sym;
1568 
1569 		if (mdb_lookup_by_name(funcname, &sym) != 0) {
1570 			coargs.funcaddr = mdb_strtoull(funcname);
1571 		} else {
1572 			coargs.funcaddr = sym.st_value;
1573 		}
1574 		coargs.flags |= COF_FUNC;
1575 	}
1576 
1577 	if (paramstr != NULL) {
1578 		GElf_Sym sym;
1579 
1580 		if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1581 			coargs.param = mdb_strtoull(paramstr);
1582 		} else {
1583 			coargs.param = sym.st_value;
1584 		}
1585 		coargs.flags |= COF_PARAM;
1586 	}
1587 
1588 	if (!(flags & DCMD_ADDRSPEC)) {
1589 		/* don't pass "dot" if no addr. */
1590 		addr = 0;
1591 	}
1592 	if (addr != 0) {
1593 		/*
1594 		 * a callout table was specified. Ignore -r|n option
1595 		 * to avoid null output.
1596 		 */
1597 		coargs.flags |= (COF_REAL | COF_NORM);
1598 	}
1599 
1600 	if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1601 		coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1602 	}
1603 	if (coargs.flags & COF_FREE) {
1604 		coargs.flags |= COF_EMPTY;
1605 		/* -F = free callouts, -FL = free lists */
1606 		if (!(coargs.flags & COF_LIST)) {
1607 			coargs.flags |= COF_BYIDH;
1608 		}
1609 	}
1610 
1611 	/* walk table, using specialized callback routine. */
1612 	if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1613 		mdb_warn("cannot walk callout_table");
1614 		return (DCMD_ERR);
1615 	}
1616 	return (DCMD_OK);
1617 }
1618 
1619 
1620 /*
1621  * Given an extended callout id, dump its information.
1622  */
1623 /*ARGSUSED*/
1624 int
1625 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1626 {
1627 	callout_data_t coargs;
1628 	callout_table_t *ctptr;
1629 	callout_table_t ct;
1630 	callout_id_t coid;
1631 	callout_t *coptr;
1632 	int tableid;
1633 	callout_id_t xid;
1634 	ulong_t idhash;
1635 	int i, retval;
1636 	const mdb_arg_t *arg;
1637 	size_t size;
1638 	callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1639 
1640 	coargs.flags = COF_DEFAULT | COF_BYIDH;
1641 	i = mdb_getopts(argc, argv,
1642 	    'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1643 	    'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1644 	    NULL);
1645 	argc -= i;
1646 	argv += i;
1647 
1648 	if (argc != 1) {
1649 		return (DCMD_USAGE);
1650 	}
1651 	arg = &argv[0];
1652 
1653 	if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1654 		xid = arg->a_un.a_val;
1655 	} else {
1656 		xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1657 	}
1658 
1659 	if (DCMD_HDRSPEC(flags)) {
1660 		coargs.flags |= COF_CHDR;
1661 	}
1662 
1663 
1664 	/* initialize from kernel variables */
1665 	if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1666 		return (retval);
1667 	}
1668 
1669 	/* we must massage the environment so that the macros will play nice */
1670 #define	callout_table_mask	((1 << coargs.ctbits) - 1)
1671 #define	callout_table_bits	coargs.ctbits
1672 #define	nsec_per_tick		coargs.nsec_per_tick
1673 	tableid = CALLOUT_ID_TO_TABLE(xid);
1674 	idhash = CALLOUT_IDHASH(xid);
1675 #undef	callouts_table_bits
1676 #undef	callout_table_mask
1677 #undef	nsec_per_tick
1678 	coid = CO_PLAIN_ID(xid);
1679 
1680 	if (flags & DCMD_ADDRSPEC) {
1681 		mdb_printf("calloutid does not accept explicit address.\n");
1682 		return (DCMD_USAGE);
1683 	}
1684 
1685 	if (coargs.flags & COF_DECODE) {
1686 		if (DCMD_HDRSPEC(flags)) {
1687 			mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1688 			    "SEQ", "T", "XL", "XID", "IDHASH");
1689 		}
1690 		mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1691 		    TABLE_TO_SEQID(tableid),
1692 		    co_typenames[tableid & CALLOUT_TYPE_MASK],
1693 		    (xid & CALLOUT_EXECUTING) ? "X" : " ",
1694 		    (xid & CALLOUT_LONGTERM) ? "L" : " ",
1695 		    (long long)coid, idhash);
1696 		return (DCMD_OK);
1697 	}
1698 
1699 	/* get our table. Note this relies on the types being correct */
1700 	ctptr = coargs.co_table + tableid;
1701 	if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1702 		mdb_warn("failed to read callout_table at %p", ctptr);
1703 		return (DCMD_ERR);
1704 	}
1705 	size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1706 	if (ct.ct_idhash != NULL) {
1707 		if (mdb_vread(&(cot_idhash), size,
1708 		    (uintptr_t)ct.ct_idhash) == -1) {
1709 			mdb_warn("failed to read id_hash at %p",
1710 			    ct.ct_idhash);
1711 			return (WALK_ERR);
1712 		}
1713 	}
1714 
1715 	/* callout at beginning of hash chain */
1716 	if (ct.ct_idhash == NULL) {
1717 		mdb_printf("id hash chain for this xid is empty\n");
1718 		return (DCMD_ERR);
1719 	}
1720 	coptr = (callout_t *)cot_idhash[idhash].ch_head;
1721 	if (coptr == NULL) {
1722 		mdb_printf("id hash chain for this xid is empty\n");
1723 		return (DCMD_ERR);
1724 	}
1725 
1726 	coargs.ndx = tableid;
1727 	coargs.bucket = idhash;
1728 
1729 	/* use the walker, luke */
1730 	if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1731 	    (uintptr_t)coptr) == -1) {
1732 		mdb_warn("cannot walk callouts at %p", coptr);
1733 		return (WALK_ERR);
1734 	}
1735 
1736 	return (DCMD_OK);
1737 }
1738 
1739 void
1740 callout_help(void)
1741 {
1742 	mdb_printf("callout: display callouts.\n"
1743 	    "Given a callout table address, display callouts from table.\n"
1744 	    "Without an address, display callouts from all tables.\n"
1745 	    "options:\n"
1746 	    " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1747 	    " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1748 	    " -x : limit display to callouts which are executing\n"
1749 	    " -h : limit display to callouts based on hrestime\n"
1750 	    " -B : limit display to callouts based on absolute time\n"
1751 	    " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1752 	    " (a)fter time,\n     or (b)efore time. Use -a and -b together "
1753 	    " to specify a range.\n     For \"now\", use -d[t|a|b] 0.\n"
1754 	    " -d : interpret time option to -t|a|b as delta from current time\n"
1755 	    " -k : use ticks instead of nanoseconds as arguments to"
1756 	    " -t|a|b. Note that\n     ticks are less accurate and may not"
1757 	    " match other tick times (ie: lbolt).\n"
1758 	    " -D : display exiration time as delta from current time\n"
1759 	    " -S seqid : limit display to callouts for this cpu sequence id\n"
1760 	    " -C addr :  limit display to callouts for this cpu pointer\n"
1761 	    " -f name|addr : limit display to callouts with this function\n"
1762 	    " -p name|addr : limit display to callouts functions with this"
1763 	    " parameter\n"
1764 	    " -T : display the callout table itself, instead of callouts\n"
1765 	    " -L : display callout lists instead of callouts\n"
1766 	    " -E : with -T or L, display empty data structures.\n"
1767 	    " -i : traverse callouts by id hash instead of list hash\n"
1768 	    " -F : walk free callout list (free list with -i) instead\n"
1769 	    " -v : display more info for each item\n"
1770 	    " -V : show details of each level of info as it is traversed\n"
1771 	    " -H : limit display to callouts in the callout heap\n"
1772 	    " -Q : limit display to callouts in the callout queue\n"
1773 	    " -A : show only addresses. Useful for pipelines.\n");
1774 }
1775 
1776 void
1777 calloutid_help(void)
1778 {
1779 	mdb_printf("calloutid: display callout by id.\n"
1780 	    "Given an extended callout id, display the callout infomation.\n"
1781 	    "options:\n"
1782 	    " -d : do not dereference callout, just decode the id.\n"
1783 	    " -v : verbose display more info about the callout\n");
1784 }
1785 
1786 /*ARGSUSED*/
1787 int
1788 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1789 {
1790 	long num_classes, i;
1791 	sclass_t *class_tbl;
1792 	GElf_Sym g_sclass;
1793 	char class_name[PC_CLNMSZ];
1794 	size_t tbl_size;
1795 
1796 	if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1797 		mdb_warn("failed to find symbol sclass\n");
1798 		return (DCMD_ERR);
1799 	}
1800 
1801 	tbl_size = (size_t)g_sclass.st_size;
1802 	num_classes = tbl_size / (sizeof (sclass_t));
1803 	class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1804 
1805 	if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1806 		mdb_warn("failed to read sclass");
1807 		return (DCMD_ERR);
1808 	}
1809 
1810 	mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1811 	    "INIT FCN", "CLASS FCN");
1812 
1813 	for (i = 0; i < num_classes; i++) {
1814 		if (mdb_vread(class_name, sizeof (class_name),
1815 		    (uintptr_t)class_tbl[i].cl_name) == -1)
1816 			(void) strcpy(class_name, "???");
1817 
1818 		mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1819 		    class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1820 	}
1821 
1822 	return (DCMD_OK);
1823 }
1824 
1825 #define	FSNAMELEN	32	/* Max len of FS name we read from vnodeops */
1826 
1827 int
1828 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1829 {
1830 	uintptr_t rootdir;
1831 	vnode_t vn;
1832 	char buf[MAXPATHLEN];
1833 
1834 	uint_t opt_F = FALSE;
1835 
1836 	if (mdb_getopts(argc, argv,
1837 	    'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1838 		return (DCMD_USAGE);
1839 
1840 	if (!(flags & DCMD_ADDRSPEC)) {
1841 		mdb_warn("expected explicit vnode_t address before ::\n");
1842 		return (DCMD_USAGE);
1843 	}
1844 
1845 	if (mdb_readvar(&rootdir, "rootdir") == -1) {
1846 		mdb_warn("failed to read rootdir");
1847 		return (DCMD_ERR);
1848 	}
1849 
1850 	if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1851 		return (DCMD_ERR);
1852 
1853 	if (*buf == '\0') {
1854 		mdb_printf("??\n");
1855 		return (DCMD_OK);
1856 	}
1857 
1858 	mdb_printf("%s", buf);
1859 	if (opt_F && buf[strlen(buf)-1] != '/' &&
1860 	    mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1861 		mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1862 	mdb_printf("\n");
1863 
1864 	return (DCMD_OK);
1865 }
1866 
1867 int
1868 ld_walk_init(mdb_walk_state_t *wsp)
1869 {
1870 	wsp->walk_data = (void *)wsp->walk_addr;
1871 	return (WALK_NEXT);
1872 }
1873 
1874 int
1875 ld_walk_step(mdb_walk_state_t *wsp)
1876 {
1877 	int status;
1878 	lock_descriptor_t ld;
1879 
1880 	if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1881 		mdb_warn("couldn't read lock_descriptor_t at %p\n",
1882 		    wsp->walk_addr);
1883 		return (WALK_ERR);
1884 	}
1885 
1886 	status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1887 	if (status == WALK_ERR)
1888 		return (WALK_ERR);
1889 
1890 	wsp->walk_addr = (uintptr_t)ld.l_next;
1891 	if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1892 		return (WALK_DONE);
1893 
1894 	return (status);
1895 }
1896 
1897 int
1898 lg_walk_init(mdb_walk_state_t *wsp)
1899 {
1900 	GElf_Sym sym;
1901 
1902 	if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1903 		mdb_warn("failed to find symbol 'lock_graph'\n");
1904 		return (WALK_ERR);
1905 	}
1906 
1907 	wsp->walk_addr = (uintptr_t)sym.st_value;
1908 	wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1909 
1910 	return (WALK_NEXT);
1911 }
1912 
1913 typedef struct lg_walk_data {
1914 	uintptr_t startaddr;
1915 	mdb_walk_cb_t callback;
1916 	void *data;
1917 } lg_walk_data_t;
1918 
1919 /*
1920  * We can't use ::walk lock_descriptor directly, because the head of each graph
1921  * is really a dummy lock.  Rather than trying to dynamically determine if this
1922  * is a dummy node or not, we just filter out the initial element of the
1923  * list.
1924  */
1925 static int
1926 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1927 {
1928 	lg_walk_data_t *lw = priv;
1929 
1930 	if (addr != lw->startaddr)
1931 		return (lw->callback(addr, data, lw->data));
1932 
1933 	return (WALK_NEXT);
1934 }
1935 
1936 int
1937 lg_walk_step(mdb_walk_state_t *wsp)
1938 {
1939 	graph_t *graph;
1940 	lg_walk_data_t lw;
1941 
1942 	if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1943 		return (WALK_DONE);
1944 
1945 	if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1946 		mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1947 		return (WALK_ERR);
1948 	}
1949 
1950 	wsp->walk_addr += sizeof (graph);
1951 
1952 	if (graph == NULL)
1953 		return (WALK_NEXT);
1954 
1955 	lw.callback = wsp->walk_callback;
1956 	lw.data = wsp->walk_cbdata;
1957 
1958 	lw.startaddr = (uintptr_t)&(graph->active_locks);
1959 	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1960 		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1961 		return (WALK_ERR);
1962 	}
1963 
1964 	lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
1965 	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1966 		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1967 		return (WALK_ERR);
1968 	}
1969 
1970 	return (WALK_NEXT);
1971 }
1972 
1973 /*
1974  * The space available for the path corresponding to the locked vnode depends
1975  * on whether we are printing 32- or 64-bit addresses.
1976  */
1977 #ifdef _LP64
1978 #define	LM_VNPATHLEN	20
1979 #else
1980 #define	LM_VNPATHLEN	30
1981 #endif
1982 
1983 typedef struct mdb_lminfo_proc {
1984 	struct {
1985 		char		u_comm[MAXCOMLEN + 1];
1986 	} p_user;
1987 } mdb_lminfo_proc_t;
1988 
1989 /*ARGSUSED*/
1990 static int
1991 lminfo_cb(uintptr_t addr, const void *data, void *priv)
1992 {
1993 	const lock_descriptor_t *ld = data;
1994 	char buf[LM_VNPATHLEN];
1995 	mdb_lminfo_proc_t p;
1996 	uintptr_t paddr = 0;
1997 
1998 	if (ld->l_flock.l_pid != 0)
1999 		paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL);
2000 
2001 	if (paddr != 0)
2002 		mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0);
2003 
2004 	mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
2005 	    addr, ld->l_type == F_RDLCK ? "RD" :
2006 	    ld->l_type == F_WRLCK ? "WR" : "??",
2007 	    ld->l_state, ld->l_flock.l_pid,
2008 	    ld->l_flock.l_pid == 0 ? "<kernel>" :
2009 	    paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode);
2010 
2011 	mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
2012 	    sizeof (buf));
2013 	mdb_printf("%s\n", buf);
2014 
2015 	return (WALK_NEXT);
2016 }
2017 
2018 /*ARGSUSED*/
2019 int
2020 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2021 {
2022 	if (DCMD_HDRSPEC(flags))
2023 		mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
2024 		    "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
2025 
2026 	return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0));
2027 }
2028 
2029 /*ARGSUSED*/
2030 int
2031 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
2032 {
2033 	if ((uintptr_t)f->f_vnode == *target) {
2034 		mdb_printf("file %p\n", addr);
2035 		*target = 0;
2036 	}
2037 
2038 	return (WALK_NEXT);
2039 }
2040 
2041 /*ARGSUSED*/
2042 int
2043 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
2044 {
2045 	uintptr_t t = *target;
2046 
2047 	if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
2048 		mdb_warn("couldn't file walk proc %p", addr);
2049 		return (WALK_ERR);
2050 	}
2051 
2052 	if (t == 0)
2053 		mdb_printf("%p\n", addr);
2054 
2055 	return (WALK_NEXT);
2056 }
2057 
2058 /*ARGSUSED*/
2059 int
2060 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2061 {
2062 	uintptr_t target = addr;
2063 
2064 	if (!(flags & DCMD_ADDRSPEC) || addr == 0)
2065 		return (DCMD_USAGE);
2066 
2067 	if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
2068 		mdb_warn("can't proc walk");
2069 		return (DCMD_ERR);
2070 	}
2071 
2072 	return (DCMD_OK);
2073 }
2074 
2075 typedef struct datafmt {
2076 	char	*hdr1;
2077 	char	*hdr2;
2078 	char	*dashes;
2079 	char	*fmt;
2080 } datafmt_t;
2081 
2082 static datafmt_t kmemfmt[] = {
2083 	{ "cache                    ", "name                     ",
2084 	"-------------------------", "%-25s "				},
2085 	{ "   buf",	"  size",	"------",	"%6u "		},
2086 	{ "   buf",	"in use",	"------",	"%6u "		},
2087 	{ "   buf",	" total",	"------",	"%6u "		},
2088 	{ "   memory",	"   in use",	"----------",	"%10lu%c "	},
2089 	{ "    alloc",	"  succeed",	"---------",	"%9u "		},
2090 	{ "alloc",	" fail",	"-----",	"%5u "		},
2091 	{ NULL,		NULL,		NULL,		NULL		}
2092 };
2093 
2094 static datafmt_t vmemfmt[] = {
2095 	{ "vmem                     ", "name                     ",
2096 	"-------------------------", "%-*s "				},
2097 	{ "   memory",	"   in use",	"----------",	"%9llu%c "	},
2098 	{ "    memory",	"     total",	"-----------",	"%10llu%c "	},
2099 	{ "   memory",	"   import",	"----------",	"%9llu%c "	},
2100 	{ "    alloc",	"  succeed",	"---------",	"%9llu "	},
2101 	{ "alloc",	" fail",	"-----",	"%5llu "	},
2102 	{ NULL,		NULL,		NULL,		NULL		}
2103 };
2104 
2105 /*ARGSUSED*/
2106 static int
2107 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
2108 {
2109 	short rounds, prounds;
2110 
2111 	if (KMEM_DUMPCC(ccp)) {
2112 		rounds = ccp->cc_dump_rounds;
2113 		prounds = ccp->cc_dump_prounds;
2114 	} else {
2115 		rounds = ccp->cc_rounds;
2116 		prounds = ccp->cc_prounds;
2117 	}
2118 	if (rounds > 0)
2119 		*avail += rounds;
2120 	if (prounds > 0)
2121 		*avail += prounds;
2122 
2123 	return (WALK_NEXT);
2124 }
2125 
2126 /*ARGSUSED*/
2127 static int
2128 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
2129 {
2130 	*alloc += ccp->cc_alloc;
2131 
2132 	return (WALK_NEXT);
2133 }
2134 
2135 /*ARGSUSED*/
2136 static int
2137 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
2138 {
2139 	*avail += sp->slab_chunks - sp->slab_refcnt;
2140 
2141 	return (WALK_NEXT);
2142 }
2143 
2144 typedef struct kmastat_vmem {
2145 	uintptr_t kv_addr;
2146 	struct kmastat_vmem *kv_next;
2147 	size_t kv_meminuse;
2148 	int kv_alloc;
2149 	int kv_fail;
2150 } kmastat_vmem_t;
2151 
2152 typedef struct kmastat_args {
2153 	kmastat_vmem_t **ka_kvpp;
2154 	uint_t ka_shift;
2155 } kmastat_args_t;
2156 
2157 static int
2158 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
2159 {
2160 	kmastat_vmem_t **kvpp = kap->ka_kvpp;
2161 	kmastat_vmem_t *kv;
2162 	datafmt_t *dfp = kmemfmt;
2163 	int magsize;
2164 
2165 	int avail, alloc, total;
2166 	size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
2167 	    cp->cache_slabsize;
2168 
2169 	mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
2170 	mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
2171 	mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
2172 
2173 	magsize = kmem_get_magsize(cp);
2174 
2175 	alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
2176 	avail = cp->cache_full.ml_total * magsize;
2177 	total = cp->cache_buftotal;
2178 
2179 	(void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2180 	(void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2181 	(void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2182 
2183 	for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
2184 		if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2185 			goto out;
2186 	}
2187 
2188 	kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2189 	kv->kv_next = *kvpp;
2190 	kv->kv_addr = (uintptr_t)cp->cache_arena;
2191 	*kvpp = kv;
2192 out:
2193 	kv->kv_meminuse += meminuse;
2194 	kv->kv_alloc += alloc;
2195 	kv->kv_fail += cp->cache_alloc_fail;
2196 
2197 	mdb_printf((dfp++)->fmt, cp->cache_name);
2198 	mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2199 	mdb_printf((dfp++)->fmt, total - avail);
2200 	mdb_printf((dfp++)->fmt, total);
2201 	mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2202 	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2203 	    kap->ka_shift == KILOS ? 'K' : 'B');
2204 	mdb_printf((dfp++)->fmt, alloc);
2205 	mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2206 	mdb_printf("\n");
2207 
2208 	return (WALK_NEXT);
2209 }
2210 
2211 static int
2212 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2213 {
2214 	kmastat_vmem_t *kv = *kap->ka_kvpp;
2215 	size_t len;
2216 
2217 	while (kv != NULL && kv->kv_addr != addr)
2218 		kv = kv->kv_next;
2219 
2220 	if (kv == NULL || kv->kv_alloc == 0)
2221 		return (WALK_NEXT);
2222 
2223 	len = MIN(17, strlen(v->vm_name));
2224 
2225 	mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name,
2226 	    17 - len, "", "", "", "",
2227 	    kv->kv_meminuse >> kap->ka_shift,
2228 	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2229 	    kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2230 
2231 	return (WALK_NEXT);
2232 }
2233 
2234 /*ARGSUSED*/
2235 static int
2236 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2237 {
2238 	datafmt_t *dfp = vmemfmt;
2239 	const vmem_kstat_t *vkp = &v->vm_kstat;
2240 	uintptr_t paddr;
2241 	vmem_t parent;
2242 	int ident = 0;
2243 
2244 	for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) {
2245 		if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2246 			mdb_warn("couldn't trace %p's ancestry", addr);
2247 			ident = 0;
2248 			break;
2249 		}
2250 		paddr = (uintptr_t)parent.vm_source;
2251 	}
2252 
2253 	mdb_printf("%*s", ident, "");
2254 	mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2255 	mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2256 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2257 	    *shiftp == KILOS ? 'K' : 'B');
2258 	mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2259 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2260 	    *shiftp == KILOS ? 'K' : 'B');
2261 	mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2262 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2263 	    *shiftp == KILOS ? 'K' : 'B');
2264 	mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2265 	mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2266 
2267 	mdb_printf("\n");
2268 
2269 	return (WALK_NEXT);
2270 }
2271 
2272 /*ARGSUSED*/
2273 int
2274 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2275 {
2276 	kmastat_vmem_t *kv = NULL;
2277 	datafmt_t *dfp;
2278 	kmastat_args_t ka;
2279 
2280 	ka.ka_shift = 0;
2281 	if (mdb_getopts(argc, argv,
2282 	    'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2283 	    'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2284 	    'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2285 		return (DCMD_USAGE);
2286 
2287 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2288 		mdb_printf("%s ", dfp->hdr1);
2289 	mdb_printf("\n");
2290 
2291 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2292 		mdb_printf("%s ", dfp->hdr2);
2293 	mdb_printf("\n");
2294 
2295 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2296 		mdb_printf("%s ", dfp->dashes);
2297 	mdb_printf("\n");
2298 
2299 	ka.ka_kvpp = &kv;
2300 	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2301 		mdb_warn("can't walk 'kmem_cache'");
2302 		return (DCMD_ERR);
2303 	}
2304 
2305 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2306 		mdb_printf("%s ", dfp->dashes);
2307 	mdb_printf("\n");
2308 
2309 	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2310 		mdb_warn("can't walk 'vmem'");
2311 		return (DCMD_ERR);
2312 	}
2313 
2314 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2315 		mdb_printf("%s ", dfp->dashes);
2316 	mdb_printf("\n");
2317 
2318 	mdb_printf("\n");
2319 
2320 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2321 		mdb_printf("%s ", dfp->hdr1);
2322 	mdb_printf("\n");
2323 
2324 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2325 		mdb_printf("%s ", dfp->hdr2);
2326 	mdb_printf("\n");
2327 
2328 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2329 		mdb_printf("%s ", dfp->dashes);
2330 	mdb_printf("\n");
2331 
2332 	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2333 		mdb_warn("can't walk 'vmem'");
2334 		return (DCMD_ERR);
2335 	}
2336 
2337 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2338 		mdb_printf("%s ", dfp->dashes);
2339 	mdb_printf("\n");
2340 	return (DCMD_OK);
2341 }
2342 
2343 /*
2344  * Our ::kgrep callback scans the entire kernel VA space (kas).  kas is made
2345  * up of a set of 'struct seg's.  We could just scan each seg en masse, but
2346  * unfortunately, a few of the segs are both large and sparse, so we could
2347  * spend quite a bit of time scanning VAs which have no backing pages.
2348  *
2349  * So for the few very sparse segs, we skip the segment itself, and scan
2350  * the allocated vmem_segs in the vmem arena which manages that part of kas.
2351  * Currently, we do this for:
2352  *
2353  *	SEG		VMEM ARENA
2354  *	kvseg		heap_arena
2355  *	kvseg32		heap32_arena
2356  *	kvseg_core	heap_core_arena
2357  *
2358  * In addition, we skip the segkpm segment in its entirety, since it is very
2359  * sparse, and contains no new kernel data.
2360  */
2361 typedef struct kgrep_walk_data {
2362 	kgrep_cb_func *kg_cb;
2363 	void *kg_cbdata;
2364 	uintptr_t kg_kvseg;
2365 	uintptr_t kg_kvseg32;
2366 	uintptr_t kg_kvseg_core;
2367 	uintptr_t kg_segkpm;
2368 	uintptr_t kg_heap_lp_base;
2369 	uintptr_t kg_heap_lp_end;
2370 } kgrep_walk_data_t;
2371 
2372 static int
2373 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2374 {
2375 	uintptr_t base = (uintptr_t)seg->s_base;
2376 
2377 	if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2378 	    addr == kg->kg_kvseg_core)
2379 		return (WALK_NEXT);
2380 
2381 	if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2382 		return (WALK_NEXT);
2383 
2384 	return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2385 }
2386 
2387 /*ARGSUSED*/
2388 static int
2389 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2390 {
2391 	/*
2392 	 * skip large page heap address range - it is scanned by walking
2393 	 * allocated vmem_segs in the heap_lp_arena
2394 	 */
2395 	if (seg->vs_start == kg->kg_heap_lp_base &&
2396 	    seg->vs_end == kg->kg_heap_lp_end)
2397 		return (WALK_NEXT);
2398 
2399 	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2400 }
2401 
2402 /*ARGSUSED*/
2403 static int
2404 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2405 {
2406 	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2407 }
2408 
2409 static int
2410 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2411 {
2412 	mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2413 
2414 	if (strcmp(vmem->vm_name, "heap") != 0 &&
2415 	    strcmp(vmem->vm_name, "heap32") != 0 &&
2416 	    strcmp(vmem->vm_name, "heap_core") != 0 &&
2417 	    strcmp(vmem->vm_name, "heap_lp") != 0)
2418 		return (WALK_NEXT);
2419 
2420 	if (strcmp(vmem->vm_name, "heap_lp") == 0)
2421 		walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2422 
2423 	if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2424 		mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2425 		return (WALK_ERR);
2426 	}
2427 
2428 	return (WALK_NEXT);
2429 }
2430 
2431 int
2432 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2433 {
2434 	GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2435 	kgrep_walk_data_t kg;
2436 
2437 	if (mdb_get_state() == MDB_STATE_RUNNING) {
2438 		mdb_warn("kgrep can only be run on a system "
2439 		    "dump or under kmdb; see dumpadm(1M)\n");
2440 		return (DCMD_ERR);
2441 	}
2442 
2443 	if (mdb_lookup_by_name("kas", &kas) == -1) {
2444 		mdb_warn("failed to locate 'kas' symbol\n");
2445 		return (DCMD_ERR);
2446 	}
2447 
2448 	if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2449 		mdb_warn("failed to locate 'kvseg' symbol\n");
2450 		return (DCMD_ERR);
2451 	}
2452 
2453 	if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2454 		mdb_warn("failed to locate 'kvseg32' symbol\n");
2455 		return (DCMD_ERR);
2456 	}
2457 
2458 	if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2459 		mdb_warn("failed to locate 'kvseg_core' symbol\n");
2460 		return (DCMD_ERR);
2461 	}
2462 
2463 	if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2464 		mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2465 		return (DCMD_ERR);
2466 	}
2467 
2468 	if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2469 		mdb_warn("failed to read 'heap_lp_base'\n");
2470 		return (DCMD_ERR);
2471 	}
2472 
2473 	if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2474 		mdb_warn("failed to read 'heap_lp_end'\n");
2475 		return (DCMD_ERR);
2476 	}
2477 
2478 	kg.kg_cb = cb;
2479 	kg.kg_cbdata = cbdata;
2480 	kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2481 	kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2482 	kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2483 	kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2484 
2485 	if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2486 	    &kg, kas.st_value) == -1) {
2487 		mdb_warn("failed to walk kas segments");
2488 		return (DCMD_ERR);
2489 	}
2490 
2491 	if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2492 		mdb_warn("failed to walk heap/heap32 vmem arenas");
2493 		return (DCMD_ERR);
2494 	}
2495 
2496 	return (DCMD_OK);
2497 }
2498 
2499 size_t
2500 kgrep_subr_pagesize(void)
2501 {
2502 	return (PAGESIZE);
2503 }
2504 
2505 typedef struct file_walk_data {
2506 	struct uf_entry *fw_flist;
2507 	int fw_flistsz;
2508 	int fw_ndx;
2509 	int fw_nofiles;
2510 } file_walk_data_t;
2511 
2512 typedef struct mdb_file_proc {
2513 	struct {
2514 		struct {
2515 			int			fi_nfiles;
2516 			uf_entry_t *volatile	fi_list;
2517 		} u_finfo;
2518 	} p_user;
2519 } mdb_file_proc_t;
2520 
2521 int
2522 file_walk_init(mdb_walk_state_t *wsp)
2523 {
2524 	file_walk_data_t *fw;
2525 	mdb_file_proc_t p;
2526 
2527 	if (wsp->walk_addr == 0) {
2528 		mdb_warn("file walk doesn't support global walks\n");
2529 		return (WALK_ERR);
2530 	}
2531 
2532 	fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2533 
2534 	if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t",
2535 	    wsp->walk_addr, 0) == -1) {
2536 		mdb_free(fw, sizeof (file_walk_data_t));
2537 		mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2538 		return (WALK_ERR);
2539 	}
2540 
2541 	if (p.p_user.u_finfo.fi_nfiles == 0) {
2542 		mdb_free(fw, sizeof (file_walk_data_t));
2543 		return (WALK_DONE);
2544 	}
2545 
2546 	fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2547 	fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2548 	fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2549 
2550 	if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2551 	    (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2552 		mdb_warn("failed to read file array at %p",
2553 		    p.p_user.u_finfo.fi_list);
2554 		mdb_free(fw->fw_flist, fw->fw_flistsz);
2555 		mdb_free(fw, sizeof (file_walk_data_t));
2556 		return (WALK_ERR);
2557 	}
2558 
2559 	fw->fw_ndx = 0;
2560 	wsp->walk_data = fw;
2561 
2562 	return (WALK_NEXT);
2563 }
2564 
2565 int
2566 file_walk_step(mdb_walk_state_t *wsp)
2567 {
2568 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2569 	struct file file;
2570 	uintptr_t fp;
2571 
2572 again:
2573 	if (fw->fw_ndx == fw->fw_nofiles)
2574 		return (WALK_DONE);
2575 
2576 	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0)
2577 		goto again;
2578 
2579 	(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2580 	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2581 }
2582 
2583 int
2584 allfile_walk_step(mdb_walk_state_t *wsp)
2585 {
2586 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2587 	struct file file;
2588 	uintptr_t fp;
2589 
2590 	if (fw->fw_ndx == fw->fw_nofiles)
2591 		return (WALK_DONE);
2592 
2593 	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0)
2594 		(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2595 	else
2596 		bzero(&file, sizeof (file));
2597 
2598 	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2599 }
2600 
2601 void
2602 file_walk_fini(mdb_walk_state_t *wsp)
2603 {
2604 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2605 
2606 	mdb_free(fw->fw_flist, fw->fw_flistsz);
2607 	mdb_free(fw, sizeof (file_walk_data_t));
2608 }
2609 
2610 int
2611 port_walk_init(mdb_walk_state_t *wsp)
2612 {
2613 	if (wsp->walk_addr == 0) {
2614 		mdb_warn("port walk doesn't support global walks\n");
2615 		return (WALK_ERR);
2616 	}
2617 
2618 	if (mdb_layered_walk("file", wsp) == -1) {
2619 		mdb_warn("couldn't walk 'file'");
2620 		return (WALK_ERR);
2621 	}
2622 	return (WALK_NEXT);
2623 }
2624 
2625 int
2626 port_walk_step(mdb_walk_state_t *wsp)
2627 {
2628 	struct vnode	vn;
2629 	uintptr_t	vp;
2630 	uintptr_t	pp;
2631 	struct port	port;
2632 
2633 	vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2634 	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2635 		mdb_warn("failed to read vnode_t at %p", vp);
2636 		return (WALK_ERR);
2637 	}
2638 	if (vn.v_type != VPORT)
2639 		return (WALK_NEXT);
2640 
2641 	pp = (uintptr_t)vn.v_data;
2642 	if (mdb_vread(&port, sizeof (port), pp) == -1) {
2643 		mdb_warn("failed to read port_t at %p", pp);
2644 		return (WALK_ERR);
2645 	}
2646 	return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2647 }
2648 
2649 typedef struct portev_walk_data {
2650 	list_node_t	*pev_node;
2651 	list_node_t	*pev_last;
2652 	size_t		pev_offset;
2653 } portev_walk_data_t;
2654 
2655 int
2656 portev_walk_init(mdb_walk_state_t *wsp)
2657 {
2658 	portev_walk_data_t *pevd;
2659 	struct port	port;
2660 	struct vnode	vn;
2661 	struct list	*list;
2662 	uintptr_t	vp;
2663 
2664 	if (wsp->walk_addr == 0) {
2665 		mdb_warn("portev walk doesn't support global walks\n");
2666 		return (WALK_ERR);
2667 	}
2668 
2669 	pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2670 
2671 	if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2672 		mdb_free(pevd, sizeof (portev_walk_data_t));
2673 		mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2674 		return (WALK_ERR);
2675 	}
2676 
2677 	vp = (uintptr_t)port.port_vnode;
2678 	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2679 		mdb_free(pevd, sizeof (portev_walk_data_t));
2680 		mdb_warn("failed to read vnode_t at %p", vp);
2681 		return (WALK_ERR);
2682 	}
2683 
2684 	if (vn.v_type != VPORT) {
2685 		mdb_free(pevd, sizeof (portev_walk_data_t));
2686 		mdb_warn("input address (%p) does not point to an event port",
2687 		    wsp->walk_addr);
2688 		return (WALK_ERR);
2689 	}
2690 
2691 	if (port.port_queue.portq_nent == 0) {
2692 		mdb_free(pevd, sizeof (portev_walk_data_t));
2693 		return (WALK_DONE);
2694 	}
2695 	list = &port.port_queue.portq_list;
2696 	pevd->pev_offset = list->list_offset;
2697 	pevd->pev_last = list->list_head.list_prev;
2698 	pevd->pev_node = list->list_head.list_next;
2699 	wsp->walk_data = pevd;
2700 	return (WALK_NEXT);
2701 }
2702 
2703 int
2704 portev_walk_step(mdb_walk_state_t *wsp)
2705 {
2706 	portev_walk_data_t	*pevd;
2707 	struct port_kevent	ev;
2708 	uintptr_t		evp;
2709 
2710 	pevd = (portev_walk_data_t *)wsp->walk_data;
2711 
2712 	if (pevd->pev_last == NULL)
2713 		return (WALK_DONE);
2714 	if (pevd->pev_node == pevd->pev_last)
2715 		pevd->pev_last = NULL;		/* last round */
2716 
2717 	evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2718 	if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2719 		mdb_warn("failed to read port_kevent at %p", evp);
2720 		return (WALK_DONE);
2721 	}
2722 	pevd->pev_node = ev.portkev_node.list_next;
2723 	return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2724 }
2725 
2726 void
2727 portev_walk_fini(mdb_walk_state_t *wsp)
2728 {
2729 	portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2730 
2731 	if (pevd != NULL)
2732 		mdb_free(pevd, sizeof (portev_walk_data_t));
2733 }
2734 
2735 typedef struct proc_walk_data {
2736 	uintptr_t *pw_stack;
2737 	int pw_depth;
2738 	int pw_max;
2739 } proc_walk_data_t;
2740 
2741 int
2742 proc_walk_init(mdb_walk_state_t *wsp)
2743 {
2744 	GElf_Sym sym;
2745 	proc_walk_data_t *pw;
2746 
2747 	if (wsp->walk_addr == 0) {
2748 		if (mdb_lookup_by_name("p0", &sym) == -1) {
2749 			mdb_warn("failed to read 'practive'");
2750 			return (WALK_ERR);
2751 		}
2752 		wsp->walk_addr = (uintptr_t)sym.st_value;
2753 	}
2754 
2755 	pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2756 
2757 	if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2758 		mdb_warn("failed to read 'nproc'");
2759 		mdb_free(pw, sizeof (pw));
2760 		return (WALK_ERR);
2761 	}
2762 
2763 	pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2764 	wsp->walk_data = pw;
2765 
2766 	return (WALK_NEXT);
2767 }
2768 
2769 typedef struct mdb_walk_proc {
2770 	struct proc	*p_child;
2771 	struct proc	*p_sibling;
2772 } mdb_walk_proc_t;
2773 
2774 int
2775 proc_walk_step(mdb_walk_state_t *wsp)
2776 {
2777 	proc_walk_data_t *pw = wsp->walk_data;
2778 	uintptr_t addr = wsp->walk_addr;
2779 	uintptr_t cld, sib;
2780 	int status;
2781 	mdb_walk_proc_t pr;
2782 
2783 	if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2784 	    addr, 0) == -1) {
2785 		mdb_warn("failed to read proc at %p", addr);
2786 		return (WALK_DONE);
2787 	}
2788 
2789 	cld = (uintptr_t)pr.p_child;
2790 	sib = (uintptr_t)pr.p_sibling;
2791 
2792 	if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2793 		pw->pw_depth--;
2794 		goto sib;
2795 	}
2796 
2797 	/*
2798 	 * Always pass NULL as the local copy pointer. Consumers
2799 	 * should use mdb_ctf_vread() to read their own minimal
2800 	 * version of proc_t. Thus minimizing the chance of breakage
2801 	 * with older crash dumps.
2802 	 */
2803 	status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata);
2804 
2805 	if (status != WALK_NEXT)
2806 		return (status);
2807 
2808 	if ((wsp->walk_addr = cld) != 0) {
2809 		if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2810 		    cld, 0) == -1) {
2811 			mdb_warn("proc %p has invalid p_child %p; skipping\n",
2812 			    addr, cld);
2813 			goto sib;
2814 		}
2815 
2816 		pw->pw_stack[pw->pw_depth++] = addr;
2817 
2818 		if (pw->pw_depth == pw->pw_max) {
2819 			mdb_warn("depth %d exceeds max depth; try again\n",
2820 			    pw->pw_depth);
2821 			return (WALK_DONE);
2822 		}
2823 		return (WALK_NEXT);
2824 	}
2825 
2826 sib:
2827 	/*
2828 	 * We know that p0 has no siblings, and if another starting proc
2829 	 * was given, we don't want to walk its siblings anyway.
2830 	 */
2831 	if (pw->pw_depth == 0)
2832 		return (WALK_DONE);
2833 
2834 	if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2835 	    sib, 0) == -1) {
2836 		mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2837 		    addr, sib);
2838 		sib = 0;
2839 	}
2840 
2841 	if ((wsp->walk_addr = sib) == 0) {
2842 		if (pw->pw_depth > 0) {
2843 			wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2844 			return (WALK_NEXT);
2845 		}
2846 		return (WALK_DONE);
2847 	}
2848 
2849 	return (WALK_NEXT);
2850 }
2851 
2852 void
2853 proc_walk_fini(mdb_walk_state_t *wsp)
2854 {
2855 	proc_walk_data_t *pw = wsp->walk_data;
2856 
2857 	mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2858 	mdb_free(pw, sizeof (proc_walk_data_t));
2859 }
2860 
2861 int
2862 task_walk_init(mdb_walk_state_t *wsp)
2863 {
2864 	task_t task;
2865 
2866 	if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2867 		mdb_warn("failed to read task at %p", wsp->walk_addr);
2868 		return (WALK_ERR);
2869 	}
2870 	wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2871 	wsp->walk_data = task.tk_memb_list;
2872 	return (WALK_NEXT);
2873 }
2874 
2875 typedef struct mdb_task_proc {
2876 	struct proc	*p_tasknext;
2877 } mdb_task_proc_t;
2878 
2879 int
2880 task_walk_step(mdb_walk_state_t *wsp)
2881 {
2882 	mdb_task_proc_t proc;
2883 	int status;
2884 
2885 	if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t",
2886 	    wsp->walk_addr, 0) == -1) {
2887 		mdb_warn("failed to read proc at %p", wsp->walk_addr);
2888 		return (WALK_DONE);
2889 	}
2890 
2891 	status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2892 
2893 	if (proc.p_tasknext == wsp->walk_data)
2894 		return (WALK_DONE);
2895 
2896 	wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2897 	return (status);
2898 }
2899 
2900 int
2901 project_walk_init(mdb_walk_state_t *wsp)
2902 {
2903 	if (wsp->walk_addr == 0) {
2904 		if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2905 			mdb_warn("failed to read 'proj0p'");
2906 			return (WALK_ERR);
2907 		}
2908 	}
2909 	wsp->walk_data = (void *)wsp->walk_addr;
2910 	return (WALK_NEXT);
2911 }
2912 
2913 int
2914 project_walk_step(mdb_walk_state_t *wsp)
2915 {
2916 	uintptr_t addr = wsp->walk_addr;
2917 	kproject_t pj;
2918 	int status;
2919 
2920 	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2921 		mdb_warn("failed to read project at %p", addr);
2922 		return (WALK_DONE);
2923 	}
2924 	status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2925 	if (status != WALK_NEXT)
2926 		return (status);
2927 	wsp->walk_addr = (uintptr_t)pj.kpj_next;
2928 	if ((void *)wsp->walk_addr == wsp->walk_data)
2929 		return (WALK_DONE);
2930 	return (WALK_NEXT);
2931 }
2932 
2933 static int
2934 generic_walk_step(mdb_walk_state_t *wsp)
2935 {
2936 	return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2937 	    wsp->walk_cbdata));
2938 }
2939 
2940 static int
2941 cpu_walk_cmp(const void *l, const void *r)
2942 {
2943 	uintptr_t lhs = *((uintptr_t *)l);
2944 	uintptr_t rhs = *((uintptr_t *)r);
2945 	cpu_t lcpu, rcpu;
2946 
2947 	(void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
2948 	(void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
2949 
2950 	if (lcpu.cpu_id < rcpu.cpu_id)
2951 		return (-1);
2952 
2953 	if (lcpu.cpu_id > rcpu.cpu_id)
2954 		return (1);
2955 
2956 	return (0);
2957 }
2958 
2959 typedef struct cpu_walk {
2960 	uintptr_t *cw_array;
2961 	int cw_ndx;
2962 } cpu_walk_t;
2963 
2964 int
2965 cpu_walk_init(mdb_walk_state_t *wsp)
2966 {
2967 	cpu_walk_t *cw;
2968 	int max_ncpus, i = 0;
2969 	uintptr_t current, first;
2970 	cpu_t cpu, panic_cpu;
2971 	uintptr_t panicstr, addr;
2972 	GElf_Sym sym;
2973 
2974 	cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
2975 
2976 	if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
2977 		mdb_warn("failed to read 'max_ncpus'");
2978 		return (WALK_ERR);
2979 	}
2980 
2981 	if (mdb_readvar(&panicstr, "panicstr") == -1) {
2982 		mdb_warn("failed to read 'panicstr'");
2983 		return (WALK_ERR);
2984 	}
2985 
2986 	if (panicstr != 0) {
2987 		if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
2988 			mdb_warn("failed to find 'panic_cpu'");
2989 			return (WALK_ERR);
2990 		}
2991 
2992 		addr = (uintptr_t)sym.st_value;
2993 
2994 		if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
2995 			mdb_warn("failed to read 'panic_cpu'");
2996 			return (WALK_ERR);
2997 		}
2998 	}
2999 
3000 	/*
3001 	 * Unfortunately, there is no platform-independent way to walk
3002 	 * CPUs in ID order.  We therefore loop through in cpu_next order,
3003 	 * building an array of CPU pointers which will subsequently be
3004 	 * sorted.
3005 	 */
3006 	cw->cw_array =
3007 	    mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
3008 
3009 	if (mdb_readvar(&first, "cpu_list") == -1) {
3010 		mdb_warn("failed to read 'cpu_list'");
3011 		return (WALK_ERR);
3012 	}
3013 
3014 	current = first;
3015 	do {
3016 		if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
3017 			mdb_warn("failed to read cpu at %p", current);
3018 			return (WALK_ERR);
3019 		}
3020 
3021 		if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) {
3022 			cw->cw_array[i++] = addr;
3023 		} else {
3024 			cw->cw_array[i++] = current;
3025 		}
3026 	} while ((current = (uintptr_t)cpu.cpu_next) != first);
3027 
3028 	qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
3029 	wsp->walk_data = cw;
3030 
3031 	return (WALK_NEXT);
3032 }
3033 
3034 int
3035 cpu_walk_step(mdb_walk_state_t *wsp)
3036 {
3037 	cpu_walk_t *cw = wsp->walk_data;
3038 	cpu_t cpu;
3039 	uintptr_t addr = cw->cw_array[cw->cw_ndx++];
3040 
3041 	if (addr == 0)
3042 		return (WALK_DONE);
3043 
3044 	if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
3045 		mdb_warn("failed to read cpu at %p", addr);
3046 		return (WALK_DONE);
3047 	}
3048 
3049 	return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
3050 }
3051 
3052 typedef struct cpuinfo_data {
3053 	intptr_t cid_cpu;
3054 	uintptr_t **cid_ithr;
3055 	char	cid_print_head;
3056 	char	cid_print_thr;
3057 	char	cid_print_ithr;
3058 	char	cid_print_flags;
3059 } cpuinfo_data_t;
3060 
3061 int
3062 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
3063 {
3064 	cpu_t c;
3065 	int id;
3066 	uint8_t pil;
3067 
3068 	if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
3069 		return (WALK_NEXT);
3070 
3071 	if (thr->t_bound_cpu == NULL) {
3072 		mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
3073 		return (WALK_NEXT);
3074 	}
3075 
3076 	(void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
3077 
3078 	if ((id = c.cpu_id) >= NCPU) {
3079 		mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
3080 		    thr->t_bound_cpu, id, NCPU);
3081 		return (WALK_NEXT);
3082 	}
3083 
3084 	if ((pil = thr->t_pil) >= NINTR) {
3085 		mdb_warn("thread %p has pil (%d) greater than %d\n",
3086 		    addr, pil, NINTR);
3087 		return (WALK_NEXT);
3088 	}
3089 
3090 	if (cid->cid_ithr[id][pil] != 0) {
3091 		mdb_warn("CPU %d has multiple threads at pil %d (at least "
3092 		    "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
3093 		return (WALK_NEXT);
3094 	}
3095 
3096 	cid->cid_ithr[id][pil] = addr;
3097 
3098 	return (WALK_NEXT);
3099 }
3100 
3101 #define	CPUINFO_IDWIDTH		3
3102 #define	CPUINFO_FLAGWIDTH	9
3103 
3104 #ifdef _LP64
3105 #if defined(__amd64)
3106 #define	CPUINFO_TWIDTH		16
3107 #define	CPUINFO_CPUWIDTH	16
3108 #else
3109 #define	CPUINFO_CPUWIDTH	11
3110 #define	CPUINFO_TWIDTH		11
3111 #endif
3112 #else
3113 #define	CPUINFO_CPUWIDTH	8
3114 #define	CPUINFO_TWIDTH		8
3115 #endif
3116 
3117 #define	CPUINFO_THRDELT		(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
3118 #define	CPUINFO_FLAGDELT	(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
3119 #define	CPUINFO_ITHRDELT	4
3120 
3121 #define	CPUINFO_INDENT	mdb_printf("%*s", CPUINFO_THRDELT, \
3122     flagline < nflaglines ? flagbuf[flagline++] : "")
3123 
3124 typedef struct mdb_cpuinfo_proc {
3125 	struct {
3126 		char		u_comm[MAXCOMLEN + 1];
3127 	} p_user;
3128 } mdb_cpuinfo_proc_t;
3129 
3130 int
3131 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
3132 {
3133 	kthread_t t;
3134 	disp_t disp;
3135 	mdb_cpuinfo_proc_t p;
3136 	uintptr_t pinned;
3137 	char **flagbuf;
3138 	int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
3139 
3140 	const char *flags[] = {
3141 	    "RUNNING", "READY", "QUIESCED", "EXISTS",
3142 	    "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
3143 	    "SPARE", "FAULTED", "DISABLED", NULL
3144 	};
3145 
3146 	if (cid->cid_cpu != -1) {
3147 		if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
3148 			return (WALK_NEXT);
3149 
3150 		/*
3151 		 * Set cid_cpu to -1 to indicate that we found a matching CPU.
3152 		 */
3153 		cid->cid_cpu = -1;
3154 		rval = WALK_DONE;
3155 	}
3156 
3157 	if (cid->cid_print_head) {
3158 		mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
3159 		    "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
3160 		    "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
3161 		    "PROC");
3162 		cid->cid_print_head = FALSE;
3163 	}
3164 
3165 	bspl = cpu->cpu_base_spl;
3166 
3167 	if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
3168 		mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
3169 		return (WALK_ERR);
3170 	}
3171 
3172 	mdb_printf("%3d %0*p %3x %4d %4d ",
3173 	    cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
3174 	    disp.disp_nrunnable, bspl);
3175 
3176 	if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
3177 		mdb_printf("%3d ", t.t_pri);
3178 	} else {
3179 		mdb_printf("%3s ", "-");
3180 	}
3181 
3182 	mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
3183 	    cpu->cpu_kprunrun ? "yes" : "no");
3184 
3185 	if (cpu->cpu_last_swtch) {
3186 		mdb_printf("t-%-4d ",
3187 		    (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
3188 	} else {
3189 		mdb_printf("%-6s ", "-");
3190 	}
3191 
3192 	mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
3193 
3194 	if (cpu->cpu_thread == cpu->cpu_idle_thread)
3195 		mdb_printf(" (idle)\n");
3196 	else if (cpu->cpu_thread == NULL)
3197 		mdb_printf(" -\n");
3198 	else {
3199 		if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3200 		    (uintptr_t)t.t_procp, 0) != -1) {
3201 			mdb_printf(" %s\n", p.p_user.u_comm);
3202 		} else {
3203 			mdb_printf(" ?\n");
3204 		}
3205 	}
3206 
3207 	flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
3208 
3209 	if (cid->cid_print_flags) {
3210 		int first = 1, i, j, k;
3211 		char *s;
3212 
3213 		cid->cid_print_head = TRUE;
3214 
3215 		for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3216 			if (!(cpu->cpu_flags & i))
3217 				continue;
3218 
3219 			if (first) {
3220 				s = mdb_alloc(CPUINFO_THRDELT + 1,
3221 				    UM_GC | UM_SLEEP);
3222 
3223 				(void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3224 				    "%*s|%*s", CPUINFO_FLAGDELT, "",
3225 				    CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3226 				flagbuf[nflaglines++] = s;
3227 			}
3228 
3229 			s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3230 			(void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3231 			    CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3232 			    CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3233 			    first ? "<--+" : "");
3234 
3235 			for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3236 				s[k] = ' ';
3237 			s[k] = '\0';
3238 
3239 			flagbuf[nflaglines++] = s;
3240 			first = 0;
3241 		}
3242 	}
3243 
3244 	if (cid->cid_print_ithr) {
3245 		int i, found_one = FALSE;
3246 		int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3247 
3248 		for (i = NINTR - 1; i >= 0; i--) {
3249 			uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3250 
3251 			if (iaddr == 0)
3252 				continue;
3253 
3254 			if (!found_one) {
3255 				found_one = TRUE;
3256 
3257 				CPUINFO_INDENT;
3258 				mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3259 				    CPUINFO_ITHRDELT, "");
3260 
3261 				CPUINFO_INDENT;
3262 				mdb_printf("%c%*s+--> %3s %s\n",
3263 				    print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3264 				    "", "PIL", "THREAD");
3265 			}
3266 
3267 			if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3268 				mdb_warn("failed to read kthread_t at %p",
3269 				    iaddr);
3270 				return (WALK_ERR);
3271 			}
3272 
3273 			CPUINFO_INDENT;
3274 			mdb_printf("%c%*s     %3d %0*p\n",
3275 			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3276 			    t.t_pil, CPUINFO_TWIDTH, iaddr);
3277 
3278 			pinned = (uintptr_t)t.t_intr;
3279 		}
3280 
3281 		if (found_one && pinned != 0) {
3282 			cid->cid_print_head = TRUE;
3283 			(void) strcpy(p.p_user.u_comm, "?");
3284 
3285 			if (mdb_vread(&t, sizeof (t),
3286 			    (uintptr_t)pinned) == -1) {
3287 				mdb_warn("failed to read kthread_t at %p",
3288 				    pinned);
3289 				return (WALK_ERR);
3290 			}
3291 			if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3292 			    (uintptr_t)t.t_procp, 0) == -1) {
3293 				mdb_warn("failed to read proc_t at %p",
3294 				    t.t_procp);
3295 				return (WALK_ERR);
3296 			}
3297 
3298 			CPUINFO_INDENT;
3299 			mdb_printf("%c%*s     %3s %0*p %s\n",
3300 			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3301 			    CPUINFO_TWIDTH, pinned,
3302 			    pinned == (uintptr_t)cpu->cpu_idle_thread ?
3303 			    "(idle)" : p.p_user.u_comm);
3304 		}
3305 	}
3306 
3307 	if (disp.disp_nrunnable && cid->cid_print_thr) {
3308 		dispq_t *dq;
3309 
3310 		int i, npri = disp.disp_npri;
3311 
3312 		dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3313 
3314 		if (mdb_vread(dq, sizeof (dispq_t) * npri,
3315 		    (uintptr_t)disp.disp_q) == -1) {
3316 			mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3317 			return (WALK_ERR);
3318 		}
3319 
3320 		CPUINFO_INDENT;
3321 		mdb_printf("|\n");
3322 
3323 		CPUINFO_INDENT;
3324 		mdb_printf("+-->  %3s %-*s %s\n", "PRI",
3325 		    CPUINFO_TWIDTH, "THREAD", "PROC");
3326 
3327 		for (i = npri - 1; i >= 0; i--) {
3328 			uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3329 
3330 			while (taddr != 0) {
3331 				if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3332 					mdb_warn("failed to read kthread_t "
3333 					    "at %p", taddr);
3334 					return (WALK_ERR);
3335 				}
3336 				if (mdb_ctf_vread(&p, "proc_t",
3337 				    "mdb_cpuinfo_proc_t",
3338 				    (uintptr_t)t.t_procp, 0) == -1) {
3339 					mdb_warn("failed to read proc_t at %p",
3340 					    t.t_procp);
3341 					return (WALK_ERR);
3342 				}
3343 
3344 				CPUINFO_INDENT;
3345 				mdb_printf("      %3d %0*p %s\n", t.t_pri,
3346 				    CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3347 
3348 				taddr = (uintptr_t)t.t_link;
3349 			}
3350 		}
3351 		cid->cid_print_head = TRUE;
3352 	}
3353 
3354 	while (flagline < nflaglines)
3355 		mdb_printf("%s\n", flagbuf[flagline++]);
3356 
3357 	if (cid->cid_print_head)
3358 		mdb_printf("\n");
3359 
3360 	return (rval);
3361 }
3362 
3363 int
3364 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3365 {
3366 	uint_t verbose = FALSE;
3367 	cpuinfo_data_t cid;
3368 
3369 	cid.cid_print_ithr = FALSE;
3370 	cid.cid_print_thr = FALSE;
3371 	cid.cid_print_flags = FALSE;
3372 	cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3373 	cid.cid_cpu = -1;
3374 
3375 	if (flags & DCMD_ADDRSPEC)
3376 		cid.cid_cpu = addr;
3377 
3378 	if (mdb_getopts(argc, argv,
3379 	    'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3380 		return (DCMD_USAGE);
3381 
3382 	if (verbose) {
3383 		cid.cid_print_ithr = TRUE;
3384 		cid.cid_print_thr = TRUE;
3385 		cid.cid_print_flags = TRUE;
3386 		cid.cid_print_head = TRUE;
3387 	}
3388 
3389 	if (cid.cid_print_ithr) {
3390 		int i;
3391 
3392 		cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3393 		    * NCPU, UM_SLEEP | UM_GC);
3394 
3395 		for (i = 0; i < NCPU; i++)
3396 			cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3397 			    NINTR, UM_SLEEP | UM_GC);
3398 
3399 		if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3400 		    &cid) == -1) {
3401 			mdb_warn("couldn't walk thread");
3402 			return (DCMD_ERR);
3403 		}
3404 	}
3405 
3406 	if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3407 		mdb_warn("can't walk cpus");
3408 		return (DCMD_ERR);
3409 	}
3410 
3411 	if (cid.cid_cpu != -1) {
3412 		/*
3413 		 * We didn't find this CPU when we walked through the CPUs
3414 		 * (i.e. the address specified doesn't show up in the "cpu"
3415 		 * walk).  However, the specified address may still correspond
3416 		 * to a valid cpu_t (for example, if the specified address is
3417 		 * the actual panicking cpu_t and not the cached panic_cpu).
3418 		 * Point is:  even if we didn't find it, we still want to try
3419 		 * to print the specified address as a cpu_t.
3420 		 */
3421 		cpu_t cpu;
3422 
3423 		if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3424 			mdb_warn("%p is neither a valid CPU ID nor a "
3425 			    "valid cpu_t address\n", cid.cid_cpu);
3426 			return (DCMD_ERR);
3427 		}
3428 
3429 		(void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3430 	}
3431 
3432 	return (DCMD_OK);
3433 }
3434 
3435 /*ARGSUSED*/
3436 int
3437 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3438 {
3439 	int i;
3440 
3441 	if (!(flags & DCMD_ADDRSPEC))
3442 		return (DCMD_USAGE);
3443 
3444 	for (i = 0; i < sizeof (addr) * NBBY; i++)
3445 		mdb_printf("%p\n", addr ^ (1UL << i));
3446 
3447 	return (DCMD_OK);
3448 }
3449 
3450 typedef struct mdb_as2proc_proc {
3451 	struct as *p_as;
3452 } mdb_as2proc_proc_t;
3453 
3454 /*ARGSUSED*/
3455 int
3456 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp)
3457 {
3458 	mdb_as2proc_proc_t p;
3459 
3460 	mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0);
3461 
3462 	if (p.p_as == *asp)
3463 		mdb_printf("%p\n", addr);
3464 	return (WALK_NEXT);
3465 }
3466 
3467 /*ARGSUSED*/
3468 int
3469 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3470 {
3471 	if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3472 		return (DCMD_USAGE);
3473 
3474 	if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3475 		mdb_warn("failed to walk proc");
3476 		return (DCMD_ERR);
3477 	}
3478 
3479 	return (DCMD_OK);
3480 }
3481 
3482 typedef struct mdb_ptree_proc {
3483 	struct proc	*p_parent;
3484 	struct {
3485 		char		u_comm[MAXCOMLEN + 1];
3486 	} p_user;
3487 } mdb_ptree_proc_t;
3488 
3489 /*ARGSUSED*/
3490 int
3491 ptree_walk(uintptr_t addr, const void *ignored, void *data)
3492 {
3493 	mdb_ptree_proc_t proc;
3494 	mdb_ptree_proc_t parent;
3495 	int ident = 0;
3496 	uintptr_t paddr;
3497 
3498 	mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0);
3499 
3500 	for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) {
3501 		mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0);
3502 		paddr = (uintptr_t)parent.p_parent;
3503 	}
3504 
3505 	mdb_inc_indent(ident);
3506 	mdb_printf("%0?p  %s\n", addr, proc.p_user.u_comm);
3507 	mdb_dec_indent(ident);
3508 
3509 	return (WALK_NEXT);
3510 }
3511 
3512 void
3513 ptree_ancestors(uintptr_t addr, uintptr_t start)
3514 {
3515 	mdb_ptree_proc_t p;
3516 
3517 	if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) {
3518 		mdb_warn("couldn't read ancestor at %p", addr);
3519 		return;
3520 	}
3521 
3522 	if (p.p_parent != NULL)
3523 		ptree_ancestors((uintptr_t)p.p_parent, start);
3524 
3525 	if (addr != start)
3526 		(void) ptree_walk(addr, &p, NULL);
3527 }
3528 
3529 /*ARGSUSED*/
3530 int
3531 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3532 {
3533 	if (!(flags & DCMD_ADDRSPEC))
3534 		addr = 0;
3535 	else
3536 		ptree_ancestors(addr, addr);
3537 
3538 	if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3539 		mdb_warn("couldn't walk 'proc'");
3540 		return (DCMD_ERR);
3541 	}
3542 
3543 	return (DCMD_OK);
3544 }
3545 
3546 typedef struct mdb_fd_proc {
3547 	struct {
3548 		struct {
3549 			int			fi_nfiles;
3550 			uf_entry_t *volatile	fi_list;
3551 		} u_finfo;
3552 	} p_user;
3553 } mdb_fd_proc_t;
3554 
3555 /*ARGSUSED*/
3556 static int
3557 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3558 {
3559 	int fdnum;
3560 	const mdb_arg_t *argp = &argv[0];
3561 	mdb_fd_proc_t p;
3562 	uf_entry_t uf;
3563 
3564 	if ((flags & DCMD_ADDRSPEC) == 0) {
3565 		mdb_warn("fd doesn't give global information\n");
3566 		return (DCMD_ERR);
3567 	}
3568 	if (argc != 1)
3569 		return (DCMD_USAGE);
3570 
3571 	if (argp->a_type == MDB_TYPE_IMMEDIATE)
3572 		fdnum = argp->a_un.a_val;
3573 	else
3574 		fdnum = mdb_strtoull(argp->a_un.a_str);
3575 
3576 	if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) {
3577 		mdb_warn("couldn't read proc_t at %p", addr);
3578 		return (DCMD_ERR);
3579 	}
3580 	if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3581 		mdb_warn("process %p only has %d files open.\n",
3582 		    addr, p.p_user.u_finfo.fi_nfiles);
3583 		return (DCMD_ERR);
3584 	}
3585 	if (mdb_vread(&uf, sizeof (uf_entry_t),
3586 	    (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3587 		mdb_warn("couldn't read uf_entry_t at %p",
3588 		    &p.p_user.u_finfo.fi_list[fdnum]);
3589 		return (DCMD_ERR);
3590 	}
3591 
3592 	mdb_printf("%p\n", uf.uf_file);
3593 	return (DCMD_OK);
3594 }
3595 
3596 /*ARGSUSED*/
3597 static int
3598 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3599 {
3600 	pid_t pid = (pid_t)addr;
3601 
3602 	if (argc != 0)
3603 		return (DCMD_USAGE);
3604 
3605 	if ((addr = mdb_pid2proc(pid, NULL)) == 0) {
3606 		mdb_warn("PID 0t%d not found\n", pid);
3607 		return (DCMD_ERR);
3608 	}
3609 
3610 	mdb_printf("%p\n", addr);
3611 	return (DCMD_OK);
3612 }
3613 
3614 static char *sysfile_cmd[] = {
3615 	"exclude:",
3616 	"include:",
3617 	"forceload:",
3618 	"rootdev:",
3619 	"rootfs:",
3620 	"swapdev:",
3621 	"swapfs:",
3622 	"moddir:",
3623 	"set",
3624 	"unknown",
3625 };
3626 
3627 static char *sysfile_ops[] = { "", "=", "&", "|" };
3628 
3629 /*ARGSUSED*/
3630 static int
3631 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3632 {
3633 	if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3634 		*target = NULL;
3635 		return (WALK_DONE);
3636 	}
3637 	return (WALK_NEXT);
3638 }
3639 
3640 /*ARGSUSED*/
3641 static int
3642 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3643 {
3644 	struct sysparam *sysp, sys;
3645 	char var[256];
3646 	char modname[256];
3647 	char val[256];
3648 	char strval[256];
3649 	vmem_t *mod_sysfile_arena;
3650 	void *straddr;
3651 
3652 	if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3653 		mdb_warn("failed to read sysparam_hd");
3654 		return (DCMD_ERR);
3655 	}
3656 
3657 	if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3658 		mdb_warn("failed to read mod_sysfile_arena");
3659 		return (DCMD_ERR);
3660 	}
3661 
3662 	while (sysp != NULL) {
3663 		var[0] = '\0';
3664 		val[0] = '\0';
3665 		modname[0] = '\0';
3666 		if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3667 			mdb_warn("couldn't read sysparam %p", sysp);
3668 			return (DCMD_ERR);
3669 		}
3670 		if (sys.sys_modnam != NULL &&
3671 		    mdb_readstr(modname, 256,
3672 		    (uintptr_t)sys.sys_modnam) == -1) {
3673 			mdb_warn("couldn't read modname in %p", sysp);
3674 			return (DCMD_ERR);
3675 		}
3676 		if (sys.sys_ptr != NULL &&
3677 		    mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3678 			mdb_warn("couldn't read ptr in %p", sysp);
3679 			return (DCMD_ERR);
3680 		}
3681 		if (sys.sys_op != SETOP_NONE) {
3682 			/*
3683 			 * Is this an int or a string?  We determine this
3684 			 * by checking whether straddr is contained in
3685 			 * mod_sysfile_arena.  If so, the walker will set
3686 			 * straddr to NULL.
3687 			 */
3688 			straddr = (void *)(uintptr_t)sys.sys_info;
3689 			if (sys.sys_op == SETOP_ASSIGN &&
3690 			    sys.sys_info != 0 &&
3691 			    mdb_pwalk("vmem_seg",
3692 			    (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3693 			    (uintptr_t)mod_sysfile_arena) == 0 &&
3694 			    straddr == NULL &&
3695 			    mdb_readstr(strval, 256,
3696 			    (uintptr_t)sys.sys_info) != -1) {
3697 				(void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3698 				    strval);
3699 			} else {
3700 				(void) mdb_snprintf(val, sizeof (val),
3701 				    "0x%llx [0t%llu]", sys.sys_info,
3702 				    sys.sys_info);
3703 			}
3704 		}
3705 		mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3706 		    modname, modname[0] == '\0' ? "" : ":",
3707 		    var, sysfile_ops[sys.sys_op], val);
3708 
3709 		sysp = sys.sys_next;
3710 	}
3711 
3712 	return (DCMD_OK);
3713 }
3714 
3715 int
3716 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3717 {
3718 
3719 	if (*didp == thr->t_did) {
3720 		mdb_printf("%p\n", addr);
3721 		return (WALK_DONE);
3722 	} else
3723 		return (WALK_NEXT);
3724 }
3725 
3726 /*ARGSUSED*/
3727 int
3728 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3729 {
3730 	const mdb_arg_t *argp = &argv[0];
3731 	kt_did_t	did;
3732 
3733 	if (argc != 1)
3734 		return (DCMD_USAGE);
3735 
3736 	did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3737 
3738 	if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3739 		mdb_warn("failed to walk thread");
3740 		return (DCMD_ERR);
3741 
3742 	}
3743 	return (DCMD_OK);
3744 
3745 }
3746 
3747 static int
3748 errorq_walk_init(mdb_walk_state_t *wsp)
3749 {
3750 	if (wsp->walk_addr == 0 &&
3751 	    mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3752 		mdb_warn("failed to read errorq_list");
3753 		return (WALK_ERR);
3754 	}
3755 
3756 	return (WALK_NEXT);
3757 }
3758 
3759 static int
3760 errorq_walk_step(mdb_walk_state_t *wsp)
3761 {
3762 	uintptr_t addr = wsp->walk_addr;
3763 	errorq_t eq;
3764 
3765 	if (addr == 0)
3766 		return (WALK_DONE);
3767 
3768 	if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3769 		mdb_warn("failed to read errorq at %p", addr);
3770 		return (WALK_ERR);
3771 	}
3772 
3773 	wsp->walk_addr = (uintptr_t)eq.eq_next;
3774 	return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3775 }
3776 
3777 typedef struct eqd_walk_data {
3778 	uintptr_t *eqd_stack;
3779 	void *eqd_buf;
3780 	ulong_t eqd_qpos;
3781 	ulong_t eqd_qlen;
3782 	size_t eqd_size;
3783 } eqd_walk_data_t;
3784 
3785 /*
3786  * In order to walk the list of pending error queue elements, we push the
3787  * addresses of the corresponding data buffers in to the eqd_stack array.
3788  * The error lists are in reverse chronological order when iterating using
3789  * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3790  * walker client gets addresses in order from oldest error to newest error.
3791  */
3792 static void
3793 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3794 {
3795 	errorq_elem_t eqe;
3796 
3797 	while (addr != 0) {
3798 		if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3799 			mdb_warn("failed to read errorq element at %p", addr);
3800 			break;
3801 		}
3802 
3803 		if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3804 			mdb_warn("errorq is overfull -- more than %lu "
3805 			    "elems found\n", eqdp->eqd_qlen);
3806 			break;
3807 		}
3808 
3809 		eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3810 		addr = (uintptr_t)eqe.eqe_prev;
3811 	}
3812 }
3813 
3814 static int
3815 eqd_walk_init(mdb_walk_state_t *wsp)
3816 {
3817 	eqd_walk_data_t *eqdp;
3818 	errorq_elem_t eqe, *addr;
3819 	errorq_t eq;
3820 	ulong_t i;
3821 
3822 	if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3823 		mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3824 		return (WALK_ERR);
3825 	}
3826 
3827 	if (eq.eq_ptail != NULL &&
3828 	    mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3829 		mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3830 		return (WALK_ERR);
3831 	}
3832 
3833 	eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3834 	wsp->walk_data = eqdp;
3835 
3836 	eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3837 	eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3838 	eqdp->eqd_qlen = eq.eq_qlen;
3839 	eqdp->eqd_qpos = 0;
3840 	eqdp->eqd_size = eq.eq_size;
3841 
3842 	/*
3843 	 * The newest elements in the queue are on the pending list, so we
3844 	 * push those on to our stack first.
3845 	 */
3846 	eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3847 
3848 	/*
3849 	 * If eq_ptail is set, it may point to a subset of the errors on the
3850 	 * pending list in the event a atomic_cas_ptr() failed; if ptail's
3851 	 * data is already in our stack, NULL out eq_ptail and ignore it.
3852 	 */
3853 	if (eq.eq_ptail != NULL) {
3854 		for (i = 0; i < eqdp->eqd_qpos; i++) {
3855 			if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3856 				eq.eq_ptail = NULL;
3857 				break;
3858 			}
3859 		}
3860 	}
3861 
3862 	/*
3863 	 * If eq_phead is set, it has the processing list in order from oldest
3864 	 * to newest.  Use this to recompute eq_ptail as best we can and then
3865 	 * we nicely fall into eqd_push_list() of eq_ptail below.
3866 	 */
3867 	for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3868 	    (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3869 		eq.eq_ptail = addr;
3870 
3871 	/*
3872 	 * The oldest elements in the queue are on the processing list, subject
3873 	 * to machinations in the if-clauses above.  Push any such elements.
3874 	 */
3875 	eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3876 	return (WALK_NEXT);
3877 }
3878 
3879 static int
3880 eqd_walk_step(mdb_walk_state_t *wsp)
3881 {
3882 	eqd_walk_data_t *eqdp = wsp->walk_data;
3883 	uintptr_t addr;
3884 
3885 	if (eqdp->eqd_qpos == 0)
3886 		return (WALK_DONE);
3887 
3888 	addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3889 
3890 	if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3891 		mdb_warn("failed to read errorq data at %p", addr);
3892 		return (WALK_ERR);
3893 	}
3894 
3895 	return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3896 }
3897 
3898 static void
3899 eqd_walk_fini(mdb_walk_state_t *wsp)
3900 {
3901 	eqd_walk_data_t *eqdp = wsp->walk_data;
3902 
3903 	mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3904 	mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3905 	mdb_free(eqdp, sizeof (eqd_walk_data_t));
3906 }
3907 
3908 #define	EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3909 
3910 static int
3911 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3912 {
3913 	int i;
3914 	errorq_t eq;
3915 	uint_t opt_v = FALSE;
3916 
3917 	if (!(flags & DCMD_ADDRSPEC)) {
3918 		if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3919 			mdb_warn("can't walk 'errorq'");
3920 			return (DCMD_ERR);
3921 		}
3922 		return (DCMD_OK);
3923 	}
3924 
3925 	i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3926 	argc -= i;
3927 	argv += i;
3928 
3929 	if (argc != 0)
3930 		return (DCMD_USAGE);
3931 
3932 	if (opt_v || DCMD_HDRSPEC(flags)) {
3933 		mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3934 		    "ADDR", "NAME", "S", "V", "N");
3935 		if (!opt_v) {
3936 			mdb_printf("%7s %7s %7s%</u>\n",
3937 			    "ACCEPT", "DROP", "LOG");
3938 		} else {
3939 			mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3940 			    "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3941 		}
3942 	}
3943 
3944 	if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3945 		mdb_warn("failed to read errorq at %p", addr);
3946 		return (DCMD_ERR);
3947 	}
3948 
3949 	mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3950 	    (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3951 	    (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3952 	    (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3953 
3954 	if (!opt_v) {
3955 		mdb_printf("%7llu %7llu %7llu\n",
3956 		    EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3957 		    EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3958 		    EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3959 	} else {
3960 		mdb_printf("%5s %6lu %6lu %3u %a\n",
3961 		    "  |  ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3962 		mdb_printf("%38s\n%41s"
3963 		    "%12s %llu\n"
3964 		    "%53s %llu\n"
3965 		    "%53s %llu\n"
3966 		    "%53s %llu\n"
3967 		    "%53s %llu\n"
3968 		    "%53s %llu\n"
3969 		    "%53s %llu\n"
3970 		    "%53s %llu\n\n",
3971 		    "|", "+-> ",
3972 		    "DISPATCHED",	EQKSVAL(eq, eqk_dispatched),
3973 		    "DROPPED",		EQKSVAL(eq, eqk_dropped),
3974 		    "LOGGED",		EQKSVAL(eq, eqk_logged),
3975 		    "RESERVED",		EQKSVAL(eq, eqk_reserved),
3976 		    "RESERVE FAIL",	EQKSVAL(eq, eqk_reserve_fail),
3977 		    "COMMITTED",	EQKSVAL(eq, eqk_committed),
3978 		    "COMMIT FAIL",	EQKSVAL(eq, eqk_commit_fail),
3979 		    "CANCELLED",	EQKSVAL(eq, eqk_cancelled));
3980 	}
3981 
3982 	return (DCMD_OK);
3983 }
3984 
3985 /*ARGSUSED*/
3986 static int
3987 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3988 {
3989 	cpu_t panic_cpu;
3990 	kthread_t *panic_thread;
3991 	void *buf;
3992 	panic_data_t *pd;
3993 	int i, n;
3994 
3995 	if (!mdb_prop_postmortem) {
3996 		mdb_warn("panicinfo can only be run on a system "
3997 		    "dump; see dumpadm(1M)\n");
3998 		return (DCMD_ERR);
3999 	}
4000 
4001 	if (flags & DCMD_ADDRSPEC || argc != 0)
4002 		return (DCMD_USAGE);
4003 
4004 	if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
4005 		mdb_warn("failed to read 'panic_cpu'");
4006 	else
4007 		mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
4008 
4009 	if (mdb_readvar(&panic_thread, "panic_thread") == -1)
4010 		mdb_warn("failed to read 'panic_thread'");
4011 	else
4012 		mdb_printf("%16s %?p\n", "thread", panic_thread);
4013 
4014 	buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
4015 	pd = (panic_data_t *)buf;
4016 
4017 	if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
4018 	    pd->pd_version != PANICBUFVERS) {
4019 		mdb_warn("failed to read 'panicbuf'");
4020 		mdb_free(buf, PANICBUFSIZE);
4021 		return (DCMD_ERR);
4022 	}
4023 
4024 	mdb_printf("%16s %s\n", "message",  (char *)buf + pd->pd_msgoff);
4025 
4026 	n = (pd->pd_msgoff - (sizeof (panic_data_t) -
4027 	    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
4028 
4029 	for (i = 0; i < n; i++)
4030 		mdb_printf("%16s %?llx\n",
4031 		    pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
4032 
4033 	mdb_free(buf, PANICBUFSIZE);
4034 	return (DCMD_OK);
4035 }
4036 
4037 /*
4038  * ::time dcmd, which will print a hires timestamp of when we entered the
4039  * debugger, or the lbolt value if used with the -l option.
4040  *
4041  */
4042 /*ARGSUSED*/
4043 static int
4044 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4045 {
4046 	uint_t opt_dec = FALSE;
4047 	uint_t opt_lbolt = FALSE;
4048 	uint_t opt_hex = FALSE;
4049 	const char *fmt;
4050 	hrtime_t result;
4051 
4052 	if (mdb_getopts(argc, argv,
4053 	    'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
4054 	    'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
4055 	    'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
4056 	    NULL) != argc)
4057 		return (DCMD_USAGE);
4058 
4059 	if (opt_dec && opt_hex)
4060 		return (DCMD_USAGE);
4061 
4062 	result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
4063 	fmt =
4064 	    opt_hex ? "0x%llx\n" :
4065 	    opt_dec ? "0t%lld\n" : "%#llr\n";
4066 
4067 	mdb_printf(fmt, result);
4068 	return (DCMD_OK);
4069 }
4070 
4071 void
4072 time_help(void)
4073 {
4074 	mdb_printf("Prints the system time in nanoseconds.\n\n"
4075 	    "::time will return the timestamp at which we dropped into, \n"
4076 	    "if called from, kmdb(1); the core dump's high resolution \n"
4077 	    "time if inspecting one; or the running hires time if we're \n"
4078 	    "looking at a live system.\n\n"
4079 	    "Switches:\n"
4080 	    "  -d   report times in decimal\n"
4081 	    "  -l   prints the number of clock ticks since system boot\n"
4082 	    "  -x   report times in hexadecimal\n");
4083 }
4084 
4085 static const mdb_dcmd_t dcmds[] = {
4086 
4087 	/* from genunix.c */
4088 	{ "as2proc", ":", "convert as to proc_t address", as2proc },
4089 	{ "binding_hash_entry", ":", "print driver names hash table entry",
4090 		binding_hash_entry },
4091 	{ "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
4092 	    " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
4093 	    " [-FivVA]",
4094 	    "display callouts", callout, callout_help },
4095 	{ "calloutid", "[-d|v] xid", "print callout by extended id",
4096 	    calloutid, calloutid_help },
4097 	{ "class", NULL, "print process scheduler classes", class },
4098 	{ "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
4099 	{ "did2thread", "? kt_did", "find kernel thread for this id",
4100 		did2thread },
4101 	{ "errorq", "?[-v]", "display kernel error queues", errorq },
4102 	{ "fd", ":[fd num]", "get a file pointer from an fd", fd },
4103 	{ "flipone", ":", "the vik_rev_level 2 special", flipone },
4104 	{ "lminfo", NULL, "print lock manager information", lminfo },
4105 	{ "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
4106 	{ "panicinfo", NULL, "print panic information", panicinfo },
4107 	{ "pid2proc", "?", "convert PID to proc_t address", pid2proc },
4108 	{ "project", NULL, "display kernel project(s)", project },
4109 	{ "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps,
4110 	    ps_help },
4111 	{ "pflags", NULL, "display various proc_t flags", pflags },
4112 	{ "pgrep", "[-x] [-n | -o] pattern",
4113 		"pattern match against all processes", pgrep },
4114 	{ "ptree", NULL, "print process tree", ptree },
4115 	{ "sysevent", "?[-sv]", "print sysevent pending or sent queue",
4116 		sysevent},
4117 	{ "sysevent_channel", "?", "print sysevent channel database",
4118 		sysevent_channel},
4119 	{ "sysevent_class_list", ":", "print sysevent class list",
4120 		sysevent_class_list},
4121 	{ "sysevent_subclass_list", ":",
4122 		"print sysevent subclass list", sysevent_subclass_list},
4123 	{ "system", NULL, "print contents of /etc/system file", sysfile },
4124 	{ "task", NULL, "display kernel task(s)", task },
4125 	{ "time", "[-dlx]", "display system time", time, time_help },
4126 	{ "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
4127 	{ "whereopen", ":", "given a vnode, dumps procs which have it open",
4128 	    whereopen },
4129 
4130 	/* from bio.c */
4131 	{ "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
4132 
4133 	/* from bitset.c */
4134 	{ "bitset", ":", "display a bitset", bitset, bitset_help },
4135 
4136 	/* from contract.c */
4137 	{ "contract", "?", "display a contract", cmd_contract },
4138 	{ "ctevent", ":", "display a contract event", cmd_ctevent },
4139 	{ "ctid", ":", "convert id to a contract pointer", cmd_ctid },
4140 
4141 	/* from cpupart.c */
4142 	{ "cpupart", "?[-v]", "print cpu partition info", cpupart },
4143 
4144 	/* from cred.c */
4145 	{ "cred", ":[-v]", "display a credential", cmd_cred },
4146 	{ "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
4147 	{ "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
4148 	{ "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },
4149 
4150 	/* from cyclic.c */
4151 	{ "cyccover", NULL, "dump cyclic coverage information", cyccover },
4152 	{ "cycid", "?", "dump a cyclic id", cycid },
4153 	{ "cycinfo", "?", "dump cyc_cpu info", cycinfo },
4154 	{ "cyclic", ":", "developer information", cyclic },
4155 	{ "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
4156 
4157 	/* from damap.c */
4158 	{ "damap", ":", "display a damap_t", damap, damap_help },
4159 
4160 	/* from ddi_periodic.c */
4161 	{ "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo },
4162 
4163 	/* from devinfo.c */
4164 	{ "devbindings", "?[-qs] [device-name | major-num]",
4165 	    "print devinfo nodes bound to device-name or major-num",
4166 	    devbindings, devinfo_help },
4167 	{ "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node",
4168 	    devinfo, devinfo_help },
4169 	{ "devinfo_audit", ":[-v]", "devinfo configuration audit record",
4170 	    devinfo_audit },
4171 	{ "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
4172 	    devinfo_audit_log },
4173 	{ "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
4174 	    devinfo_audit_node },
4175 	{ "devinfo2driver", ":", "find driver name for this devinfo node",
4176 	    devinfo2driver },
4177 	{ "devnames", "?[-vm] [num]", "print devnames array", devnames },
4178 	{ "dev2major", "?<dev_t>", "convert dev_t to a major number",
4179 	    dev2major },
4180 	{ "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
4181 	    dev2minor },
4182 	{ "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
4183 	    devt },
4184 	{ "major2name", "?<major-num>", "convert major number to dev name",
4185 	    major2name },
4186 	{ "minornodes", ":", "given a devinfo node, print its minor nodes",
4187 	    minornodes },
4188 	{ "modctl2devinfo", ":", "given a modctl, list its devinfos",
4189 	    modctl2devinfo },
4190 	{ "name2major", "<dev-name>", "convert dev name to major number",
4191 	    name2major },
4192 	{ "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree",
4193 	    prtconf, prtconf_help },
4194 	{ "softstate", ":<instance>", "retrieve soft-state pointer",
4195 	    softstate },
4196 	{ "devinfo_fm", ":", "devinfo fault managment configuration",
4197 	    devinfo_fm },
4198 	{ "devinfo_fmce", ":", "devinfo fault managment cache entry",
4199 	    devinfo_fmce},
4200 
4201 	/* from findstack.c */
4202 	{ "findstack", ":[-v]", "find kernel thread stack", findstack },
4203 	{ "findstack_debug", NULL, "toggle findstack debugging",
4204 		findstack_debug },
4205 	{ "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
4206 		"[-s sobj | -S sobj] [-t tstate | -T tstate]",
4207 		"print unique kernel thread stacks",
4208 		stacks, stacks_help },
4209 
4210 	/* from fm.c */
4211 	{ "ereport", "[-v]", "print ereports logged in dump",
4212 	    ereport },
4213 
4214 	/* from group.c */
4215 	{ "group", "?[-q]", "display a group", group},
4216 
4217 	/* from hotplug.c */
4218 	{ "hotplug", "?[-p]", "display a registered hotplug attachment",
4219 	    hotplug, hotplug_help },
4220 
4221 	/* from irm.c */
4222 	{ "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
4223 	{ "irmreqs", NULL, "display interrupt requests in an interrupt pool",
4224 	    irmreqs_dcmd },
4225 	{ "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
4226 
4227 	/* from kgrep.c + genunix.c */
4228 	{ "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
4229 		kgrep_help },
4230 
4231 	/* from kmem.c */
4232 	{ "allocdby", ":", "given a thread, print its allocated buffers",
4233 		allocdby },
4234 	{ "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
4235 		"[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
4236 	{ "freedby", ":", "given a thread, print its freed buffers", freedby },
4237 	{ "kmalog", "?[ fail | slab ]",
4238 	    "display kmem transaction log and stack traces", kmalog },
4239 	{ "kmastat", "[-kmg]", "kernel memory allocator stats",
4240 	    kmastat },
4241 	{ "kmausers", "?[-ef] [cache ...]", "current medium and large users "
4242 		"of the kmem allocator", kmausers, kmausers_help },
4243 	{ "kmem_cache", "?[-n name]",
4244 		"print kernel memory caches", kmem_cache, kmem_cache_help},
4245 	{ "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4246 		"[-B minbinsize]", "display slab usage per kmem cache",
4247 		kmem_slabs, kmem_slabs_help },
4248 	{ "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4249 	{ "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4250 	{ "kmem_verify", "?", "check integrity of kmem-managed memory",
4251 		kmem_verify },
4252 	{ "vmem", "?", "print a vmem_t", vmem },
4253 	{ "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4254 		"[-m minsize] [-M maxsize] [-t thread] [-T type]",
4255 		"print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4256 	{ "whatthread", ":[-v]", "print threads whose stack contains the "
4257 		"given address", whatthread },
4258 
4259 	/* from ldi.c */
4260 	{ "ldi_handle", "?[-i]", "display a layered driver handle",
4261 	    ldi_handle, ldi_handle_help },
4262 	{ "ldi_ident", NULL, "display a layered driver identifier",
4263 	    ldi_ident, ldi_ident_help },
4264 
4265 	/* from leaky.c + leaky_subr.c */
4266 	{ "findleaks", FINDLEAKS_USAGE,
4267 	    "search for potential kernel memory leaks", findleaks,
4268 	    findleaks_help },
4269 
4270 	/* from lgrp.c */
4271 	{ "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4272 	{ "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4273 
4274 	/* from log.c */
4275 	{ "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
4276 
4277 	/* from mdi.c */
4278 	{ "mdipi", NULL, "given a path, dump mdi_pathinfo "
4279 		"and detailed pi_prop list", mdipi },
4280 	{ "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4281 		mdiprops },
4282 	{ "mdiphci", NULL, "given a phci, dump mdi_phci and "
4283 		"list all paths", mdiphci },
4284 	{ "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4285 		"all phcis", mdivhci },
4286 	{ "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4287 		"client links", mdiclient_paths },
4288 	{ "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4289 		"phci links", mdiphci_paths },
4290 	{ "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4291 		mdiphcis },
4292 
4293 	/* from memory.c */
4294 	{ "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4295 	{ "memlist", "?[-iav]", "display a struct memlist", memlist },
4296 	{ "memstat", NULL, "display memory usage summary", memstat },
4297 	{ "page", "?", "display a summarized page_t", page },
4298 	{ "pagelookup", "?[-v vp] [-o offset]",
4299 		"find the page_t with the name {vp, offset}",
4300 		pagelookup, pagelookup_help },
4301 	{ "page_num2pp", ":", "find the page_t for a given page frame number",
4302 		page_num2pp },
4303 	{ "pmap", ":[-q]", "print process memory map", pmap },
4304 	{ "seg", ":", "print address space segment", seg },
4305 	{ "swapinfo", "?", "display a struct swapinfo", swapinfof },
4306 	{ "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4307 
4308 	/* from mmd.c */
4309 	{ "multidata", ":[-sv]", "display a summarized multidata_t",
4310 		multidata },
4311 	{ "pattbl", ":", "display a summarized multidata attribute table",
4312 		pattbl },
4313 	{ "pattr2multidata", ":", "print multidata pointer from pattr_t",
4314 		pattr2multidata },
4315 	{ "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4316 		pdesc2slab },
4317 	{ "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4318 	{ "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4319 		slab2multidata },
4320 
4321 	/* from modhash.c */
4322 	{ "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4323 		"display information about one or all mod_hash structures",
4324 		modhash, modhash_help },
4325 	{ "modent", ":[-k | -v | -t type]",
4326 		"display information about a mod_hash_entry", modent,
4327 		modent_help },
4328 
4329 	/* from net.c */
4330 	{ "dladm", "?<sub-command> [flags]", "show data link information",
4331 		dladm, dladm_help },
4332 	{ "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4333 		mi },
4334 	{ "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4335 		"show network statistics", netstat },
4336 	{ "sonode", "?[-f inet | inet6 | unix | #] "
4337 		"[-t stream | dgram | raw | #] [-p #]",
4338 		"filter and display sonode", sonode },
4339 
4340 	/* from netstack.c */
4341 	{ "netstack", "", "show stack instances", netstack },
4342 	{ "netstackid2netstack", ":",
4343 		"translate a netstack id to its netstack_t",
4344 		netstackid2netstack },
4345 
4346 	/* from nvpair.c */
4347 	{ NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4348 		nvpair_print },
4349 	{ NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4350 		print_nvlist },
4351 
4352 	/* from pg.c */
4353 	{ "pg", "?[-q]", "display a pg", pg},
4354 
4355 	/* from rctl.c */
4356 	{ "rctl_dict", "?", "print systemwide default rctl definitions",
4357 		rctl_dict },
4358 	{ "rctl_list", ":[handle]", "print rctls for the given proc",
4359 		rctl_list },
4360 	{ "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4361 		rctl },
4362 	{ "rctl_validate", ":[-v] [-n #]", "test resource control value "
4363 		"sequence", rctl_validate },
4364 
4365 	/* from sobj.c */
4366 	{ "rwlock", ":", "dump out a readers/writer lock", rwlock },
4367 	{ "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4368 		mutex_help },
4369 	{ "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4370 	{ "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4371 	{ "turnstile", "?", "display a turnstile", turnstile },
4372 
4373 	/* from stream.c */
4374 	{ "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4375 		"print an mblk", mblk_prt, mblk_help },
4376 	{ "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4377 	{ "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4378 		mblk2dblk },
4379 	{ "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4380 	{ "q2rdq", ":", "print read queue for a given queue", q2rdq },
4381 	{ "q2syncq", ":", "print syncq for a given queue", q2syncq },
4382 	{ "q2stream", ":", "print stream pointer for a given queue", q2stream },
4383 	{ "q2wrq", ":", "print write queue for a given queue", q2wrq },
4384 	{ "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4385 		"filter and display STREAM queue", queue, queue_help },
4386 	{ "stdata", ":[-q|v] [-f flag] [-F flag]",
4387 		"filter and display STREAM head", stdata, stdata_help },
4388 	{ "str2mate", ":", "print mate of this stream", str2mate },
4389 	{ "str2wrq", ":", "print write queue of this stream", str2wrq },
4390 	{ "stream", ":", "display STREAM", stream },
4391 	{ "strftevent", ":", "print STREAMS flow trace event", strftevent },
4392 	{ "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4393 		"filter and display STREAM sync queue", syncq, syncq_help },
4394 	{ "syncq2q", ":", "print queue for a given syncq", syncq2q },
4395 
4396 	/* from taskq.c */
4397 	{ "taskq", ":[-atT] [-m min_maxq] [-n name]",
4398 	    "display a taskq", taskq, taskq_help },
4399 	{ "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4400 
4401 	/* from thread.c */
4402 	{ "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4403 		thread_help },
4404 	{ "threadlist", "?[-t] [-v [count]]",
4405 		"display threads and associated C stack traces", threadlist,
4406 		threadlist_help },
4407 	{ "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4408 		stackinfo_help },
4409 
4410 	/* from tsd.c */
4411 	{ "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4412 	{ "tsdtot", ":", "find thread with this tsd", tsdtot },
4413 
4414 	/*
4415 	 * typegraph does not work under kmdb, as it requires too much memory
4416 	 * for its internal data structures.
4417 	 */
4418 #ifndef _KMDB
4419 	/* from typegraph.c */
4420 	{ "findlocks", ":", "find locks held by specified thread", findlocks },
4421 	{ "findfalse", "?[-v]", "find potentially falsely shared structures",
4422 		findfalse },
4423 	{ "typegraph", NULL, "build type graph", typegraph },
4424 	{ "istype", ":type", "manually set object type", istype },
4425 	{ "notype", ":", "manually clear object type", notype },
4426 	{ "whattype", ":", "determine object type", whattype },
4427 #endif
4428 
4429 	/* from vfs.c */
4430 	{ "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4431 	{ "pfiles", ":[-fp]", "print process file information", pfiles,
4432 		pfiles_help },
4433 
4434 	/* from zone.c */
4435 	{ "zid2zone", ":", "find the zone_t with the given zone id",
4436 		zid2zone },
4437 	{ "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4438 	{ "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4439 	    "selected zones", zsd },
4440 
4441 #ifndef _KMDB
4442 	{ "gcore", NULL, "generate a user core for the given process",
4443 	    gcore_dcmd },
4444 #endif
4445 
4446 	{ NULL }
4447 };
4448 
4449 static const mdb_walker_t walkers[] = {
4450 
4451 	/* from genunix.c */
4452 	{ "callouts_bytime", "walk callouts by list chain (expiration time)",
4453 		callout_walk_init, callout_walk_step, callout_walk_fini,
4454 		(void *)CALLOUT_WALK_BYLIST },
4455 	{ "callouts_byid", "walk callouts by id hash chain",
4456 		callout_walk_init, callout_walk_step, callout_walk_fini,
4457 		(void *)CALLOUT_WALK_BYID },
4458 	{ "callout_list", "walk a callout list", callout_list_walk_init,
4459 		callout_list_walk_step, callout_list_walk_fini },
4460 	{ "callout_table", "walk callout table array", callout_table_walk_init,
4461 		callout_table_walk_step, callout_table_walk_fini },
4462 	{ "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4463 	{ "dnlc", "walk dnlc entries",
4464 		dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini },
4465 	{ "ereportq_dump", "walk list of ereports in dump error queue",
4466 		ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4467 	{ "ereportq_pend", "walk list of ereports in pending error queue",
4468 		ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4469 	{ "errorq", "walk list of system error queues",
4470 		errorq_walk_init, errorq_walk_step, NULL },
4471 	{ "errorq_data", "walk pending error queue data buffers",
4472 		eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4473 	{ "allfile", "given a proc pointer, list all file pointers",
4474 		file_walk_init, allfile_walk_step, file_walk_fini },
4475 	{ "file", "given a proc pointer, list of open file pointers",
4476 		file_walk_init, file_walk_step, file_walk_fini },
4477 	{ "lock_descriptor", "walk lock_descriptor_t structures",
4478 		ld_walk_init, ld_walk_step, NULL },
4479 	{ "lock_graph", "walk lock graph",
4480 		lg_walk_init, lg_walk_step, NULL },
4481 	{ "port", "given a proc pointer, list of created event ports",
4482 		port_walk_init, port_walk_step, NULL },
4483 	{ "portev", "given a port pointer, list of events in the queue",
4484 		portev_walk_init, portev_walk_step, portev_walk_fini },
4485 	{ "proc", "list of active proc_t structures",
4486 		proc_walk_init, proc_walk_step, proc_walk_fini },
4487 	{ "projects", "walk a list of kernel projects",
4488 		project_walk_init, project_walk_step, NULL },
4489 	{ "sysevent_pend", "walk sysevent pending queue",
4490 		sysevent_pend_walk_init, sysevent_walk_step,
4491 		sysevent_walk_fini},
4492 	{ "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4493 		sysevent_walk_step, sysevent_walk_fini},
4494 	{ "sysevent_channel", "walk sysevent channel subscriptions",
4495 		sysevent_channel_walk_init, sysevent_channel_walk_step,
4496 		sysevent_channel_walk_fini},
4497 	{ "sysevent_class_list", "walk sysevent subscription's class list",
4498 		sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4499 		sysevent_class_list_walk_fini},
4500 	{ "sysevent_subclass_list",
4501 		"walk sysevent subscription's subclass list",
4502 		sysevent_subclass_list_walk_init,
4503 		sysevent_subclass_list_walk_step,
4504 		sysevent_subclass_list_walk_fini},
4505 	{ "task", "given a task pointer, walk its processes",
4506 		task_walk_init, task_walk_step, NULL },
4507 
4508 	/* from avl.c */
4509 	{ AVL_WALK_NAME, AVL_WALK_DESC,
4510 		avl_walk_init, avl_walk_step, avl_walk_fini },
4511 
4512 	/* from bio.c */
4513 	{ "buf", "walk the bio buf hash",
4514 		buf_walk_init, buf_walk_step, buf_walk_fini },
4515 
4516 	/* from contract.c */
4517 	{ "contract", "walk all contracts, or those of the specified type",
4518 		ct_walk_init, generic_walk_step, NULL },
4519 	{ "ct_event", "walk events on a contract event queue",
4520 		ct_event_walk_init, generic_walk_step, NULL },
4521 	{ "ct_listener", "walk contract event queue listeners",
4522 		ct_listener_walk_init, generic_walk_step, NULL },
4523 
4524 	/* from cpupart.c */
4525 	{ "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4526 		cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4527 		NULL },
4528 	{ "cpupart_walk", "walk the set of cpu partitions",
4529 		cpupart_walk_init, cpupart_walk_step, NULL },
4530 
4531 	/* from ctxop.c */
4532 	{ "ctxop", "walk list of context ops on a thread",
4533 		ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4534 
4535 	/* from cyclic.c */
4536 	{ "cyccpu", "walk per-CPU cyc_cpu structures",
4537 		cyccpu_walk_init, cyccpu_walk_step, NULL },
4538 	{ "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4539 		cycomni_walk_init, cycomni_walk_step, NULL },
4540 	{ "cyctrace", "walk cyclic trace buffer",
4541 		cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4542 
4543 	/* from devinfo.c */
4544 	{ "binding_hash", "walk all entries in binding hash table",
4545 		binding_hash_walk_init, binding_hash_walk_step, NULL },
4546 	{ "devinfo", "walk devinfo tree or subtree",
4547 		devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4548 	{ "devinfo_audit_log", "walk devinfo audit system-wide log",
4549 		devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4550 		devinfo_audit_log_walk_fini},
4551 	{ "devinfo_audit_node", "walk per-devinfo audit history",
4552 		devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4553 		devinfo_audit_node_walk_fini},
4554 	{ "devinfo_children", "walk children of devinfo node",
4555 		devinfo_children_walk_init, devinfo_children_walk_step,
4556 		devinfo_children_walk_fini },
4557 	{ "devinfo_parents", "walk ancestors of devinfo node",
4558 		devinfo_parents_walk_init, devinfo_parents_walk_step,
4559 		devinfo_parents_walk_fini },
4560 	{ "devinfo_siblings", "walk siblings of devinfo node",
4561 		devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4562 	{ "devi_next", "walk devinfo list",
4563 		NULL, devi_next_walk_step, NULL },
4564 	{ "devnames", "walk devnames array",
4565 		devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4566 	{ "minornode", "given a devinfo node, walk minor nodes",
4567 		minornode_walk_init, minornode_walk_step, NULL },
4568 	{ "softstate",
4569 		"given an i_ddi_soft_state*, list all in-use driver stateps",
4570 		soft_state_walk_init, soft_state_walk_step,
4571 		NULL, NULL },
4572 	{ "softstate_all",
4573 		"given an i_ddi_soft_state*, list all driver stateps",
4574 		soft_state_walk_init, soft_state_all_walk_step,
4575 		NULL, NULL },
4576 	{ "devinfo_fmc",
4577 		"walk a fault management handle cache active list",
4578 		devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4579 
4580 	/* from group.c */
4581 	{ "group", "walk all elements of a group",
4582 		group_walk_init, group_walk_step, NULL },
4583 
4584 	/* from irm.c */
4585 	{ "irmpools", "walk global list of interrupt pools",
4586 	    irmpools_walk_init, list_walk_step, list_walk_fini },
4587 	{ "irmreqs", "walk list of interrupt requests in an interrupt pool",
4588 	    irmreqs_walk_init, list_walk_step, list_walk_fini },
4589 
4590 	/* from kmem.c */
4591 	{ "allocdby", "given a thread, walk its allocated bufctls",
4592 		allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4593 	{ "bufctl", "walk a kmem cache's bufctls",
4594 		bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4595 	{ "bufctl_history", "walk the available history of a bufctl",
4596 		bufctl_history_walk_init, bufctl_history_walk_step,
4597 		bufctl_history_walk_fini },
4598 	{ "freedby", "given a thread, walk its freed bufctls",
4599 		freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4600 	{ "freectl", "walk a kmem cache's free bufctls",
4601 		freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4602 	{ "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4603 		freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4604 	{ "freemem", "walk a kmem cache's free memory",
4605 		freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4606 	{ "freemem_constructed", "walk a kmem cache's constructed free memory",
4607 		freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4608 	{ "kmem", "walk a kmem cache",
4609 		kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4610 	{ "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4611 		kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4612 	{ "kmem_hash", "given a kmem cache, walk its allocated hash table",
4613 		kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4614 	{ "kmem_log", "walk the kmem transaction log",
4615 		kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4616 	{ "kmem_slab", "given a kmem cache, walk its slabs",
4617 		kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4618 	{ "kmem_slab_partial",
4619 	    "given a kmem cache, walk its partially allocated slabs (min 1)",
4620 		kmem_slab_walk_partial_init, combined_walk_step,
4621 		combined_walk_fini },
4622 	{ "vmem", "walk vmem structures in pre-fix, depth-first order",
4623 		vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4624 	{ "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4625 		vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4626 	{ "vmem_free", "given a vmem_t, walk its free vmem_segs",
4627 		vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4628 	{ "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4629 		vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4630 	{ "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4631 		vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4632 	{ "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4633 		vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4634 
4635 	/* from ldi.c */
4636 	{ "ldi_handle", "walk the layered driver handle hash",
4637 		ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4638 	{ "ldi_ident", "walk the layered driver identifier hash",
4639 		ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4640 
4641 	/* from leaky.c + leaky_subr.c */
4642 	{ "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4643 	    "stack trace",
4644 		leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4645 	{ "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4646 	    "leaks w/ same stack trace",
4647 		leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4648 
4649 	/* from lgrp.c */
4650 	{ "lgrp_cpulist", "walk CPUs in a given lgroup",
4651 		lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4652 	{ "lgrptbl", "walk lgroup table",
4653 		lgrp_walk_init, lgrp_walk_step, NULL },
4654 	{ "lgrp_parents", "walk up lgroup lineage from given lgroup",
4655 		lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4656 	{ "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4657 		lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4658 	{ "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4659 		lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4660 
4661 	/* from list.c */
4662 	{ LIST_WALK_NAME, LIST_WALK_DESC,
4663 		list_walk_init, list_walk_step, list_walk_fini },
4664 
4665 	/* from mdi.c */
4666 	{ "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4667 		mdi_pi_client_link_walk_init,
4668 		mdi_pi_client_link_walk_step,
4669 		mdi_pi_client_link_walk_fini },
4670 	{ "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4671 		mdi_pi_phci_link_walk_init,
4672 		mdi_pi_phci_link_walk_step,
4673 		mdi_pi_phci_link_walk_fini },
4674 	{ "mdiphci_list", "Walker for mdi_phci ph_next link",
4675 		mdi_phci_ph_next_walk_init,
4676 		mdi_phci_ph_next_walk_step,
4677 		mdi_phci_ph_next_walk_fini },
4678 
4679 	/* from memory.c */
4680 	{ "allpages", "walk all pages, including free pages",
4681 		allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4682 	{ "anon", "given an amp, list allocated anon structures",
4683 		anon_walk_init, anon_walk_step, anon_walk_fini,
4684 		ANON_WALK_ALLOC },
4685 	{ "anon_all", "given an amp, list contents of all anon slots",
4686 		anon_walk_init, anon_walk_step, anon_walk_fini,
4687 		ANON_WALK_ALL },
4688 	{ "memlist", "walk specified memlist",
4689 		NULL, memlist_walk_step, NULL },
4690 	{ "page", "walk all pages, or those from the specified vnode",
4691 		page_walk_init, page_walk_step, page_walk_fini },
4692 	{ "seg", "given an as, list of segments",
4693 		seg_walk_init, avl_walk_step, avl_walk_fini },
4694 	{ "segvn_anon",
4695 		"given a struct segvn_data, list allocated anon structures",
4696 		segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4697 		ANON_WALK_ALLOC },
4698 	{ "segvn_anon_all",
4699 		"given a struct segvn_data, list contents of all anon slots",
4700 		segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4701 		ANON_WALK_ALL },
4702 	{ "segvn_pages",
4703 		"given a struct segvn_data, list resident pages in "
4704 		"offset order",
4705 		segvn_pages_walk_init, segvn_pages_walk_step,
4706 		segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4707 	{ "segvn_pages_all",
4708 		"for each offset in a struct segvn_data, give page_t pointer "
4709 		"(if resident), or NULL.",
4710 		segvn_pages_walk_init, segvn_pages_walk_step,
4711 		segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4712 	{ "swapinfo", "walk swapinfo structures",
4713 		swap_walk_init, swap_walk_step, NULL },
4714 
4715 	/* from mmd.c */
4716 	{ "pattr", "walk pattr_t structures", pattr_walk_init,
4717 		mmdq_walk_step, mmdq_walk_fini },
4718 	{ "pdesc", "walk pdesc_t structures",
4719 		pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4720 	{ "pdesc_slab", "walk pdesc_slab_t structures",
4721 		pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4722 
4723 	/* from modhash.c */
4724 	{ "modhash", "walk list of mod_hash structures", modhash_walk_init,
4725 		modhash_walk_step, NULL },
4726 	{ "modent", "walk list of entries in a given mod_hash",
4727 		modent_walk_init, modent_walk_step, modent_walk_fini },
4728 	{ "modchain", "walk list of entries in a given mod_hash_entry",
4729 		NULL, modchain_walk_step, NULL },
4730 
4731 	/* from net.c */
4732 	{ "icmp", "walk ICMP control structures using MI for all stacks",
4733 		mi_payload_walk_init, mi_payload_walk_step, NULL,
4734 		&mi_icmp_arg },
4735 	{ "mi", "given a MI_O, walk the MI",
4736 		mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4737 	{ "sonode", "given a sonode, walk its children",
4738 		sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4739 	{ "icmp_stacks", "walk all the icmp_stack_t",
4740 		icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4741 	{ "tcp_stacks", "walk all the tcp_stack_t",
4742 		tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4743 	{ "udp_stacks", "walk all the udp_stack_t",
4744 		udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4745 
4746 	/* from netstack.c */
4747 	{ "netstack", "walk a list of kernel netstacks",
4748 		netstack_walk_init, netstack_walk_step, NULL },
4749 
4750 	/* from nvpair.c */
4751 	{ NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4752 		nvpair_walk_init, nvpair_walk_step, NULL },
4753 
4754 	/* from pci.c */
4755 	{ "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init,
4756 		pcie_bus_walk_step, NULL },
4757 
4758 	/* from rctl.c */
4759 	{ "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4760 		rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4761 	{ "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4762 		rctl_set_walk_step, NULL },
4763 	{ "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4764 		rctl_val_walk_init, rctl_val_walk_step },
4765 
4766 	/* from sobj.c */
4767 	{ "blocked", "walk threads blocked on a given sobj",
4768 		blocked_walk_init, blocked_walk_step, NULL },
4769 	{ "wchan", "given a wchan, list of blocked threads",
4770 		wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4771 
4772 	/* from stream.c */
4773 	{ "b_cont", "walk mblk_t list using b_cont",
4774 		mblk_walk_init, b_cont_step, mblk_walk_fini },
4775 	{ "b_next", "walk mblk_t list using b_next",
4776 		mblk_walk_init, b_next_step, mblk_walk_fini },
4777 	{ "qlink", "walk queue_t list using q_link",
4778 		queue_walk_init, queue_link_step, queue_walk_fini },
4779 	{ "qnext", "walk queue_t list using q_next",
4780 		queue_walk_init, queue_next_step, queue_walk_fini },
4781 	{ "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4782 		strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4783 	{ "readq", "walk read queue side of stdata",
4784 		str_walk_init, strr_walk_step, str_walk_fini },
4785 	{ "writeq", "walk write queue side of stdata",
4786 		str_walk_init, strw_walk_step, str_walk_fini },
4787 
4788 	/* from taskq.c */
4789 	{ "taskq_thread", "given a taskq_t, list all of its threads",
4790 		taskq_thread_walk_init,
4791 		taskq_thread_walk_step,
4792 		taskq_thread_walk_fini },
4793 	{ "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4794 		taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4795 
4796 	/* from thread.c */
4797 	{ "deathrow", "walk threads on both lwp_ and thread_deathrow",
4798 		deathrow_walk_init, deathrow_walk_step, NULL },
4799 	{ "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4800 		cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4801 	{ "cpupart_dispq",
4802 		"given a cpupart_t, walk threads in dispatcher queues",
4803 		cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4804 	{ "lwp_deathrow", "walk lwp_deathrow",
4805 		lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4806 	{ "thread", "global or per-process kthread_t structures",
4807 		thread_walk_init, thread_walk_step, thread_walk_fini },
4808 	{ "thread_deathrow", "walk threads on thread_deathrow",
4809 		thread_deathrow_walk_init, deathrow_walk_step, NULL },
4810 
4811 	/* from tsd.c */
4812 	{ "tsd", "walk list of thread-specific data",
4813 		tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4814 
4815 	/* from tsol.c */
4816 	{ "tnrh", "walk remote host cache structures",
4817 	    tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4818 	{ "tnrhtp", "walk remote host template structures",
4819 	    tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4820 
4821 	/*
4822 	 * typegraph does not work under kmdb, as it requires too much memory
4823 	 * for its internal data structures.
4824 	 */
4825 #ifndef _KMDB
4826 	/* from typegraph.c */
4827 	{ "typeconflict", "walk buffers with conflicting type inferences",
4828 		typegraph_walk_init, typeconflict_walk_step },
4829 	{ "typeunknown", "walk buffers with unknown types",
4830 		typegraph_walk_init, typeunknown_walk_step },
4831 #endif
4832 
4833 	/* from vfs.c */
4834 	{ "vfs", "walk file system list",
4835 		vfs_walk_init, vfs_walk_step },
4836 
4837 	/* from zone.c */
4838 	{ "zone", "walk a list of kernel zones",
4839 		zone_walk_init, zone_walk_step, NULL },
4840 	{ "zsd", "walk list of zsd entries for a zone",
4841 		zsd_walk_init, zsd_walk_step, NULL },
4842 
4843 	{ NULL }
4844 };
4845 
4846 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4847 
4848 /*ARGSUSED*/
4849 static void
4850 genunix_statechange_cb(void *ignored)
4851 {
4852 	/*
4853 	 * Force ::findleaks and ::stacks to let go any cached state.
4854 	 */
4855 	leaky_cleanup(1);
4856 	stacks_cleanup(1);
4857 
4858 	kmem_statechange();	/* notify kmem */
4859 }
4860 
4861 const mdb_modinfo_t *
4862 _mdb_init(void)
4863 {
4864 	kmem_init();
4865 
4866 	(void) mdb_callback_add(MDB_CALLBACK_STCHG,
4867 	    genunix_statechange_cb, NULL);
4868 
4869 #ifndef _KMDB
4870 	gcore_init();
4871 #endif
4872 
4873 	return (&modinfo);
4874 }
4875 
4876 void
4877 _mdb_fini(void)
4878 {
4879 	leaky_cleanup(1);
4880 	stacks_cleanup(1);
4881 }
4882