xref: /illumos-gate/usr/src/cmd/mdb/common/mdb/mdb_target.c (revision 7e16fca05dfbcfd32c2ebc9e4d1abdac1cd8657c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * MDB Target Layer
28  *
29  * The *target* is the program being inspected by the debugger.  The MDB target
30  * layer provides a set of functions that insulate common debugger code,
31  * including the MDB Module API, from the implementation details of how the
32  * debugger accesses information from a given target.  Each target exports a
33  * standard set of properties, including one or more address  spaces, one or
34  * more symbol tables, a set of load objects, and a set of threads that can be
35  * examined using the interfaces in <mdb/mdb_target.h>.  This technique has
36  * been employed successfully in other debuggers, including [1], primarily
37  * to improve portability, although the term "target" often refers to the
38  * encapsulation of architectural or operating system-specific details.  The
39  * target abstraction is useful for MDB because it allows us to easily extend
40  * the debugger to examine a variety of different program forms.  Primarily,
41  * the target functions validate input arguments and then call an appropriate
42  * function in the target ops vector, defined in <mdb/mdb_target_impl.h>.
43  * However, this interface layer provides a very high level of flexibility for
44  * separating the debugger interface from instrumentation details.  Experience
45  * has shown this kind of design can facilitate separating out debugger
46  * instrumentation into an external agent [2] and enable the development of
47  * advanced instrumentation frameworks [3].  We want MDB to be an ideal
48  * extensible framework for the development of such applications.
49  *
50  * Aside from a set of wrapper functions, the target layer also provides event
51  * management for targets that represent live executing programs.  Our model of
52  * events is also extensible, and is based upon work in [3] and [4].  We define
53  * a *software event* as a state transition in the target program (for example,
54  * the transition of the program counter to a location of interest) that is
55  * observed by the debugger or its agent.  A *software event specifier* is a
56  * description of a class of software events that is used by the debugger to
57  * instrument the target so that the corresponding software events can be
58  * observed.  In MDB, software event specifiers are represented by the
59  * mdb_sespec_t structure, defined in <mdb/mdb_target_impl.h>.  As the user,
60  * the internal debugger code, and MDB modules may all wish to observe software
61  * events and receive appropriate notification and callbacks, we do not expose
62  * software event specifiers directly as part of the user interface.  Instead,
63  * clients of the target layer request that events be observed by creating
64  * new *virtual event specifiers*.  Each virtual specifier is named by a unique
65  * non-zero integer (the VID), and is represented by a mdb_vespec_t structure.
66  * One or more virtual specifiers are then associated with each underlying
67  * software event specifier.  This design enforces the constraint that the
68  * target must only insert one set of instrumentation, regardless of how many
69  * times the target layer was asked to trace a given event.  For example, if
70  * multiple clients request a breakpoint at a particular address, the virtual
71  * specifiers will map to the same sespec, ensuring that only one breakpoint
72  * trap instruction is actually planted at the given target address.  When no
73  * virtual specifiers refer to an sespec, it is no longer needed and can be
74  * removed, along with the corresponding instrumentation.
75  *
76  * The following state transition diagram illustrates the life cycle of a
77  * software event specifier and example transitions:
78  *
79  *                                         cont/
80  *     +--------+   delete   +--------+    stop    +-------+
81  *    (|( DEAD )|) <------- (  ACTIVE  ) <------> (  ARMED  )
82  *     +--------+            +--------+            +-------+
83  *          ^   load/unload  ^        ^   failure/     |
84  *   delete |        object /          \  reset        | failure
85  *          |              v            v              |
86  *          |      +--------+          +-------+       |
87  *          +---- (   IDLE   )        (   ERR   ) <----+
88  *          |      +--------+          +-------+
89  *          |                              |
90  *          +------------------------------+
91  *
92  * The MDB execution control model is based upon the synchronous debugging
93  * model exported by Solaris proc(4).  A target program is set running or the
94  * debugger is attached to a running target.  On ISTOP (stop on event of
95  * interest), one target thread is selected as the representative.  The
96  * algorithm for selecting the representative is target-specific, but we assume
97  * that if an observed software event has occurred, the target will select the
98  * thread that triggered the state transition of interest.  The other threads
99  * are stopped in sympathy with the representative as soon as possible.  Prior
100  * to continuing the target, we plant our instrumentation, transitioning event
101  * specifiers from the ACTIVE to the ARMED state, and then back again when the
102  * target stops.  We then query each active event specifier to learn which ones
103  * are matched, and then invoke the callbacks associated with their vespecs.
104  * If an OS error occurs while attempting to arm or disarm a specifier, the
105  * specifier is transitioned to the ERROR state; we will attempt to arm it
106  * again at the next continue.  If no target process is under our control or
107  * if an event is not currently applicable (e.g. a deferred breakpoint on an
108  * object that is not yet loaded), it remains in the IDLE state.  The target
109  * implementation should intercept object load events and then transition the
110  * specifier to the ACTIVE state when the corresponding object is loaded.
111  *
112  * To simplify the debugger implementation and allow targets to easily provide
113  * new types of observable events, most of the event specifier management is
114  * done by the target layer.  Each software event specifier provides an ops
115  * vector of subroutines that the target layer can call to perform the
116  * various state transitions described above.  The target maintains two lists
117  * of mdb_sespec_t's: the t_idle list (IDLE state) and the t_active list
118  * (ACTIVE, ARMED, and ERROR states).  Each mdb_sespec_t maintains a list of
119  * associated mdb_vespec_t's.  If an sespec is IDLE or ERROR, its se_errno
120  * field will have an errno value specifying the reason for its inactivity.
121  * The vespec stores the client's callback function and private data, and the
122  * arguments used to construct the sespec.  All objects are reference counted
123  * so we can destroy an object when it is no longer needed.  The mdb_sespec_t
124  * invariants for the respective states are as follows:
125  *
126  *   IDLE: on t_idle list, se_data == NULL, se_errno != 0, se_ctor not called
127  * ACTIVE: on t_active list, se_data valid, se_errno == 0, se_ctor called
128  *  ARMED: on t_active list, se_data valid, se_errno == 0, se_ctor called
129  *  ERROR: on t_active list, se_data valid, se_errno != 0, se_ctor called
130  *
131  * Additional commentary on specific state transitions and issues involving
132  * event management can be found below near the target layer functions.
133  *
134  * References
135  *
136  * [1] John Gilmore, "Working in GDB", Technical Report, Cygnus Support,
137  *     1.84 edition, 1994.
138  *
139  * [2] David R. Hanson and Mukund Raghavachari, "A Machine-Independent
140  *     Debugger", Software--Practice and Experience, 26(11), 1277-1299(1996).
141  *
142  * [3] Michael W. Shapiro, "RDB: A System for Incremental Replay Debugging",
143  *     Technical Report CS-97-12, Department of Computer Science,
144  *     Brown University.
145  *
146  * [4] Daniel B. Price, "New Techniques for Replay Debugging", Technical
147  *     Report CS-98-05, Department of Computer Science, Brown University.
148  */
149 
150 #include <mdb/mdb_target_impl.h>
151 #include <mdb/mdb_debug.h>
152 #include <mdb/mdb_modapi.h>
153 #include <mdb/mdb_err.h>
154 #include <mdb/mdb_callb.h>
155 #include <mdb/mdb_gelf.h>
156 #include <mdb/mdb_io_impl.h>
157 #include <mdb/mdb_string.h>
158 #include <mdb/mdb_signal.h>
159 #include <mdb/mdb_frame.h>
160 #include <mdb/mdb.h>
161 
162 #include <sys/stat.h>
163 #include <sys/param.h>
164 #include <sys/signal.h>
165 #include <strings.h>
166 #include <stdlib.h>
167 #include <errno.h>
168 
169 /*
170  * Define convenience macros for referencing the set of vespec flag bits that
171  * are preserved by the target implementation, and the set of bits that
172  * determine automatic ve_hits == ve_limit behavior.
173  */
174 #define	T_IMPL_BITS	\
175 	(MDB_TGT_SPEC_INTERNAL | MDB_TGT_SPEC_SILENT | MDB_TGT_SPEC_MATCHED | \
176 	MDB_TGT_SPEC_DELETED)
177 
178 #define	T_AUTO_BITS	\
179 	(MDB_TGT_SPEC_AUTOSTOP | MDB_TGT_SPEC_AUTODEL | MDB_TGT_SPEC_AUTODIS)
180 
181 /*
182  * Define convenience macro for referencing target flag pending continue bits.
183  */
184 #define	T_CONT_BITS	\
185 	(MDB_TGT_F_STEP | MDB_TGT_F_STEP_OUT | MDB_TGT_F_STEP_BRANCH | \
186 	MDB_TGT_F_NEXT | MDB_TGT_F_CONT)
187 
188 mdb_tgt_t *
189 mdb_tgt_create(mdb_tgt_ctor_f *ctor, int flags, int argc, const char *argv[])
190 {
191 	mdb_module_t *mp;
192 	mdb_tgt_t *t;
193 
194 	if (flags & ~MDB_TGT_F_ALL) {
195 		(void) set_errno(EINVAL);
196 		return (NULL);
197 	}
198 
199 	t = mdb_zalloc(sizeof (mdb_tgt_t), UM_SLEEP);
200 	mdb_list_append(&mdb.m_tgtlist, t);
201 
202 	t->t_module = &mdb.m_rmod;
203 	t->t_matched = T_SE_END;
204 	t->t_flags = flags;
205 	t->t_vepos = 1;
206 	t->t_veneg = 1;
207 
208 	for (mp = mdb.m_mhead; mp != NULL; mp = mp->mod_next) {
209 		if (ctor == mp->mod_tgt_ctor) {
210 			t->t_module = mp;
211 			break;
212 		}
213 	}
214 
215 	if (ctor(t, argc, argv) != 0) {
216 		mdb_list_delete(&mdb.m_tgtlist, t);
217 		mdb_free(t, sizeof (mdb_tgt_t));
218 		return (NULL);
219 	}
220 
221 	mdb_dprintf(MDB_DBG_TGT, "t_create %s (%p)\n",
222 	    t->t_module->mod_name, (void *)t);
223 
224 	(void) t->t_ops->t_status(t, &t->t_status);
225 	return (t);
226 }
227 
228 int
229 mdb_tgt_getflags(mdb_tgt_t *t)
230 {
231 	return (t->t_flags);
232 }
233 
234 int
235 mdb_tgt_setflags(mdb_tgt_t *t, int flags)
236 {
237 	if (flags & ~MDB_TGT_F_ALL)
238 		return (set_errno(EINVAL));
239 
240 	return (t->t_ops->t_setflags(t, flags));
241 }
242 
243 int
244 mdb_tgt_setcontext(mdb_tgt_t *t, void *context)
245 {
246 	return (t->t_ops->t_setcontext(t, context));
247 }
248 
249 /*ARGSUSED*/
250 static int
251 tgt_delete_vespec(mdb_tgt_t *t, void *private, int vid, void *data)
252 {
253 	(void) mdb_tgt_vespec_delete(t, vid);
254 	return (0);
255 }
256 
257 void
258 mdb_tgt_destroy(mdb_tgt_t *t)
259 {
260 	mdb_xdata_t *xdp, *nxdp;
261 
262 	if (mdb.m_target == t) {
263 		mdb_dprintf(MDB_DBG_TGT, "t_deactivate %s (%p)\n",
264 		    t->t_module->mod_name, (void *)t);
265 		t->t_ops->t_deactivate(t);
266 		mdb.m_target = NULL;
267 	}
268 
269 	mdb_dprintf(MDB_DBG_TGT, "t_destroy %s (%p)\n",
270 	    t->t_module->mod_name, (void *)t);
271 
272 	for (xdp = mdb_list_next(&t->t_xdlist); xdp != NULL; xdp = nxdp) {
273 		nxdp = mdb_list_next(xdp);
274 		mdb_list_delete(&t->t_xdlist, xdp);
275 		mdb_free(xdp, sizeof (mdb_xdata_t));
276 	}
277 
278 	mdb_tgt_sespec_idle_all(t, EBUSY, TRUE);
279 	(void) mdb_tgt_vespec_iter(t, tgt_delete_vespec, NULL);
280 	t->t_ops->t_destroy(t);
281 
282 	mdb_list_delete(&mdb.m_tgtlist, t);
283 	mdb_free(t, sizeof (mdb_tgt_t));
284 
285 	if (mdb.m_target == NULL)
286 		mdb_tgt_activate(mdb_list_prev(&mdb.m_tgtlist));
287 }
288 
289 void
290 mdb_tgt_activate(mdb_tgt_t *t)
291 {
292 	mdb_tgt_t *otgt = mdb.m_target;
293 
294 	if (mdb.m_target != NULL) {
295 		mdb_dprintf(MDB_DBG_TGT, "t_deactivate %s (%p)\n",
296 		    mdb.m_target->t_module->mod_name, (void *)mdb.m_target);
297 		mdb.m_target->t_ops->t_deactivate(mdb.m_target);
298 	}
299 
300 	if ((mdb.m_target = t) != NULL) {
301 		const char *v = strstr(mdb.m_root, "%V");
302 
303 		mdb_dprintf(MDB_DBG_TGT, "t_activate %s (%p)\n",
304 		    t->t_module->mod_name, (void *)t);
305 
306 		/*
307 		 * If the root was explicitly set with -R and contains %V,
308 		 * expand it like a path.  If the resulting directory is
309 		 * not present, then replace %V with "latest" and re-evaluate.
310 		 */
311 		if (v != NULL) {
312 			char old_root[MAXPATHLEN];
313 			const char **p;
314 #ifndef _KMDB
315 			struct stat s;
316 #endif
317 			size_t len;
318 
319 			p = mdb_path_alloc(mdb.m_root, &len);
320 			(void) strcpy(old_root, mdb.m_root);
321 			(void) strncpy(mdb.m_root, p[0], MAXPATHLEN);
322 			mdb.m_root[MAXPATHLEN - 1] = '\0';
323 			mdb_path_free(p, len);
324 
325 #ifndef _KMDB
326 			if (stat(mdb.m_root, &s) == -1 && errno == ENOENT) {
327 				mdb.m_flags |= MDB_FL_LATEST;
328 				p = mdb_path_alloc(old_root, &len);
329 				(void) strncpy(mdb.m_root, p[0], MAXPATHLEN);
330 				mdb.m_root[MAXPATHLEN - 1] = '\0';
331 				mdb_path_free(p, len);
332 			}
333 #endif
334 		}
335 
336 		/*
337 		 * Re-evaluate the macro and dmod paths now that we have the
338 		 * new target set and m_root figured out.
339 		 */
340 		if (otgt == NULL) {
341 			mdb_set_ipath(mdb.m_ipathstr);
342 			mdb_set_lpath(mdb.m_lpathstr);
343 		}
344 
345 		t->t_ops->t_activate(t);
346 	}
347 }
348 
349 void
350 mdb_tgt_periodic(mdb_tgt_t *t)
351 {
352 	t->t_ops->t_periodic(t);
353 }
354 
355 const char *
356 mdb_tgt_name(mdb_tgt_t *t)
357 {
358 	return (t->t_ops->t_name(t));
359 }
360 
361 const char *
362 mdb_tgt_isa(mdb_tgt_t *t)
363 {
364 	return (t->t_ops->t_isa(t));
365 }
366 
367 const char *
368 mdb_tgt_platform(mdb_tgt_t *t)
369 {
370 	return (t->t_ops->t_platform(t));
371 }
372 
373 int
374 mdb_tgt_uname(mdb_tgt_t *t, struct utsname *utsp)
375 {
376 	return (t->t_ops->t_uname(t, utsp));
377 }
378 
379 int
380 mdb_tgt_dmodel(mdb_tgt_t *t)
381 {
382 	return (t->t_ops->t_dmodel(t));
383 }
384 
385 int
386 mdb_tgt_auxv(mdb_tgt_t *t, const auxv_t **auxvp)
387 {
388 	return (t->t_ops->t_auxv(t, auxvp));
389 }
390 
391 ssize_t
392 mdb_tgt_aread(mdb_tgt_t *t, mdb_tgt_as_t as,
393 	void *buf, size_t n, mdb_tgt_addr_t addr)
394 {
395 	if (t->t_flags & MDB_TGT_F_ASIO)
396 		return (t->t_ops->t_aread(t, as, buf, n, addr));
397 
398 	switch ((uintptr_t)as) {
399 	case (uintptr_t)MDB_TGT_AS_VIRT:
400 		return (t->t_ops->t_vread(t, buf, n, addr));
401 	case (uintptr_t)MDB_TGT_AS_PHYS:
402 		return (t->t_ops->t_pread(t, buf, n, addr));
403 	case (uintptr_t)MDB_TGT_AS_FILE:
404 		return (t->t_ops->t_fread(t, buf, n, addr));
405 	case (uintptr_t)MDB_TGT_AS_IO:
406 		return (t->t_ops->t_ioread(t, buf, n, addr));
407 	}
408 	return (t->t_ops->t_aread(t, as, buf, n, addr));
409 }
410 
411 ssize_t
412 mdb_tgt_awrite(mdb_tgt_t *t, mdb_tgt_as_t as,
413 	const void *buf, size_t n, mdb_tgt_addr_t addr)
414 {
415 	if (!(t->t_flags & MDB_TGT_F_RDWR))
416 		return (set_errno(EMDB_TGTRDONLY));
417 
418 	if (t->t_flags & MDB_TGT_F_ASIO)
419 		return (t->t_ops->t_awrite(t, as, buf, n, addr));
420 
421 	switch ((uintptr_t)as) {
422 	case (uintptr_t)MDB_TGT_AS_VIRT:
423 		return (t->t_ops->t_vwrite(t, buf, n, addr));
424 	case (uintptr_t)MDB_TGT_AS_PHYS:
425 		return (t->t_ops->t_pwrite(t, buf, n, addr));
426 	case (uintptr_t)MDB_TGT_AS_FILE:
427 		return (t->t_ops->t_fwrite(t, buf, n, addr));
428 	case (uintptr_t)MDB_TGT_AS_IO:
429 		return (t->t_ops->t_iowrite(t, buf, n, addr));
430 	}
431 	return (t->t_ops->t_awrite(t, as, buf, n, addr));
432 }
433 
434 ssize_t
435 mdb_tgt_vread(mdb_tgt_t *t, void *buf, size_t n, uintptr_t addr)
436 {
437 	return (t->t_ops->t_vread(t, buf, n, addr));
438 }
439 
440 ssize_t
441 mdb_tgt_vwrite(mdb_tgt_t *t, const void *buf, size_t n, uintptr_t addr)
442 {
443 	if (t->t_flags & MDB_TGT_F_RDWR)
444 		return (t->t_ops->t_vwrite(t, buf, n, addr));
445 
446 	return (set_errno(EMDB_TGTRDONLY));
447 }
448 
449 ssize_t
450 mdb_tgt_pread(mdb_tgt_t *t, void *buf, size_t n, physaddr_t addr)
451 {
452 	return (t->t_ops->t_pread(t, buf, n, addr));
453 }
454 
455 ssize_t
456 mdb_tgt_pwrite(mdb_tgt_t *t, const void *buf, size_t n, physaddr_t addr)
457 {
458 	if (t->t_flags & MDB_TGT_F_RDWR)
459 		return (t->t_ops->t_pwrite(t, buf, n, addr));
460 
461 	return (set_errno(EMDB_TGTRDONLY));
462 }
463 
464 ssize_t
465 mdb_tgt_fread(mdb_tgt_t *t, void *buf, size_t n, uintptr_t addr)
466 {
467 	return (t->t_ops->t_fread(t, buf, n, addr));
468 }
469 
470 ssize_t
471 mdb_tgt_fwrite(mdb_tgt_t *t, const void *buf, size_t n, uintptr_t addr)
472 {
473 	if (t->t_flags & MDB_TGT_F_RDWR)
474 		return (t->t_ops->t_fwrite(t, buf, n, addr));
475 
476 	return (set_errno(EMDB_TGTRDONLY));
477 }
478 
479 ssize_t
480 mdb_tgt_ioread(mdb_tgt_t *t, void *buf, size_t n, uintptr_t addr)
481 {
482 	return (t->t_ops->t_ioread(t, buf, n, addr));
483 }
484 
485 ssize_t
486 mdb_tgt_iowrite(mdb_tgt_t *t, const void *buf, size_t n, uintptr_t addr)
487 {
488 	if (t->t_flags & MDB_TGT_F_RDWR)
489 		return (t->t_ops->t_iowrite(t, buf, n, addr));
490 
491 	return (set_errno(EMDB_TGTRDONLY));
492 }
493 
494 int
495 mdb_tgt_vtop(mdb_tgt_t *t, mdb_tgt_as_t as, uintptr_t va, physaddr_t *pap)
496 {
497 	return (t->t_ops->t_vtop(t, as, va, pap));
498 }
499 
500 ssize_t
501 mdb_tgt_readstr(mdb_tgt_t *t, mdb_tgt_as_t as, char *buf,
502 	size_t nbytes, mdb_tgt_addr_t addr)
503 {
504 	ssize_t n, nread = mdb_tgt_aread(t, as, buf, nbytes, addr);
505 	char *p;
506 
507 	if (nread >= 0) {
508 		if ((p = memchr(buf, '\0', nread)) != NULL)
509 			nread = (size_t)(p - buf);
510 		goto done;
511 	}
512 
513 	nread = 0;
514 	p = &buf[0];
515 
516 	while (nread < nbytes && (n = mdb_tgt_aread(t, as, p, 1, addr)) == 1) {
517 		if (*p == '\0')
518 			return (nread);
519 		nread++;
520 		addr++;
521 		p++;
522 	}
523 
524 	if (nread == 0 && n == -1)
525 		return (-1); /* If we can't even read a byte, return -1 */
526 
527 done:
528 	if (nbytes != 0)
529 		buf[MIN(nread, nbytes - 1)] = '\0';
530 
531 	return (nread);
532 }
533 
534 ssize_t
535 mdb_tgt_writestr(mdb_tgt_t *t, mdb_tgt_as_t as,
536 	const char *buf, mdb_tgt_addr_t addr)
537 {
538 	ssize_t nwritten = mdb_tgt_awrite(t, as, buf, strlen(buf) + 1, addr);
539 	return (nwritten > 0 ? nwritten - 1 : nwritten);
540 }
541 
542 int
543 mdb_tgt_lookup_by_name(mdb_tgt_t *t, const char *obj,
544 	const char *name, GElf_Sym *symp, mdb_syminfo_t *sip)
545 {
546 	mdb_syminfo_t info;
547 	GElf_Sym sym;
548 	uint_t id;
549 
550 	if (name == NULL || t == NULL)
551 		return (set_errno(EINVAL));
552 
553 	if (obj == MDB_TGT_OBJ_EVERY &&
554 	    mdb_gelf_symtab_lookup_by_name(mdb.m_prsym, name, &sym, &id) == 0) {
555 		info.sym_table = MDB_TGT_PRVSYM;
556 		info.sym_id = id;
557 		goto found;
558 	}
559 
560 	if (t->t_ops->t_lookup_by_name(t, obj, name, &sym, &info) == 0)
561 		goto found;
562 
563 	return (-1);
564 
565 found:
566 	if (symp != NULL)
567 		*symp = sym;
568 	if (sip != NULL)
569 		*sip = info;
570 	return (0);
571 }
572 
573 int
574 mdb_tgt_lookup_by_addr(mdb_tgt_t *t, uintptr_t addr, uint_t flags,
575 	char *buf, size_t len, GElf_Sym *symp, mdb_syminfo_t *sip)
576 {
577 	mdb_syminfo_t info;
578 	GElf_Sym sym;
579 
580 	if (t == NULL)
581 		return (set_errno(EINVAL));
582 
583 	if (t->t_ops->t_lookup_by_addr(t, addr, flags,
584 	    buf, len, &sym, &info) == 0) {
585 		if (symp != NULL)
586 			*symp = sym;
587 		if (sip != NULL)
588 			*sip = info;
589 		return (0);
590 	}
591 
592 	return (-1);
593 }
594 
595 /*
596  * The mdb_tgt_lookup_by_scope function is a convenience routine for code that
597  * wants to look up a scoped symbol name such as "object`symbol".  It is
598  * implemented as a simple wrapper around mdb_tgt_lookup_by_name.  Note that
599  * we split on the *last* occurrence of "`", so the object name itself may
600  * contain additional scopes whose evaluation is left to the target.  This
601  * allows targets to implement additional scopes, such as source files,
602  * function names, link map identifiers, etc.
603  */
604 int
605 mdb_tgt_lookup_by_scope(mdb_tgt_t *t, const char *s, GElf_Sym *symp,
606 	mdb_syminfo_t *sip)
607 {
608 	const char *object = MDB_TGT_OBJ_EVERY;
609 	const char *name = s;
610 	char buf[MDB_TGT_SYM_NAMLEN];
611 
612 	if (t == NULL)
613 		return (set_errno(EINVAL));
614 
615 	if (strchr(name, '`') != NULL) {
616 
617 		(void) strncpy(buf, s, sizeof (buf));
618 		buf[sizeof (buf) - 1] = '\0';
619 		name = buf;
620 
621 		if ((s = strrsplit(buf, '`')) != NULL) {
622 			object = buf;
623 			name = s;
624 			if (*object == '\0')
625 				return (set_errno(EMDB_NOOBJ));
626 			if (*name == '\0')
627 				return (set_errno(EMDB_NOSYM));
628 		}
629 	}
630 
631 	return (mdb_tgt_lookup_by_name(t, object, name, symp, sip));
632 }
633 
634 int
635 mdb_tgt_symbol_iter(mdb_tgt_t *t, const char *obj, uint_t which,
636 	uint_t type, mdb_tgt_sym_f *cb, void *p)
637 {
638 	if ((which != MDB_TGT_SYMTAB && which != MDB_TGT_DYNSYM) ||
639 	    (type & ~(MDB_TGT_BIND_ANY | MDB_TGT_TYPE_ANY)) != 0)
640 		return (set_errno(EINVAL));
641 
642 	return (t->t_ops->t_symbol_iter(t, obj, which, type, cb, p));
643 }
644 
645 ssize_t
646 mdb_tgt_readsym(mdb_tgt_t *t, mdb_tgt_as_t as, void *buf, size_t nbytes,
647 	const char *obj, const char *name)
648 {
649 	GElf_Sym sym;
650 
651 	if (mdb_tgt_lookup_by_name(t, obj, name, &sym, NULL) == 0)
652 		return (mdb_tgt_aread(t, as, buf, nbytes, sym.st_value));
653 
654 	return (-1);
655 }
656 
657 ssize_t
658 mdb_tgt_writesym(mdb_tgt_t *t, mdb_tgt_as_t as, const void *buf,
659 	size_t nbytes, const char *obj, const char *name)
660 {
661 	GElf_Sym sym;
662 
663 	if (mdb_tgt_lookup_by_name(t, obj, name, &sym, NULL) == 0)
664 		return (mdb_tgt_awrite(t, as, buf, nbytes, sym.st_value));
665 
666 	return (-1);
667 }
668 
669 int
670 mdb_tgt_mapping_iter(mdb_tgt_t *t, mdb_tgt_map_f *cb, void *p)
671 {
672 	return (t->t_ops->t_mapping_iter(t, cb, p));
673 }
674 
675 int
676 mdb_tgt_object_iter(mdb_tgt_t *t, mdb_tgt_map_f *cb, void *p)
677 {
678 	return (t->t_ops->t_object_iter(t, cb, p));
679 }
680 
681 const mdb_map_t *
682 mdb_tgt_addr_to_map(mdb_tgt_t *t, uintptr_t addr)
683 {
684 	return (t->t_ops->t_addr_to_map(t, addr));
685 }
686 
687 const mdb_map_t *
688 mdb_tgt_name_to_map(mdb_tgt_t *t, const char *name)
689 {
690 	return (t->t_ops->t_name_to_map(t, name));
691 }
692 
693 struct ctf_file *
694 mdb_tgt_addr_to_ctf(mdb_tgt_t *t, uintptr_t addr)
695 {
696 	return (t->t_ops->t_addr_to_ctf(t, addr));
697 }
698 
699 struct ctf_file *
700 mdb_tgt_name_to_ctf(mdb_tgt_t *t, const char *name)
701 {
702 	return (t->t_ops->t_name_to_ctf(t, name));
703 }
704 
705 /*
706  * Return the latest target status.  We just copy out our cached copy.  The
707  * status only needs to change when the target is run, stepped, or continued.
708  */
709 int
710 mdb_tgt_status(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
711 {
712 	uint_t dstop = (t->t_status.st_flags & MDB_TGT_DSTOP);
713 	uint_t istop = (t->t_status.st_flags & MDB_TGT_ISTOP);
714 	uint_t state = t->t_status.st_state;
715 
716 	if (tsp == NULL)
717 		return (set_errno(EINVAL));
718 
719 	/*
720 	 * If we're called with the address of the target's internal status,
721 	 * then call down to update it; otherwise copy out the saved status.
722 	 */
723 	if (tsp == &t->t_status && t->t_ops->t_status(t, &t->t_status) != 0)
724 		return (-1); /* errno is set for us */
725 
726 	/*
727 	 * Assert that our state is valid before returning it.  The state must
728 	 * be valid, and DSTOP and ISTOP cannot be set simultaneously.  ISTOP
729 	 * is only valid when stopped.  DSTOP is only valid when running or
730 	 * stopped.  If any test fails, abort the debugger.
731 	 */
732 	if (state > MDB_TGT_LOST)
733 		fail("invalid target state (%u)\n", state);
734 	if (state != MDB_TGT_STOPPED && istop)
735 		fail("target state is (%u) and ISTOP is set\n", state);
736 	if (state != MDB_TGT_STOPPED && state != MDB_TGT_RUNNING && dstop)
737 		fail("target state is (%u) and DSTOP is set\n", state);
738 	if (istop && dstop)
739 		fail("target has ISTOP and DSTOP set simultaneously\n");
740 
741 	if (tsp != &t->t_status)
742 		bcopy(&t->t_status, tsp, sizeof (mdb_tgt_status_t));
743 
744 	return (0);
745 }
746 
747 /*
748  * For the given sespec, scan its list of vespecs for ones that are marked
749  * temporary and delete them.  We use the same method as vespec_delete below.
750  */
751 /*ARGSUSED*/
752 void
753 mdb_tgt_sespec_prune_one(mdb_tgt_t *t, mdb_sespec_t *sep)
754 {
755 	mdb_vespec_t *vep, *nvep;
756 
757 	for (vep = mdb_list_next(&sep->se_velist); vep; vep = nvep) {
758 		nvep = mdb_list_next(vep);
759 
760 		if ((vep->ve_flags & (MDB_TGT_SPEC_DELETED |
761 		    MDB_TGT_SPEC_TEMPORARY)) == MDB_TGT_SPEC_TEMPORARY) {
762 			vep->ve_flags |= MDB_TGT_SPEC_DELETED;
763 			mdb_tgt_vespec_rele(t, vep);
764 		}
765 	}
766 }
767 
768 /*
769  * Prune each sespec on the active list of temporary vespecs.  This function
770  * is called, for example, after the target finishes a continue operation.
771  */
772 void
773 mdb_tgt_sespec_prune_all(mdb_tgt_t *t)
774 {
775 	mdb_sespec_t *sep, *nsep;
776 
777 	for (sep = mdb_list_next(&t->t_active); sep != NULL; sep = nsep) {
778 		nsep = mdb_list_next(sep);
779 		mdb_tgt_sespec_prune_one(t, sep);
780 	}
781 }
782 
783 /*
784  * Transition the given sespec to the IDLE state.  We invoke the destructor,
785  * and then move the sespec from the active list to the idle list.
786  */
787 void
788 mdb_tgt_sespec_idle_one(mdb_tgt_t *t, mdb_sespec_t *sep, int reason)
789 {
790 	ASSERT(sep->se_state != MDB_TGT_SPEC_IDLE);
791 
792 	if (sep->se_state == MDB_TGT_SPEC_ARMED)
793 		(void) sep->se_ops->se_disarm(t, sep);
794 
795 	sep->se_ops->se_dtor(t, sep);
796 	sep->se_data = NULL;
797 
798 	sep->se_state = MDB_TGT_SPEC_IDLE;
799 	sep->se_errno = reason;
800 
801 	mdb_list_delete(&t->t_active, sep);
802 	mdb_list_append(&t->t_idle, sep);
803 
804 	mdb_tgt_sespec_prune_one(t, sep);
805 }
806 
807 /*
808  * Transition each sespec on the active list to the IDLE state.  This function
809  * is called, for example, after the target terminates execution.
810  */
811 void
812 mdb_tgt_sespec_idle_all(mdb_tgt_t *t, int reason, int clear_matched)
813 {
814 	mdb_sespec_t *sep, *nsep;
815 	mdb_vespec_t *vep;
816 
817 	while ((sep = t->t_matched) != T_SE_END && clear_matched) {
818 		for (vep = mdb_list_next(&sep->se_velist); vep != NULL; ) {
819 			vep->ve_flags &= ~MDB_TGT_SPEC_MATCHED;
820 			vep = mdb_list_next(vep);
821 		}
822 
823 		t->t_matched = sep->se_matched;
824 		sep->se_matched = NULL;
825 		mdb_tgt_sespec_rele(t, sep);
826 	}
827 
828 	for (sep = mdb_list_next(&t->t_active); sep != NULL; sep = nsep) {
829 		nsep = mdb_list_next(sep);
830 		mdb_tgt_sespec_idle_one(t, sep, reason);
831 	}
832 }
833 
834 /*
835  * Attempt to transition the given sespec from the IDLE to ACTIVE state.  We
836  * do this by invoking se_ctor -- if this fails, we save the reason in se_errno
837  * and return -1 with errno set.  One strange case we need to deal with here is
838  * the possibility that a given vespec is sitting on the idle list with its
839  * corresponding sespec, but it is actually a duplicate of another sespec on the
840  * active list.  This can happen if the sespec is associated with a
841  * MDB_TGT_SPEC_DISABLED vespec that was just enabled, and is now ready to be
842  * activated.  A more interesting reason this situation might arise is the case
843  * where a virtual address breakpoint is set at an address just mmap'ed by
844  * dlmopen.  Since no symbol table information is available for this mapping
845  * yet, a pre-existing deferred symbolic breakpoint may already exist for this
846  * address, but it is on the idle list.  When the symbol table is ready and the
847  * DLACTIVITY event occurs, we now discover that the virtual address obtained by
848  * evaluating the symbolic breakpoint matches the explicit virtual address of
849  * the active virtual breakpoint.  To resolve this conflict in either case, we
850  * destroy the idle sespec, and attach its list of vespecs to the existing
851  * active sespec.
852  */
853 int
854 mdb_tgt_sespec_activate_one(mdb_tgt_t *t, mdb_sespec_t *sep)
855 {
856 	mdb_vespec_t *vep = mdb_list_next(&sep->se_velist);
857 
858 	mdb_vespec_t *nvep;
859 	mdb_sespec_t *dup;
860 
861 	ASSERT(sep->se_state == MDB_TGT_SPEC_IDLE);
862 	ASSERT(vep != NULL);
863 
864 	if (vep->ve_flags & MDB_TGT_SPEC_DISABLED)
865 		return (0); /* cannot be activated while disabled bit set */
866 
867 	/*
868 	 * First search the active list for an existing, duplicate sespec to
869 	 * handle the special case described above.
870 	 */
871 	for (dup = mdb_list_next(&t->t_active); dup; dup = mdb_list_next(dup)) {
872 		if (dup->se_ops == sep->se_ops &&
873 		    dup->se_ops->se_secmp(t, dup, vep->ve_args)) {
874 			ASSERT(dup != sep);
875 			break;
876 		}
877 	}
878 
879 	/*
880 	 * If a duplicate is found, destroy the existing, idle sespec, and
881 	 * attach all of its vespecs to the duplicate sespec.
882 	 */
883 	if (dup != NULL) {
884 		for (vep = mdb_list_next(&sep->se_velist); vep; vep = nvep) {
885 			mdb_dprintf(MDB_DBG_TGT, "merge [ %d ] to sespec %p\n",
886 			    vep->ve_id, (void *)dup);
887 
888 			if (dup->se_matched != NULL)
889 				vep->ve_flags |= MDB_TGT_SPEC_MATCHED;
890 
891 			nvep = mdb_list_next(vep);
892 			vep->ve_hits = 0;
893 
894 			mdb_list_delete(&sep->se_velist, vep);
895 			mdb_tgt_sespec_rele(t, sep);
896 
897 			mdb_list_append(&dup->se_velist, vep);
898 			mdb_tgt_sespec_hold(t, dup);
899 			vep->ve_se = dup;
900 		}
901 
902 		mdb_dprintf(MDB_DBG_TGT, "merged idle sespec %p with %p\n",
903 		    (void *)sep, (void *)dup);
904 		return (0);
905 	}
906 
907 	/*
908 	 * If no duplicate is found, call the sespec's constructor.  If this
909 	 * is successful, move the sespec to the active list.
910 	 */
911 	if (sep->se_ops->se_ctor(t, sep, vep->ve_args) < 0) {
912 		sep->se_errno = errno;
913 		sep->se_data = NULL;
914 
915 		return (-1);
916 	}
917 
918 	for (vep = mdb_list_next(&sep->se_velist); vep; vep = nvep) {
919 		nvep = mdb_list_next(vep);
920 		vep->ve_hits = 0;
921 	}
922 	mdb_list_delete(&t->t_idle, sep);
923 	mdb_list_append(&t->t_active, sep);
924 	sep->se_state = MDB_TGT_SPEC_ACTIVE;
925 	sep->se_errno = 0;
926 
927 	return (0);
928 }
929 
930 /*
931  * Transition each sespec on the idle list to the ACTIVE state.  This function
932  * is called, for example, after the target's t_run() function returns.  If
933  * the se_ctor() function fails, the specifier is not yet applicable; it will
934  * remain on the idle list and can be activated later.
935  *
936  * Returns 1 if there weren't any unexpected activation failures; 0 if there
937  * were.
938  */
939 int
940 mdb_tgt_sespec_activate_all(mdb_tgt_t *t)
941 {
942 	mdb_sespec_t *sep, *nsep;
943 	int rc = 1;
944 
945 	for (sep = mdb_list_next(&t->t_idle); sep != NULL; sep = nsep) {
946 		nsep = mdb_list_next(sep);
947 
948 		if (mdb_tgt_sespec_activate_one(t, sep) < 0 &&
949 		    sep->se_errno != EMDB_NOOBJ)
950 			rc = 0;
951 	}
952 
953 	return (rc);
954 }
955 
956 /*
957  * Transition the given sespec to the ARMED state.  Note that we attempt to
958  * re-arm sespecs previously in the ERROR state.  If se_arm() fails the sespec
959  * transitions to the ERROR state but stays on the active list.
960  */
961 void
962 mdb_tgt_sespec_arm_one(mdb_tgt_t *t, mdb_sespec_t *sep)
963 {
964 	ASSERT(sep->se_state != MDB_TGT_SPEC_IDLE);
965 
966 	if (sep->se_state == MDB_TGT_SPEC_ARMED)
967 		return; /* do not arm sespecs more than once */
968 
969 	if (sep->se_ops->se_arm(t, sep) == -1) {
970 		sep->se_state = MDB_TGT_SPEC_ERROR;
971 		sep->se_errno = errno;
972 	} else {
973 		sep->se_state = MDB_TGT_SPEC_ARMED;
974 		sep->se_errno = 0;
975 	}
976 }
977 
978 /*
979  * Transition each sespec on the active list (except matched specs) to the
980  * ARMED state.  This function is called prior to continuing the target.
981  */
982 void
983 mdb_tgt_sespec_arm_all(mdb_tgt_t *t)
984 {
985 	mdb_sespec_t *sep, *nsep;
986 
987 	for (sep = mdb_list_next(&t->t_active); sep != NULL; sep = nsep) {
988 		nsep = mdb_list_next(sep);
989 		if (sep->se_matched == NULL)
990 			mdb_tgt_sespec_arm_one(t, sep);
991 	}
992 }
993 
994 /*
995  * Transition each sespec on the active list that is in the ARMED state to
996  * the ACTIVE state.  If se_disarm() fails, the sespec is transitioned to
997  * the ERROR state instead, but left on the active list.
998  */
999 static void
1000 tgt_disarm_sespecs(mdb_tgt_t *t)
1001 {
1002 	mdb_sespec_t *sep;
1003 
1004 	for (sep = mdb_list_next(&t->t_active); sep; sep = mdb_list_next(sep)) {
1005 		if (sep->se_state != MDB_TGT_SPEC_ARMED)
1006 			continue; /* do not disarm if in ERROR state */
1007 
1008 		if (sep->se_ops->se_disarm(t, sep) == -1) {
1009 			sep->se_state = MDB_TGT_SPEC_ERROR;
1010 			sep->se_errno = errno;
1011 		} else {
1012 			sep->se_state = MDB_TGT_SPEC_ACTIVE;
1013 			sep->se_errno = 0;
1014 		}
1015 	}
1016 }
1017 
1018 /*
1019  * Determine if the software event that triggered the most recent stop matches
1020  * any of the active event specifiers.  If 'all' is TRUE, we consider all
1021  * sespecs in our search.   If 'all' is FALSE, we only consider ARMED sespecs.
1022  * If we successfully match an event, we add it to the t_matched list and
1023  * place an additional hold on it.
1024  */
1025 static mdb_sespec_t *
1026 tgt_match_sespecs(mdb_tgt_t *t, int all)
1027 {
1028 	mdb_sespec_t *sep;
1029 
1030 	for (sep = mdb_list_next(&t->t_active); sep; sep = mdb_list_next(sep)) {
1031 		if (all == FALSE && sep->se_state != MDB_TGT_SPEC_ARMED)
1032 			continue; /* restrict search to ARMED sespecs */
1033 
1034 		if (sep->se_state != MDB_TGT_SPEC_ERROR &&
1035 		    sep->se_ops->se_match(t, sep, &t->t_status)) {
1036 			mdb_dprintf(MDB_DBG_TGT, "match se %p\n", (void *)sep);
1037 			mdb_tgt_sespec_hold(t, sep);
1038 			sep->se_matched = t->t_matched;
1039 			t->t_matched = sep;
1040 		}
1041 	}
1042 
1043 	return (t->t_matched);
1044 }
1045 
1046 /*
1047  * This function provides the low-level target continue algorithm.  We proceed
1048  * in three phases: (1) we arm the active sespecs, except the specs matched at
1049  * the time we last stopped, (2) we call se_cont() on any matched sespecs to
1050  * step over these event transitions, and then arm the corresponding sespecs,
1051  * and (3) we call the appropriate low-level continue routine.  Once the
1052  * target stops again, we determine which sespecs were matched, and invoke the
1053  * appropriate vespec callbacks and perform other vespec maintenance.
1054  */
1055 static int
1056 tgt_continue(mdb_tgt_t *t, mdb_tgt_status_t *tsp,
1057     int (*t_cont)(mdb_tgt_t *, mdb_tgt_status_t *))
1058 {
1059 	mdb_var_t *hitv = mdb_nv_lookup(&mdb.m_nv, "hits");
1060 	uintptr_t pc = t->t_status.st_pc;
1061 	int error = 0;
1062 
1063 	mdb_sespec_t *sep, *nsep, *matched;
1064 	mdb_vespec_t *vep, *nvep;
1065 	uintptr_t addr;
1066 
1067 	uint_t cbits = 0;	/* union of pending continue bits */
1068 	uint_t ncont = 0;	/* # of callbacks that requested cont */
1069 	uint_t n = 0;		/* # of callbacks */
1070 
1071 	/*
1072 	 * If the target is undead, dead, or lost, we no longer allow continue.
1073 	 * This effectively forces the user to use ::kill or ::run after death.
1074 	 */
1075 	if (t->t_status.st_state == MDB_TGT_UNDEAD)
1076 		return (set_errno(EMDB_TGTZOMB));
1077 	if (t->t_status.st_state == MDB_TGT_DEAD)
1078 		return (set_errno(EMDB_TGTCORE));
1079 	if (t->t_status.st_state == MDB_TGT_LOST)
1080 		return (set_errno(EMDB_TGTLOST));
1081 
1082 	/*
1083 	 * If any of single-step, step-over, or step-out is pending, it takes
1084 	 * precedence over an explicit or pending continue, because these are
1085 	 * all different specialized forms of continue.
1086 	 */
1087 	if (t->t_flags & MDB_TGT_F_STEP)
1088 		t_cont = t->t_ops->t_step;
1089 	else if (t->t_flags & MDB_TGT_F_NEXT)
1090 		t_cont = t->t_ops->t_step;
1091 	else if (t->t_flags & MDB_TGT_F_STEP_BRANCH)
1092 		t_cont = t->t_ops->t_cont;
1093 	else if (t->t_flags & MDB_TGT_F_STEP_OUT)
1094 		t_cont = t->t_ops->t_cont;
1095 
1096 	/*
1097 	 * To handle step-over, we ask the target to find the address past the
1098 	 * next control transfer instruction.  If an address is found, we plant
1099 	 * a temporary breakpoint there and continue; otherwise just step.
1100 	 */
1101 	if ((t->t_flags & MDB_TGT_F_NEXT) && !(t->t_flags & MDB_TGT_F_STEP)) {
1102 		if (t->t_ops->t_next(t, &addr) == -1 || mdb_tgt_add_vbrkpt(t,
1103 		    addr, MDB_TGT_SPEC_HIDDEN | MDB_TGT_SPEC_TEMPORARY,
1104 		    no_se_f, NULL) == 0) {
1105 			mdb_dprintf(MDB_DBG_TGT, "next falling back to step: "
1106 			    "%s\n", mdb_strerror(errno));
1107 		} else
1108 			t_cont = t->t_ops->t_cont;
1109 	}
1110 
1111 	/*
1112 	 * To handle step-out, we ask the target to find the return address of
1113 	 * the current frame, plant a temporary breakpoint there, and continue.
1114 	 */
1115 	if (t->t_flags & MDB_TGT_F_STEP_OUT) {
1116 		if (t->t_ops->t_step_out(t, &addr) == -1)
1117 			return (-1); /* errno is set for us */
1118 
1119 		if (mdb_tgt_add_vbrkpt(t, addr, MDB_TGT_SPEC_HIDDEN |
1120 		    MDB_TGT_SPEC_TEMPORARY, no_se_f, NULL) == 0)
1121 			return (-1); /* errno is set for us */
1122 	}
1123 
1124 	/*
1125 	 * To handle step-branch, we ask the target to enable it for the coming
1126 	 * continue.  Step-branch is incompatible with step, so don't enable it
1127 	 * if we're going to be stepping.
1128 	 */
1129 	if (t->t_flags & MDB_TGT_F_STEP_BRANCH && t_cont == t->t_ops->t_cont) {
1130 		if (t->t_ops->t_step_branch(t) == -1)
1131 			return (-1); /* errno is set for us */
1132 	}
1133 
1134 	(void) mdb_signal_block(SIGHUP);
1135 	(void) mdb_signal_block(SIGTERM);
1136 	mdb_intr_disable();
1137 
1138 	t->t_flags &= ~T_CONT_BITS;
1139 	t->t_flags |= MDB_TGT_F_BUSY;
1140 	mdb_tgt_sespec_arm_all(t);
1141 
1142 	ASSERT(t->t_matched != NULL);
1143 	matched = t->t_matched;
1144 	t->t_matched = T_SE_END;
1145 
1146 	if (mdb.m_term != NULL)
1147 		IOP_SUSPEND(mdb.m_term);
1148 
1149 	/*
1150 	 * Iterate over the matched sespec list, performing autostop processing
1151 	 * and clearing the matched bit for each associated vespec.  We then
1152 	 * invoke each sespec's se_cont callback in order to continue past
1153 	 * the corresponding event.  If the matched list has more than one
1154 	 * sespec, we assume that the se_cont callbacks are non-interfering.
1155 	 */
1156 	for (sep = matched; sep != T_SE_END; sep = sep->se_matched) {
1157 		for (vep = mdb_list_next(&sep->se_velist); vep != NULL; ) {
1158 			if ((vep->ve_flags & MDB_TGT_SPEC_AUTOSTOP) &&
1159 			    (vep->ve_limit && vep->ve_hits == vep->ve_limit))
1160 				vep->ve_hits = 0;
1161 
1162 			vep->ve_flags &= ~MDB_TGT_SPEC_MATCHED;
1163 			vep = mdb_list_next(vep);
1164 		}
1165 
1166 		if (sep->se_ops->se_cont(t, sep, &t->t_status) == -1) {
1167 			error = errno ? errno : -1;
1168 			tgt_disarm_sespecs(t);
1169 			break;
1170 		}
1171 
1172 		if (!(t->t_status.st_flags & MDB_TGT_ISTOP)) {
1173 			tgt_disarm_sespecs(t);
1174 			if (t->t_status.st_state == MDB_TGT_UNDEAD)
1175 				mdb_tgt_sespec_idle_all(t, EMDB_TGTZOMB, TRUE);
1176 			else if (t->t_status.st_state == MDB_TGT_LOST)
1177 				mdb_tgt_sespec_idle_all(t, EMDB_TGTLOST, TRUE);
1178 			break;
1179 		}
1180 	}
1181 
1182 	/*
1183 	 * Clear the se_matched field for each matched sespec, and drop the
1184 	 * reference count since the sespec is no longer on the matched list.
1185 	 */
1186 	for (sep = matched; sep != T_SE_END; sep = nsep) {
1187 		nsep = sep->se_matched;
1188 		sep->se_matched = NULL;
1189 		mdb_tgt_sespec_rele(t, sep);
1190 	}
1191 
1192 	/*
1193 	 * If the matched list was non-empty, see if we hit another event while
1194 	 * performing se_cont() processing.  If so, don't bother continuing any
1195 	 * further.  If not, arm the sespecs on the old matched list by calling
1196 	 * mdb_tgt_sespec_arm_all() again and then continue by calling t_cont.
1197 	 */
1198 	if (matched != T_SE_END) {
1199 		if (error != 0 || !(t->t_status.st_flags & MDB_TGT_ISTOP))
1200 			goto out; /* abort now if se_cont() failed */
1201 
1202 		if ((t->t_matched = tgt_match_sespecs(t, FALSE)) != T_SE_END) {
1203 			tgt_disarm_sespecs(t);
1204 			goto out;
1205 		}
1206 
1207 		mdb_tgt_sespec_arm_all(t);
1208 	}
1209 
1210 	if (t_cont != t->t_ops->t_step || pc == t->t_status.st_pc) {
1211 		if (t_cont(t, &t->t_status) != 0)
1212 			error = errno ? errno : -1;
1213 	}
1214 
1215 	tgt_disarm_sespecs(t);
1216 
1217 	if (t->t_flags & MDB_TGT_F_UNLOAD)
1218 		longjmp(mdb.m_frame->f_pcb, MDB_ERR_QUIT);
1219 
1220 	if (t->t_status.st_state == MDB_TGT_UNDEAD)
1221 		mdb_tgt_sespec_idle_all(t, EMDB_TGTZOMB, TRUE);
1222 	else if (t->t_status.st_state == MDB_TGT_LOST)
1223 		mdb_tgt_sespec_idle_all(t, EMDB_TGTLOST, TRUE);
1224 	else if (t->t_status.st_flags & MDB_TGT_ISTOP)
1225 		t->t_matched = tgt_match_sespecs(t, TRUE);
1226 out:
1227 	if (mdb.m_term != NULL)
1228 		IOP_RESUME(mdb.m_term);
1229 
1230 	(void) mdb_signal_unblock(SIGTERM);
1231 	(void) mdb_signal_unblock(SIGHUP);
1232 	mdb_intr_enable();
1233 
1234 	for (sep = t->t_matched; sep != T_SE_END; sep = sep->se_matched) {
1235 		/*
1236 		 * When we invoke a ve_callback, it may in turn request that the
1237 		 * target continue immediately after callback processing is
1238 		 * complete.  We only allow this to occur if *all* callbacks
1239 		 * agree to continue.  To implement this behavior, we keep a
1240 		 * count (ncont) of such requests, and only apply the cumulative
1241 		 * continue bits (cbits) to the target if ncont is equal to the
1242 		 * total number of callbacks that are invoked (n).
1243 		 */
1244 		for (vep = mdb_list_next(&sep->se_velist);
1245 		    vep != NULL; vep = nvep, n++) {
1246 			/*
1247 			 * Place an extra hold on the current vespec and pick
1248 			 * up the next pointer before invoking the callback: we
1249 			 * must be prepared for the vespec to be deleted or
1250 			 * moved to a different list by the callback.
1251 			 */
1252 			mdb_tgt_vespec_hold(t, vep);
1253 			nvep = mdb_list_next(vep);
1254 
1255 			vep->ve_flags |= MDB_TGT_SPEC_MATCHED;
1256 			vep->ve_hits++;
1257 
1258 			mdb_nv_set_value(mdb.m_dot, t->t_status.st_pc);
1259 			mdb_nv_set_value(hitv, vep->ve_hits);
1260 
1261 			ASSERT((t->t_flags & T_CONT_BITS) == 0);
1262 			vep->ve_callback(t, vep->ve_id, vep->ve_data);
1263 
1264 			ncont += (t->t_flags & T_CONT_BITS) != 0;
1265 			cbits |= (t->t_flags & T_CONT_BITS);
1266 			t->t_flags &= ~T_CONT_BITS;
1267 
1268 			if (vep->ve_limit && vep->ve_hits == vep->ve_limit) {
1269 				if (vep->ve_flags & MDB_TGT_SPEC_AUTODEL)
1270 					(void) mdb_tgt_vespec_delete(t,
1271 					    vep->ve_id);
1272 				else if (vep->ve_flags & MDB_TGT_SPEC_AUTODIS)
1273 					(void) mdb_tgt_vespec_disable(t,
1274 					    vep->ve_id);
1275 			}
1276 
1277 			if (vep->ve_limit && vep->ve_hits < vep->ve_limit) {
1278 				if (vep->ve_flags & MDB_TGT_SPEC_AUTOSTOP)
1279 					(void) mdb_tgt_continue(t, NULL);
1280 			}
1281 
1282 			mdb_tgt_vespec_rele(t, vep);
1283 		}
1284 	}
1285 
1286 	if (t->t_matched != T_SE_END && ncont == n)
1287 		t->t_flags |= cbits; /* apply continues (see above) */
1288 
1289 	mdb_tgt_sespec_prune_all(t);
1290 
1291 	t->t_status.st_flags &= ~MDB_TGT_BUSY;
1292 	t->t_flags &= ~MDB_TGT_F_BUSY;
1293 
1294 	if (tsp != NULL)
1295 		bcopy(&t->t_status, tsp, sizeof (mdb_tgt_status_t));
1296 
1297 	if (error != 0)
1298 		return (set_errno(error));
1299 
1300 	return (0);
1301 }
1302 
1303 /*
1304  * This function is the common glue that connects the high-level target layer
1305  * continue functions (e.g. step and cont below) with the low-level
1306  * tgt_continue() function above.  Since vespec callbacks may perform any
1307  * actions, including attempting to continue the target itself, we must be
1308  * prepared to be called while the target is still marked F_BUSY.  In this
1309  * case, we just set a pending bit and return.  When we return from the call
1310  * to tgt_continue() that made us busy into the tgt_request_continue() call
1311  * that is still on the stack, we will loop around and call tgt_continue()
1312  * again.  This allows vespecs to continue the target without recursion.
1313  */
1314 static int
1315 tgt_request_continue(mdb_tgt_t *t, mdb_tgt_status_t *tsp, uint_t tflag,
1316     int (*t_cont)(mdb_tgt_t *, mdb_tgt_status_t *))
1317 {
1318 	mdb_tgt_spec_desc_t desc;
1319 	mdb_sespec_t *sep;
1320 	char buf[BUFSIZ];
1321 	int status;
1322 
1323 	if (t->t_flags & MDB_TGT_F_BUSY) {
1324 		t->t_flags |= tflag;
1325 		return (0);
1326 	}
1327 
1328 	do {
1329 		status = tgt_continue(t, tsp, t_cont);
1330 	} while (status == 0 && (t->t_flags & T_CONT_BITS));
1331 
1332 	if (status == 0) {
1333 		for (sep = t->t_matched; sep != T_SE_END;
1334 		    sep = sep->se_matched) {
1335 			mdb_vespec_t *vep;
1336 
1337 			for (vep = mdb_list_next(&sep->se_velist); vep;
1338 			    vep = mdb_list_next(vep)) {
1339 				if (vep->ve_flags & MDB_TGT_SPEC_SILENT)
1340 					continue;
1341 				warn("%s\n", sep->se_ops->se_info(t, sep,
1342 				    vep, &desc, buf, sizeof (buf)));
1343 			}
1344 		}
1345 
1346 		mdb_callb_fire(MDB_CALLB_STCHG);
1347 	}
1348 
1349 	t->t_flags &= ~T_CONT_BITS;
1350 	return (status);
1351 }
1352 
1353 /*
1354  * Restart target execution: we rely upon the underlying target implementation
1355  * to do most of the work for us.  In particular, we assume it will properly
1356  * preserve the state of our event lists if the run fails for some reason,
1357  * and that it will reset all events to the IDLE state if the run succeeds.
1358  * If it is successful, we attempt to activate all of the idle sespecs.  The
1359  * t_run() operation is defined to leave the target stopped at the earliest
1360  * possible point in execution, and then return control to the debugger,
1361  * awaiting a step or continue operation to set it running again.
1362  */
1363 int
1364 mdb_tgt_run(mdb_tgt_t *t, int argc, const mdb_arg_t *argv)
1365 {
1366 	int i;
1367 
1368 	for (i = 0; i < argc; i++) {
1369 		if (argv->a_type != MDB_TYPE_STRING)
1370 			return (set_errno(EINVAL));
1371 	}
1372 
1373 	if (t->t_ops->t_run(t, argc, argv) == -1)
1374 		return (-1); /* errno is set for us */
1375 
1376 	t->t_flags &= ~T_CONT_BITS;
1377 	(void) mdb_tgt_sespec_activate_all(t);
1378 
1379 	if (mdb.m_term != NULL)
1380 		IOP_CTL(mdb.m_term, MDB_IOC_CTTY, NULL);
1381 
1382 	return (0);
1383 }
1384 
1385 int
1386 mdb_tgt_step(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
1387 {
1388 	return (tgt_request_continue(t, tsp, MDB_TGT_F_STEP, t->t_ops->t_step));
1389 }
1390 
1391 int
1392 mdb_tgt_step_out(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
1393 {
1394 	t->t_flags |= MDB_TGT_F_STEP_OUT; /* set flag even if tgt not busy */
1395 	return (tgt_request_continue(t, tsp, 0, t->t_ops->t_cont));
1396 }
1397 
1398 int
1399 mdb_tgt_step_branch(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
1400 {
1401 	t->t_flags |= MDB_TGT_F_STEP_BRANCH; /* set flag even if tgt not busy */
1402 	return (tgt_request_continue(t, tsp, 0, t->t_ops->t_cont));
1403 }
1404 
1405 int
1406 mdb_tgt_next(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
1407 {
1408 	t->t_flags |= MDB_TGT_F_NEXT; /* set flag even if tgt not busy */
1409 	return (tgt_request_continue(t, tsp, 0, t->t_ops->t_step));
1410 }
1411 
1412 int
1413 mdb_tgt_continue(mdb_tgt_t *t, mdb_tgt_status_t *tsp)
1414 {
1415 	return (tgt_request_continue(t, tsp, MDB_TGT_F_CONT, t->t_ops->t_cont));
1416 }
1417 
1418 int
1419 mdb_tgt_signal(mdb_tgt_t *t, int sig)
1420 {
1421 	return (t->t_ops->t_signal(t, sig));
1422 }
1423 
1424 void *
1425 mdb_tgt_vespec_data(mdb_tgt_t *t, int vid)
1426 {
1427 	mdb_vespec_t *vep = mdb_tgt_vespec_lookup(t, vid);
1428 
1429 	if (vep == NULL) {
1430 		(void) set_errno(EMDB_NOSESPEC);
1431 		return (NULL);
1432 	}
1433 
1434 	return (vep->ve_data);
1435 }
1436 
1437 /*
1438  * Return a structured description and comment string for the given vespec.
1439  * We fill in the common information from the vespec, and then call down to
1440  * the underlying sespec to provide the comment string and modify any
1441  * event type-specific information.
1442  */
1443 char *
1444 mdb_tgt_vespec_info(mdb_tgt_t *t, int vid, mdb_tgt_spec_desc_t *sp,
1445     char *buf, size_t nbytes)
1446 {
1447 	mdb_vespec_t *vep = mdb_tgt_vespec_lookup(t, vid);
1448 
1449 	mdb_tgt_spec_desc_t desc;
1450 	mdb_sespec_t *sep;
1451 
1452 	if (vep == NULL) {
1453 		if (sp != NULL)
1454 			bzero(sp, sizeof (mdb_tgt_spec_desc_t));
1455 		(void) set_errno(EMDB_NOSESPEC);
1456 		return (NULL);
1457 	}
1458 
1459 	if (sp == NULL)
1460 		sp = &desc;
1461 
1462 	sep = vep->ve_se;
1463 
1464 	sp->spec_id = vep->ve_id;
1465 	sp->spec_flags = vep->ve_flags;
1466 	sp->spec_hits = vep->ve_hits;
1467 	sp->spec_limit = vep->ve_limit;
1468 	sp->spec_state = sep->se_state;
1469 	sp->spec_errno = sep->se_errno;
1470 	sp->spec_base = NULL;
1471 	sp->spec_size = 0;
1472 	sp->spec_data = vep->ve_data;
1473 
1474 	return (sep->se_ops->se_info(t, sep, vep, sp, buf, nbytes));
1475 }
1476 
1477 /*
1478  * Qsort callback for sorting vespecs by VID, used below.
1479  */
1480 static int
1481 tgt_vespec_compare(const mdb_vespec_t **lp, const mdb_vespec_t **rp)
1482 {
1483 	return ((*lp)->ve_id - (*rp)->ve_id);
1484 }
1485 
1486 /*
1487  * Iterate over all vespecs and call the specified callback function with the
1488  * corresponding VID and caller data pointer.  We want the callback function
1489  * to see a consistent, sorted snapshot of the vespecs, and allow the callback
1490  * to take actions such as deleting the vespec itself, so we cannot simply
1491  * iterate over the lists.  Instead, we pre-allocate an array of vespec
1492  * pointers, fill it in and place an additional hold on each vespec, and then
1493  * sort it.  After the callback has been executed on each vespec in the
1494  * sorted array, we remove our hold and free the temporary array.
1495  */
1496 int
1497 mdb_tgt_vespec_iter(mdb_tgt_t *t, mdb_tgt_vespec_f *func, void *p)
1498 {
1499 	mdb_vespec_t **veps, **vepp, **vend;
1500 	mdb_vespec_t *vep, *nvep;
1501 	mdb_sespec_t *sep;
1502 
1503 	uint_t vecnt = t->t_vecnt;
1504 
1505 	veps = mdb_alloc(sizeof (mdb_vespec_t *) * vecnt, UM_SLEEP);
1506 	vend = veps + vecnt;
1507 	vepp = veps;
1508 
1509 	for (sep = mdb_list_next(&t->t_active); sep; sep = mdb_list_next(sep)) {
1510 		for (vep = mdb_list_next(&sep->se_velist); vep; vep = nvep) {
1511 			mdb_tgt_vespec_hold(t, vep);
1512 			nvep = mdb_list_next(vep);
1513 			*vepp++ = vep;
1514 		}
1515 	}
1516 
1517 	for (sep = mdb_list_next(&t->t_idle); sep; sep = mdb_list_next(sep)) {
1518 		for (vep = mdb_list_next(&sep->se_velist); vep; vep = nvep) {
1519 			mdb_tgt_vespec_hold(t, vep);
1520 			nvep = mdb_list_next(vep);
1521 			*vepp++ = vep;
1522 		}
1523 	}
1524 
1525 	if (vepp != vend) {
1526 		fail("target has %u vespecs on list but vecnt shows %u\n",
1527 		    (uint_t)(vepp - veps), vecnt);
1528 	}
1529 
1530 	qsort(veps, vecnt, sizeof (mdb_vespec_t *),
1531 	    (int (*)(const void *, const void *))tgt_vespec_compare);
1532 
1533 	for (vepp = veps; vepp < vend; vepp++) {
1534 		if (func(t, p, (*vepp)->ve_id, (*vepp)->ve_data) != 0)
1535 			break;
1536 	}
1537 
1538 	for (vepp = veps; vepp < vend; vepp++)
1539 		mdb_tgt_vespec_rele(t, *vepp);
1540 
1541 	mdb_free(veps, sizeof (mdb_vespec_t *) * vecnt);
1542 	return (0);
1543 }
1544 
1545 /*
1546  * Reset the vespec flags, match limit, and callback data to the specified
1547  * values.  We silently correct invalid parameters, except for the VID.
1548  * The caller is required to query the existing properties and pass back
1549  * the existing values for any properties that should not be modified.
1550  * If the callback data is modified, the caller is responsible for cleaning
1551  * up any state associated with the previous value.
1552  */
1553 int
1554 mdb_tgt_vespec_modify(mdb_tgt_t *t, int id, uint_t flags,
1555     uint_t limit, void *data)
1556 {
1557 	mdb_vespec_t *vep = mdb_tgt_vespec_lookup(t, id);
1558 
1559 	if (vep == NULL)
1560 		return (set_errno(EMDB_NOSESPEC));
1561 
1562 	/*
1563 	 * If the value of the MDB_TGT_SPEC_DISABLED bit is changing, call the
1564 	 * appropriate vespec function to do the enable/disable work.
1565 	 */
1566 	if ((flags & MDB_TGT_SPEC_DISABLED) !=
1567 	    (vep->ve_flags & MDB_TGT_SPEC_DISABLED)) {
1568 		if (flags & MDB_TGT_SPEC_DISABLED)
1569 			(void) mdb_tgt_vespec_disable(t, id);
1570 		else
1571 			(void) mdb_tgt_vespec_enable(t, id);
1572 	}
1573 
1574 	/*
1575 	 * Make that only one MDB_TGT_SPEC_AUTO* bit is set in the new flags
1576 	 * value: extra bits are cleared according to order of precedence.
1577 	 */
1578 	if (flags & MDB_TGT_SPEC_AUTOSTOP)
1579 		flags &= ~(MDB_TGT_SPEC_AUTODEL | MDB_TGT_SPEC_AUTODIS);
1580 	else if (flags & MDB_TGT_SPEC_AUTODEL)
1581 		flags &= ~MDB_TGT_SPEC_AUTODIS;
1582 
1583 	/*
1584 	 * The TEMPORARY property always takes precedence over STICKY.
1585 	 */
1586 	if (flags & MDB_TGT_SPEC_TEMPORARY)
1587 		flags &= ~MDB_TGT_SPEC_STICKY;
1588 
1589 	/*
1590 	 * If any MDB_TGT_SPEC_AUTO* bits are changing, reset the hit count
1591 	 * back to zero and clear all of the old auto bits.
1592 	 */
1593 	if ((flags & T_AUTO_BITS) != (vep->ve_flags & T_AUTO_BITS)) {
1594 		vep->ve_flags &= ~T_AUTO_BITS;
1595 		vep->ve_hits = 0;
1596 	}
1597 
1598 	vep->ve_flags = (vep->ve_flags & T_IMPL_BITS) | (flags & ~T_IMPL_BITS);
1599 	vep->ve_data = data;
1600 
1601 	/*
1602 	 * If any MDB_TGT_SPEC_AUTO* flags are set, make sure the limit is at
1603 	 * least one.  If none are set, reset it back to zero.
1604 	 */
1605 	if (vep->ve_flags & T_AUTO_BITS)
1606 		vep->ve_limit = MAX(limit, 1);
1607 	else
1608 		vep->ve_limit = 0;
1609 
1610 	/*
1611 	 * As a convenience, we allow the caller to specify SPEC_DELETED in
1612 	 * the flags field as indication that the event should be deleted.
1613 	 */
1614 	if (flags & MDB_TGT_SPEC_DELETED)
1615 		(void) mdb_tgt_vespec_delete(t, id);
1616 
1617 	return (0);
1618 }
1619 
1620 /*
1621  * Remove the user disabled bit from the specified vespec, and attempt to
1622  * activate the underlying sespec and move it to the active list if possible.
1623  */
1624 int
1625 mdb_tgt_vespec_enable(mdb_tgt_t *t, int id)
1626 {
1627 	mdb_vespec_t *vep = mdb_tgt_vespec_lookup(t, id);
1628 
1629 	if (vep == NULL)
1630 		return (set_errno(EMDB_NOSESPEC));
1631 
1632 	if (vep->ve_flags & MDB_TGT_SPEC_DISABLED) {
1633 		ASSERT(mdb_list_next(vep) == NULL);
1634 		vep->ve_flags &= ~MDB_TGT_SPEC_DISABLED;
1635 		if (mdb_tgt_sespec_activate_one(t, vep->ve_se) < 0)
1636 			return (-1); /* errno is set for us */
1637 	}
1638 
1639 	return (0);
1640 }
1641 
1642 /*
1643  * Set the user disabled bit on the specified vespec, and move it to the idle
1644  * list.  If the vespec is not alone with its sespec or if it is a currently
1645  * matched event, we must always create a new idle sespec and move the vespec
1646  * there.  If the vespec was alone and active, we can simply idle the sespec.
1647  */
1648 int
1649 mdb_tgt_vespec_disable(mdb_tgt_t *t, int id)
1650 {
1651 	mdb_vespec_t *vep = mdb_tgt_vespec_lookup(t, id);
1652 	mdb_sespec_t *sep;
1653 
1654 	if (vep == NULL)
1655 		return (set_errno(EMDB_NOSESPEC));
1656 
1657 	if (vep->ve_flags & MDB_TGT_SPEC_DISABLED)
1658 		return (0); /* already disabled */
1659 
1660 	if (mdb_list_prev(vep) != NULL || mdb_list_next(vep) != NULL ||
1661 	    vep->ve_se->se_matched != NULL) {
1662 
1663 		sep = mdb_tgt_sespec_insert(t, vep->ve_se->se_ops, &t->t_idle);
1664 
1665 		mdb_list_delete(&vep->ve_se->se_velist, vep);
1666 		mdb_tgt_sespec_rele(t, vep->ve_se);
1667 
1668 		mdb_list_append(&sep->se_velist, vep);
1669 		mdb_tgt_sespec_hold(t, sep);
1670 
1671 		vep->ve_flags &= ~MDB_TGT_SPEC_MATCHED;
1672 		vep->ve_se = sep;
1673 
1674 	} else if (vep->ve_se->se_state != MDB_TGT_SPEC_IDLE)
1675 		mdb_tgt_sespec_idle_one(t, vep->ve_se, EMDB_SPECDIS);
1676 
1677 	vep->ve_flags |= MDB_TGT_SPEC_DISABLED;
1678 	return (0);
1679 }
1680 
1681 /*
1682  * Delete the given vespec.  We use the MDB_TGT_SPEC_DELETED flag to ensure that
1683  * multiple calls to mdb_tgt_vespec_delete to not attempt to decrement the
1684  * reference count on the vespec more than once.  This is because the vespec
1685  * may remain referenced if it is currently held by another routine (e.g.
1686  * vespec_iter), and so the user could attempt to delete it more than once
1687  * since it reference count will be >= 2 prior to the first delete call.
1688  */
1689 int
1690 mdb_tgt_vespec_delete(mdb_tgt_t *t, int id)
1691 {
1692 	mdb_vespec_t *vep = mdb_tgt_vespec_lookup(t, id);
1693 
1694 	if (vep == NULL)
1695 		return (set_errno(EMDB_NOSESPEC));
1696 
1697 	if (vep->ve_flags & MDB_TGT_SPEC_DELETED)
1698 		return (set_errno(EBUSY));
1699 
1700 	vep->ve_flags |= MDB_TGT_SPEC_DELETED;
1701 	mdb_tgt_vespec_rele(t, vep);
1702 	return (0);
1703 }
1704 
1705 int
1706 mdb_tgt_add_vbrkpt(mdb_tgt_t *t, uintptr_t addr,
1707     int spec_flags, mdb_tgt_se_f *func, void *p)
1708 {
1709 	return (t->t_ops->t_add_vbrkpt(t, addr, spec_flags, func, p));
1710 }
1711 
1712 int
1713 mdb_tgt_add_sbrkpt(mdb_tgt_t *t, const char *symbol,
1714     int spec_flags, mdb_tgt_se_f *func, void *p)
1715 {
1716 	return (t->t_ops->t_add_sbrkpt(t, symbol, spec_flags, func, p));
1717 }
1718 
1719 int
1720 mdb_tgt_add_pwapt(mdb_tgt_t *t, physaddr_t pa, size_t n, uint_t flags,
1721     int spec_flags, mdb_tgt_se_f *func, void *p)
1722 {
1723 	if ((flags & ~MDB_TGT_WA_RWX) || flags == 0) {
1724 		(void) set_errno(EINVAL);
1725 		return (0);
1726 	}
1727 
1728 	if (pa + n < pa) {
1729 		(void) set_errno(EMDB_WPRANGE);
1730 		return (0);
1731 	}
1732 
1733 	return (t->t_ops->t_add_pwapt(t, pa, n, flags, spec_flags, func, p));
1734 }
1735 
1736 int
1737 mdb_tgt_add_vwapt(mdb_tgt_t *t, uintptr_t va, size_t n, uint_t flags,
1738     int spec_flags, mdb_tgt_se_f *func, void *p)
1739 {
1740 	if ((flags & ~MDB_TGT_WA_RWX) || flags == 0) {
1741 		(void) set_errno(EINVAL);
1742 		return (0);
1743 	}
1744 
1745 	if (va + n < va) {
1746 		(void) set_errno(EMDB_WPRANGE);
1747 		return (0);
1748 	}
1749 
1750 	return (t->t_ops->t_add_vwapt(t, va, n, flags, spec_flags, func, p));
1751 }
1752 
1753 int
1754 mdb_tgt_add_iowapt(mdb_tgt_t *t, uintptr_t addr, size_t n, uint_t flags,
1755     int spec_flags, mdb_tgt_se_f *func, void *p)
1756 {
1757 	if ((flags & ~MDB_TGT_WA_RWX) || flags == 0) {
1758 		(void) set_errno(EINVAL);
1759 		return (0);
1760 	}
1761 
1762 	if (addr + n < addr) {
1763 		(void) set_errno(EMDB_WPRANGE);
1764 		return (0);
1765 	}
1766 
1767 	return (t->t_ops->t_add_iowapt(t, addr, n, flags, spec_flags, func, p));
1768 }
1769 
1770 int
1771 mdb_tgt_add_sysenter(mdb_tgt_t *t, int sysnum,
1772     int spec_flags, mdb_tgt_se_f *func, void *p)
1773 {
1774 	return (t->t_ops->t_add_sysenter(t, sysnum, spec_flags, func, p));
1775 }
1776 
1777 int
1778 mdb_tgt_add_sysexit(mdb_tgt_t *t, int sysnum,
1779     int spec_flags, mdb_tgt_se_f *func, void *p)
1780 {
1781 	return (t->t_ops->t_add_sysexit(t, sysnum, spec_flags, func, p));
1782 }
1783 
1784 int
1785 mdb_tgt_add_signal(mdb_tgt_t *t, int sig,
1786     int spec_flags, mdb_tgt_se_f *func, void *p)
1787 {
1788 	return (t->t_ops->t_add_signal(t, sig, spec_flags, func, p));
1789 }
1790 
1791 int
1792 mdb_tgt_add_fault(mdb_tgt_t *t, int flt,
1793     int spec_flags, mdb_tgt_se_f *func, void *p)
1794 {
1795 	return (t->t_ops->t_add_fault(t, flt, spec_flags, func, p));
1796 }
1797 
1798 int
1799 mdb_tgt_getareg(mdb_tgt_t *t, mdb_tgt_tid_t tid,
1800     const char *rname, mdb_tgt_reg_t *rp)
1801 {
1802 	return (t->t_ops->t_getareg(t, tid, rname, rp));
1803 }
1804 
1805 int
1806 mdb_tgt_putareg(mdb_tgt_t *t, mdb_tgt_tid_t tid,
1807     const char *rname, mdb_tgt_reg_t r)
1808 {
1809 	return (t->t_ops->t_putareg(t, tid, rname, r));
1810 }
1811 
1812 int
1813 mdb_tgt_stack_iter(mdb_tgt_t *t, const mdb_tgt_gregset_t *gregs,
1814     mdb_tgt_stack_f *cb, void *p)
1815 {
1816 	return (t->t_ops->t_stack_iter(t, gregs, cb, p));
1817 }
1818 
1819 int
1820 mdb_tgt_xdata_iter(mdb_tgt_t *t, mdb_tgt_xdata_f *func, void *private)
1821 {
1822 	mdb_xdata_t *xdp;
1823 
1824 	for (xdp = mdb_list_next(&t->t_xdlist); xdp; xdp = mdb_list_next(xdp)) {
1825 		if (func(private, xdp->xd_name, xdp->xd_desc,
1826 		    xdp->xd_copy(t, NULL, 0)) != 0)
1827 			break;
1828 	}
1829 
1830 	return (0);
1831 }
1832 
1833 ssize_t
1834 mdb_tgt_getxdata(mdb_tgt_t *t, const char *name, void *buf, size_t nbytes)
1835 {
1836 	mdb_xdata_t *xdp;
1837 
1838 	for (xdp = mdb_list_next(&t->t_xdlist); xdp; xdp = mdb_list_next(xdp)) {
1839 		if (strcmp(xdp->xd_name, name) == 0)
1840 			return (xdp->xd_copy(t, buf, nbytes));
1841 	}
1842 
1843 	return (set_errno(ENODATA));
1844 }
1845 
1846 long
1847 mdb_tgt_notsup()
1848 {
1849 	return (set_errno(EMDB_TGTNOTSUP));
1850 }
1851 
1852 void *
1853 mdb_tgt_null()
1854 {
1855 	(void) set_errno(EMDB_TGTNOTSUP);
1856 	return (NULL);
1857 }
1858 
1859 long
1860 mdb_tgt_nop()
1861 {
1862 	return (0L);
1863 }
1864 
1865 int
1866 mdb_tgt_xdata_insert(mdb_tgt_t *t, const char *name, const char *desc,
1867 	ssize_t (*copy)(mdb_tgt_t *, void *, size_t))
1868 {
1869 	mdb_xdata_t *xdp;
1870 
1871 	for (xdp = mdb_list_next(&t->t_xdlist); xdp; xdp = mdb_list_next(xdp)) {
1872 		if (strcmp(xdp->xd_name, name) == 0)
1873 			return (set_errno(EMDB_XDEXISTS));
1874 	}
1875 
1876 	xdp = mdb_alloc(sizeof (mdb_xdata_t), UM_SLEEP);
1877 	mdb_list_append(&t->t_xdlist, xdp);
1878 
1879 	xdp->xd_name = name;
1880 	xdp->xd_desc = desc;
1881 	xdp->xd_copy = copy;
1882 
1883 	return (0);
1884 }
1885 
1886 int
1887 mdb_tgt_xdata_delete(mdb_tgt_t *t, const char *name)
1888 {
1889 	mdb_xdata_t *xdp;
1890 
1891 	for (xdp = mdb_list_next(&t->t_xdlist); xdp; xdp = mdb_list_next(xdp)) {
1892 		if (strcmp(xdp->xd_name, name) == 0) {
1893 			mdb_list_delete(&t->t_xdlist, xdp);
1894 			mdb_free(xdp, sizeof (mdb_xdata_t));
1895 			return (0);
1896 		}
1897 	}
1898 
1899 	return (set_errno(EMDB_NOXD));
1900 }
1901 
1902 int
1903 mdb_tgt_sym_match(const GElf_Sym *sym, uint_t mask)
1904 {
1905 #if STT_NUM != (STT_IFUNC + 1)
1906 #error "STT_NUM has grown. update mdb_tgt_sym_match()"
1907 #endif
1908 
1909 	uchar_t s_bind = GELF_ST_BIND(sym->st_info);
1910 	uchar_t s_type = GELF_ST_TYPE(sym->st_info);
1911 
1912 	/*
1913 	 * In case you haven't already guessed, this relies on the bitmask
1914 	 * used by <mdb/mdb_target.h> and <libproc.h> for encoding symbol
1915 	 * type and binding matching the order of STB and STT constants
1916 	 * in <sys/elf.h>.  Changes to ELF must maintain binary
1917 	 * compatibility, so I think this is reasonably fair game.
1918 	 */
1919 	if (s_bind < STB_NUM && s_type < STT_IFUNC) {
1920 		uint_t type = (1 << (s_type + 8)) | (1 << s_bind);
1921 		return ((type & ~mask) == 0);
1922 	}
1923 
1924 	return (0); /* Unknown binding or type; fail to match */
1925 }
1926 
1927 void
1928 mdb_tgt_elf_export(mdb_gelf_file_t *gf)
1929 {
1930 	GElf_Xword d = 0, t = 0;
1931 	GElf_Addr b = 0, e = 0;
1932 	uint32_t m = 0;
1933 	mdb_var_t *v;
1934 
1935 	/*
1936 	 * Reset legacy adb variables based on the specified ELF object file
1937 	 * provided by the target.  We define these variables:
1938 	 *
1939 	 * b - the address of the data segment (first writeable Phdr)
1940 	 * d - the size of the data segment
1941 	 * e - the address of the entry point
1942 	 * m - the magic number identifying the file
1943 	 * t - the address of the text segment (first executable Phdr)
1944 	 */
1945 	if (gf != NULL) {
1946 		const GElf_Phdr *text = NULL, *data = NULL;
1947 		size_t i;
1948 
1949 		e = gf->gf_ehdr.e_entry;
1950 		bcopy(&gf->gf_ehdr.e_ident[EI_MAG0], &m, sizeof (m));
1951 
1952 		for (i = 0; i < gf->gf_npload; i++) {
1953 			if (text == NULL && (gf->gf_phdrs[i].p_flags & PF_X))
1954 				text = &gf->gf_phdrs[i];
1955 			if (data == NULL && (gf->gf_phdrs[i].p_flags & PF_W))
1956 				data = &gf->gf_phdrs[i];
1957 		}
1958 
1959 		if (text != NULL)
1960 			t = text->p_memsz;
1961 		if (data != NULL) {
1962 			b = data->p_vaddr;
1963 			d = data->p_memsz;
1964 		}
1965 	}
1966 
1967 	if ((v = mdb_nv_lookup(&mdb.m_nv, "b")) != NULL)
1968 		mdb_nv_set_value(v, b);
1969 	if ((v = mdb_nv_lookup(&mdb.m_nv, "d")) != NULL)
1970 		mdb_nv_set_value(v, d);
1971 	if ((v = mdb_nv_lookup(&mdb.m_nv, "e")) != NULL)
1972 		mdb_nv_set_value(v, e);
1973 	if ((v = mdb_nv_lookup(&mdb.m_nv, "m")) != NULL)
1974 		mdb_nv_set_value(v, m);
1975 	if ((v = mdb_nv_lookup(&mdb.m_nv, "t")) != NULL)
1976 		mdb_nv_set_value(v, t);
1977 }
1978 
1979 /*ARGSUSED*/
1980 void
1981 mdb_tgt_sespec_hold(mdb_tgt_t *t, mdb_sespec_t *sep)
1982 {
1983 	sep->se_refs++;
1984 	ASSERT(sep->se_refs != 0);
1985 }
1986 
1987 void
1988 mdb_tgt_sespec_rele(mdb_tgt_t *t, mdb_sespec_t *sep)
1989 {
1990 	ASSERT(sep->se_refs != 0);
1991 
1992 	if (--sep->se_refs == 0) {
1993 		mdb_dprintf(MDB_DBG_TGT, "destroying sespec %p\n", (void *)sep);
1994 		ASSERT(mdb_list_next(&sep->se_velist) == NULL);
1995 
1996 		if (sep->se_state != MDB_TGT_SPEC_IDLE) {
1997 			sep->se_ops->se_dtor(t, sep);
1998 			mdb_list_delete(&t->t_active, sep);
1999 		} else
2000 			mdb_list_delete(&t->t_idle, sep);
2001 
2002 		mdb_free(sep, sizeof (mdb_sespec_t));
2003 	}
2004 }
2005 
2006 mdb_sespec_t *
2007 mdb_tgt_sespec_insert(mdb_tgt_t *t, const mdb_se_ops_t *ops, mdb_list_t *list)
2008 {
2009 	mdb_sespec_t *sep = mdb_zalloc(sizeof (mdb_sespec_t), UM_SLEEP);
2010 
2011 	if (list == &t->t_active)
2012 		sep->se_state = MDB_TGT_SPEC_ACTIVE;
2013 	else
2014 		sep->se_state = MDB_TGT_SPEC_IDLE;
2015 
2016 	mdb_list_append(list, sep);
2017 	sep->se_ops = ops;
2018 	return (sep);
2019 }
2020 
2021 mdb_sespec_t *
2022 mdb_tgt_sespec_lookup_active(mdb_tgt_t *t, const mdb_se_ops_t *ops, void *args)
2023 {
2024 	mdb_sespec_t *sep;
2025 
2026 	for (sep = mdb_list_next(&t->t_active); sep; sep = mdb_list_next(sep)) {
2027 		if (sep->se_ops == ops && sep->se_ops->se_secmp(t, sep, args))
2028 			break;
2029 	}
2030 
2031 	return (sep);
2032 }
2033 
2034 mdb_sespec_t *
2035 mdb_tgt_sespec_lookup_idle(mdb_tgt_t *t, const mdb_se_ops_t *ops, void *args)
2036 {
2037 	mdb_sespec_t *sep;
2038 
2039 	for (sep = mdb_list_next(&t->t_idle); sep; sep = mdb_list_next(sep)) {
2040 		if (sep->se_ops == ops && sep->se_ops->se_vecmp(t,
2041 		    mdb_list_next(&sep->se_velist), args))
2042 			break;
2043 	}
2044 
2045 	return (sep);
2046 }
2047 
2048 /*ARGSUSED*/
2049 void
2050 mdb_tgt_vespec_hold(mdb_tgt_t *t, mdb_vespec_t *vep)
2051 {
2052 	vep->ve_refs++;
2053 	ASSERT(vep->ve_refs != 0);
2054 }
2055 
2056 void
2057 mdb_tgt_vespec_rele(mdb_tgt_t *t, mdb_vespec_t *vep)
2058 {
2059 	ASSERT(vep->ve_refs != 0);
2060 
2061 	if (--vep->ve_refs == 0) {
2062 		/*
2063 		 * Remove this vespec from the sespec's velist and decrement
2064 		 * the reference count on the sespec.
2065 		 */
2066 		mdb_list_delete(&vep->ve_se->se_velist, vep);
2067 		mdb_tgt_sespec_rele(t, vep->ve_se);
2068 
2069 		/*
2070 		 * If we are deleting the most recently assigned VID, reset
2071 		 * t_vepos or t_veneg as appropriate to re-use that number.
2072 		 * This could be enhanced to re-use any free number by
2073 		 * maintaining a bitmap or hash of the allocated IDs.
2074 		 */
2075 		if (vep->ve_id > 0 && t->t_vepos == vep->ve_id + 1)
2076 			t->t_vepos = vep->ve_id;
2077 		else if (vep->ve_id < 0 && t->t_veneg == -vep->ve_id + 1)
2078 			t->t_veneg = -vep->ve_id;
2079 
2080 		/*
2081 		 * Call the destructor to clean up ve_args, and then free
2082 		 * the actual vespec structure.
2083 		 */
2084 		vep->ve_dtor(vep);
2085 		mdb_free(vep, sizeof (mdb_vespec_t));
2086 
2087 		ASSERT(t->t_vecnt != 0);
2088 		t->t_vecnt--;
2089 	}
2090 }
2091 
2092 int
2093 mdb_tgt_vespec_insert(mdb_tgt_t *t, const mdb_se_ops_t *ops, int flags,
2094     mdb_tgt_se_f *func, void *data, void *args, void (*dtor)(mdb_vespec_t *))
2095 {
2096 	mdb_vespec_t *vep = mdb_zalloc(sizeof (mdb_vespec_t), UM_SLEEP);
2097 
2098 	int id, mult, *seqp;
2099 	mdb_sespec_t *sep;
2100 
2101 	/*
2102 	 * Make that only one MDB_TGT_SPEC_AUTO* bit is set in the new flags
2103 	 * value: extra bits are cleared according to order of precedence.
2104 	 */
2105 	if (flags & MDB_TGT_SPEC_AUTOSTOP)
2106 		flags &= ~(MDB_TGT_SPEC_AUTODEL | MDB_TGT_SPEC_AUTODIS);
2107 	else if (flags & MDB_TGT_SPEC_AUTODEL)
2108 		flags &= ~MDB_TGT_SPEC_AUTODIS;
2109 
2110 	/*
2111 	 * The TEMPORARY property always takes precedence over STICKY.
2112 	 */
2113 	if (flags & MDB_TGT_SPEC_TEMPORARY)
2114 		flags &= ~MDB_TGT_SPEC_STICKY;
2115 
2116 	/*
2117 	 * Find a matching sespec or create a new one on the appropriate list.
2118 	 * We always create a new sespec if the vespec is created disabled.
2119 	 */
2120 	if (flags & MDB_TGT_SPEC_DISABLED)
2121 		sep = mdb_tgt_sespec_insert(t, ops, &t->t_idle);
2122 	else if ((sep = mdb_tgt_sespec_lookup_active(t, ops, args)) == NULL &&
2123 	    (sep = mdb_tgt_sespec_lookup_idle(t, ops, args)) == NULL)
2124 		sep = mdb_tgt_sespec_insert(t, ops, &t->t_active);
2125 
2126 	/*
2127 	 * Generate a new ID for the vespec.  Increasing positive integers are
2128 	 * assigned to visible vespecs; decreasing negative integers are
2129 	 * assigned to hidden vespecs.  The target saves our most recent choice.
2130 	 */
2131 	if (flags & MDB_TGT_SPEC_INTERNAL) {
2132 		seqp = &t->t_veneg;
2133 		mult = -1;
2134 	} else {
2135 		seqp = &t->t_vepos;
2136 		mult = 1;
2137 	}
2138 
2139 	id = *seqp;
2140 
2141 	while (mdb_tgt_vespec_lookup(t, id * mult) != NULL)
2142 		id = MAX(id + 1, 1);
2143 
2144 	*seqp = MAX(id + 1, 1);
2145 
2146 	vep->ve_id = id * mult;
2147 	vep->ve_flags = flags & ~(MDB_TGT_SPEC_MATCHED | MDB_TGT_SPEC_DELETED);
2148 	vep->ve_se = sep;
2149 	vep->ve_callback = func;
2150 	vep->ve_data = data;
2151 	vep->ve_args = args;
2152 	vep->ve_dtor = dtor;
2153 
2154 	mdb_list_append(&sep->se_velist, vep);
2155 	mdb_tgt_sespec_hold(t, sep);
2156 
2157 	mdb_tgt_vespec_hold(t, vep);
2158 	t->t_vecnt++;
2159 
2160 	/*
2161 	 * If this vespec is the first reference to the sespec and it's active,
2162 	 * then it is newly created and we should attempt to initialize it.
2163 	 * If se_ctor fails, then move the sespec back to the idle list.
2164 	 */
2165 	if (sep->se_refs == 1 && sep->se_state == MDB_TGT_SPEC_ACTIVE &&
2166 	    sep->se_ops->se_ctor(t, sep, vep->ve_args) == -1) {
2167 
2168 		mdb_list_delete(&t->t_active, sep);
2169 		mdb_list_append(&t->t_idle, sep);
2170 
2171 		sep->se_state = MDB_TGT_SPEC_IDLE;
2172 		sep->se_errno = errno;
2173 		sep->se_data = NULL;
2174 	}
2175 
2176 	/*
2177 	 * If the sespec is active and the target is currently running (because
2178 	 * we grabbed it using PGRAB_NOSTOP), then go ahead and attempt to arm
2179 	 * the sespec so it will take effect immediately.
2180 	 */
2181 	if (sep->se_state == MDB_TGT_SPEC_ACTIVE &&
2182 	    t->t_status.st_state == MDB_TGT_RUNNING)
2183 		mdb_tgt_sespec_arm_one(t, sep);
2184 
2185 	mdb_dprintf(MDB_DBG_TGT, "inserted [ %d ] sep=%p refs=%u state=%d\n",
2186 	    vep->ve_id, (void *)sep, sep->se_refs, sep->se_state);
2187 
2188 	return (vep->ve_id);
2189 }
2190 
2191 /*
2192  * Search the target's active, idle, and disabled lists for the vespec matching
2193  * the specified VID, and return a pointer to it, or NULL if no match is found.
2194  */
2195 mdb_vespec_t *
2196 mdb_tgt_vespec_lookup(mdb_tgt_t *t, int vid)
2197 {
2198 	mdb_sespec_t *sep;
2199 	mdb_vespec_t *vep;
2200 
2201 	if (vid == 0)
2202 		return (NULL); /* 0 is never a valid VID */
2203 
2204 	for (sep = mdb_list_next(&t->t_active); sep; sep = mdb_list_next(sep)) {
2205 		for (vep = mdb_list_next(&sep->se_velist); vep;
2206 		    vep = mdb_list_next(vep)) {
2207 			if (vep->ve_id == vid)
2208 				return (vep);
2209 		}
2210 	}
2211 
2212 	for (sep = mdb_list_next(&t->t_idle); sep; sep = mdb_list_next(sep)) {
2213 		for (vep = mdb_list_next(&sep->se_velist); vep;
2214 		    vep = mdb_list_next(vep)) {
2215 			if (vep->ve_id == vid)
2216 				return (vep);
2217 		}
2218 	}
2219 
2220 	return (NULL);
2221 }
2222 
2223 /*ARGSUSED*/
2224 void
2225 no_ve_dtor(mdb_vespec_t *vep)
2226 {
2227 	/* default destructor does nothing */
2228 }
2229 
2230 /*ARGSUSED*/
2231 void
2232 no_se_f(mdb_tgt_t *t, int vid, void *data)
2233 {
2234 	/* default callback does nothing */
2235 }
2236 
2237 /*ARGSUSED*/
2238 void
2239 no_se_dtor(mdb_tgt_t *t, mdb_sespec_t *sep)
2240 {
2241 	/* default destructor does nothing */
2242 }
2243 
2244 /*ARGSUSED*/
2245 int
2246 no_se_secmp(mdb_tgt_t *t, mdb_sespec_t *sep, void *args)
2247 {
2248 	return (sep->se_data == args);
2249 }
2250 
2251 /*ARGSUSED*/
2252 int
2253 no_se_vecmp(mdb_tgt_t *t, mdb_vespec_t *vep, void *args)
2254 {
2255 	return (vep->ve_args == args);
2256 }
2257 
2258 /*ARGSUSED*/
2259 int
2260 no_se_arm(mdb_tgt_t *t, mdb_sespec_t *sep)
2261 {
2262 	return (0); /* return success */
2263 }
2264 
2265 /*ARGSUSED*/
2266 int
2267 no_se_disarm(mdb_tgt_t *t, mdb_sespec_t *sep)
2268 {
2269 	return (0); /* return success */
2270 }
2271 
2272 /*ARGSUSED*/
2273 int
2274 no_se_cont(mdb_tgt_t *t, mdb_sespec_t *sep, mdb_tgt_status_t *tsp)
2275 {
2276 	if (tsp != &t->t_status)
2277 		bcopy(&t->t_status, tsp, sizeof (mdb_tgt_status_t));
2278 
2279 	return (0); /* return success */
2280 }
2281 
2282 int
2283 mdb_tgt_register_dcmds(mdb_tgt_t *t, const mdb_dcmd_t *dcp, int flags)
2284 {
2285 	int fail = 0;
2286 
2287 	for (; dcp->dc_name != NULL; dcp++) {
2288 		if (mdb_module_add_dcmd(t->t_module, dcp, flags) == -1) {
2289 			warn("failed to add dcmd %s", dcp->dc_name);
2290 			fail++;
2291 		}
2292 	}
2293 
2294 	return (fail > 0 ? -1 : 0);
2295 }
2296 
2297 int
2298 mdb_tgt_register_walkers(mdb_tgt_t *t, const mdb_walker_t *wp, int flags)
2299 {
2300 	int fail = 0;
2301 
2302 	for (; wp->walk_name != NULL; wp++) {
2303 		if (mdb_module_add_walker(t->t_module, wp, flags) == -1) {
2304 			warn("failed to add walk %s", wp->walk_name);
2305 			fail++;
2306 		}
2307 	}
2308 
2309 	return (fail > 0 ? -1 : 0);
2310 }
2311 
2312 void
2313 mdb_tgt_register_regvars(mdb_tgt_t *t, const mdb_tgt_regdesc_t *rdp,
2314     const mdb_nv_disc_t *disc, int flags)
2315 {
2316 	for (; rdp->rd_name != NULL; rdp++) {
2317 		if (!(rdp->rd_flags & MDB_TGT_R_EXPORT))
2318 			continue; /* Don't export register as a variable */
2319 
2320 		if (rdp->rd_flags & MDB_TGT_R_RDONLY)
2321 			flags |= MDB_NV_RDONLY;
2322 
2323 		(void) mdb_nv_insert(&mdb.m_nv, rdp->rd_name, disc,
2324 		    (uintptr_t)t, MDB_NV_PERSIST | flags);
2325 	}
2326 }
2327