1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
22  */
23 
24 #include "defs.h"
25 #include "tables.h"
26 #include <fcntl.h>
27 #include <sys/un.h>
28 
29 static void	initlog(void);
30 static void	run_timeouts(void);
31 
32 static void	advertise(struct sockaddr_in6 *sin6, struct phyint *pi,
33 		    boolean_t no_prefixes);
34 static void	solicit(struct sockaddr_in6 *sin6, struct phyint *pi);
35 static void	initifs(boolean_t first);
36 static void	check_if_removed(struct phyint *pi);
37 static void	loopback_ra_enqueue(struct phyint *pi,
38 		    struct nd_router_advert *ra, int len);
39 static void	loopback_ra_dequeue(void);
40 static void	check_daemonize(void);
41 
42 struct in6_addr all_nodes_mcast = { { 0xff, 0x2, 0x0, 0x0,
43 				    0x0, 0x0, 0x0, 0x0,
44 				    0x0, 0x0, 0x0, 0x0,
45 				    0x0, 0x0, 0x0, 0x1 } };
46 
47 struct in6_addr all_routers_mcast = { { 0xff, 0x2, 0x0, 0x0,
48 				    0x0, 0x0, 0x0, 0x0,
49 				    0x0, 0x0, 0x0, 0x0,
50 				    0x0, 0x0, 0x0, 0x2 } };
51 
52 static struct sockaddr_in6 v6allnodes = { AF_INET6, 0, 0,
53 				    { 0xff, 0x2, 0x0, 0x0,
54 				    0x0, 0x0, 0x0, 0x0,
55 				    0x0, 0x0, 0x0, 0x0,
56 				    0x0, 0x0, 0x0, 0x1 } };
57 
58 static struct sockaddr_in6 v6allrouters = { AF_INET6, 0, 0,
59 				    { 0xff, 0x2, 0x0, 0x0,
60 				    0x0, 0x0, 0x0, 0x0,
61 				    0x0, 0x0, 0x0, 0x0,
62 				    0x0, 0x0, 0x0, 0x2 } };
63 
64 static char **argv0;		/* Saved for re-exec on SIGHUP */
65 
66 static uint64_t packet[(IP_MAXPACKET + 1)/8];
67 
68 static int	show_ifs = 0;
69 static boolean_t	already_daemonized = _B_FALSE;
70 int		debug = 0;
71 int		no_loopback = 0; /* Do not send RA packets to ourselves */
72 
73 /*
74  * Size of routing socket message used by in.ndpd which includes the header,
75  * space for the RTA_DST, RTA_GATEWAY and RTA_NETMASK (each a sockaddr_in6)
76  * plus space for the RTA_IFP (a sockaddr_dl).
77  */
78 #define	NDP_RTM_MSGLEN	sizeof (struct rt_msghdr) +	\
79 			sizeof (struct sockaddr_in6) +	\
80 			sizeof (struct sockaddr_in6) +	\
81 			sizeof (struct sockaddr_in6) +	\
82 			sizeof (struct sockaddr_dl)
83 
84 /*
85  * These are referenced externally in tables.c in order to fill in the
86  * dynamic portions of the routing socket message and then to send the message
87  * itself.
88  */
89 int	rtsock = -1;			/* Routing socket */
90 struct	rt_msghdr	*rt_msg;	/* Routing socket message */
91 struct	sockaddr_in6	*rta_gateway;	/* RTA_GATEWAY sockaddr */
92 struct	sockaddr_dl	*rta_ifp;	/* RTA_IFP sockaddr */
93 
94 /*
95  * These sockets are used internally in this file.
96  */
97 static int	mibsock = -1;			/* mib request socket */
98 static int	cmdsock = -1;			/* command socket */
99 
100 static	int	ndpd_setup_cmd_listener(void);
101 static	void	ndpd_cmd_handler(int);
102 static	int	ndpd_process_cmd(int, ipadm_ndpd_msg_t *);
103 static	int	ndpd_send_error(int, int);
104 static	int	ndpd_set_autoconf(const char *, boolean_t);
105 static	int	ndpd_create_addrs(const char *, struct sockaddr_in6, int,
106     boolean_t, boolean_t, char *);
107 static	int	ndpd_delete_addrs(const char *);
108 static	int	phyint_check_ipadm_intfid(struct phyint *);
109 
110 /*
111  * Return the current time in milliseconds truncated to
112  * fit in an integer.
113  */
114 uint_t
115 getcurrenttime(void)
116 {
117 	struct timeval tp;
118 
119 	if (gettimeofday(&tp, NULL) < 0) {
120 		logperror("getcurrenttime: gettimeofday failed");
121 		exit(1);
122 	}
123 	return (tp.tv_sec * 1000 + tp.tv_usec / 1000);
124 }
125 
126 /*
127  * Output a preformated packet from the packet[] buffer.
128  */
129 static void
130 sendpacket(struct sockaddr_in6 *sin6, int sock, int size, int flags)
131 {
132 	int cc;
133 	char abuf[INET6_ADDRSTRLEN];
134 
135 	cc = sendto(sock, (char *)packet, size, flags,
136 	    (struct sockaddr *)sin6, sizeof (*sin6));
137 	if (cc < 0 || cc != size) {
138 		if (cc < 0) {
139 			logperror("sendpacket: sendto");
140 		}
141 		logmsg(LOG_ERR, "sendpacket: wrote %s %d chars, ret=%d\n",
142 		    inet_ntop(sin6->sin6_family,
143 		    (void *)&sin6->sin6_addr,
144 		    abuf, sizeof (abuf)),
145 		    size, cc);
146 	}
147 }
148 
149 /*
150  * If possible, place an ND_OPT_SOURCE_LINKADDR option at `optp'.
151  * Return the number of bytes placed in the option.
152  */
153 static uint_t
154 add_opt_lla(struct phyint *pi, struct nd_opt_lla *optp)
155 {
156 	uint_t optlen;
157 	uint_t hwaddrlen;
158 	struct lifreq lifr;
159 
160 	/* If this phyint doesn't have a link-layer address, bail */
161 	if (phyint_get_lla(pi, &lifr) == -1)
162 		return (0);
163 
164 	hwaddrlen = lifr.lifr_nd.lnr_hdw_len;
165 	/* roundup to multiple of 8 and make padding zero */
166 	optlen = ((sizeof (struct nd_opt_hdr) + hwaddrlen + 7) / 8) * 8;
167 	bzero(optp, optlen);
168 	optp->nd_opt_lla_type = ND_OPT_SOURCE_LINKADDR;
169 	optp->nd_opt_lla_len = optlen / 8;
170 	bcopy(lifr.lifr_nd.lnr_hdw_addr, optp->nd_opt_lla_hdw_addr, hwaddrlen);
171 
172 	return (optlen);
173 }
174 
175 /* Send a Router Solicitation */
176 static void
177 solicit(struct sockaddr_in6 *sin6, struct phyint *pi)
178 {
179 	int packetlen = 0;
180 	struct	nd_router_solicit *rs = (struct nd_router_solicit *)packet;
181 	char *pptr = (char *)packet;
182 
183 	rs->nd_rs_type = ND_ROUTER_SOLICIT;
184 	rs->nd_rs_code = 0;
185 	rs->nd_rs_cksum = htons(0);
186 	rs->nd_rs_reserved = htonl(0);
187 
188 	packetlen += sizeof (*rs);
189 	pptr += sizeof (*rs);
190 
191 	/* add options */
192 	packetlen += add_opt_lla(pi, (struct nd_opt_lla *)pptr);
193 
194 	if (debug & D_PKTOUT) {
195 		print_route_sol("Sending solicitation to ", pi, rs, packetlen,
196 		    sin6);
197 	}
198 	sendpacket(sin6, pi->pi_sock, packetlen, 0);
199 }
200 
201 /*
202  * Send a (set of) Router Advertisements and feed them back to ourselves
203  * for processing. Unless no_prefixes is set all prefixes are included.
204  * If there are too many prefix options to fit in one packet multiple
205  * packets will be sent - each containing a subset of the prefix options.
206  */
207 static void
208 advertise(struct sockaddr_in6 *sin6, struct phyint *pi, boolean_t no_prefixes)
209 {
210 	struct	nd_opt_prefix_info *po;
211 	char *pptr = (char *)packet;
212 	struct nd_router_advert *ra;
213 	struct adv_prefix *adv_pr;
214 	int packetlen = 0;
215 
216 	ra = (struct nd_router_advert *)pptr;
217 	ra->nd_ra_type = ND_ROUTER_ADVERT;
218 	ra->nd_ra_code = 0;
219 	ra->nd_ra_cksum = htons(0);
220 	ra->nd_ra_curhoplimit = pi->pi_AdvCurHopLimit;
221 	ra->nd_ra_flags_reserved = 0;
222 	if (pi->pi_AdvManagedFlag)
223 		ra->nd_ra_flags_reserved |= ND_RA_FLAG_MANAGED;
224 	if (pi->pi_AdvOtherConfigFlag)
225 		ra->nd_ra_flags_reserved |= ND_RA_FLAG_OTHER;
226 
227 	if (pi->pi_adv_state == FINAL_ADV)
228 		ra->nd_ra_router_lifetime = htons(0);
229 	else
230 		ra->nd_ra_router_lifetime = htons(pi->pi_AdvDefaultLifetime);
231 	ra->nd_ra_reachable = htonl(pi->pi_AdvReachableTime);
232 	ra->nd_ra_retransmit = htonl(pi->pi_AdvRetransTimer);
233 
234 	packetlen = sizeof (*ra);
235 	pptr += sizeof (*ra);
236 
237 	if (pi->pi_adv_state == FINAL_ADV) {
238 		if (debug & D_PKTOUT) {
239 			print_route_adv("Sending advert (FINAL) to ", pi,
240 			    ra, packetlen, sin6);
241 		}
242 		sendpacket(sin6, pi->pi_sock, packetlen, 0);
243 		/* Feed packet back in for router operation */
244 		loopback_ra_enqueue(pi, ra, packetlen);
245 		return;
246 	}
247 
248 	/* add options */
249 	packetlen += add_opt_lla(pi, (struct nd_opt_lla *)pptr);
250 	pptr = (char *)packet + packetlen;
251 
252 	if (pi->pi_AdvLinkMTU != 0) {
253 		struct nd_opt_mtu *mo = (struct nd_opt_mtu *)pptr;
254 
255 		mo->nd_opt_mtu_type = ND_OPT_MTU;
256 		mo->nd_opt_mtu_len = sizeof (struct nd_opt_mtu) / 8;
257 		mo->nd_opt_mtu_reserved = 0;
258 		mo->nd_opt_mtu_mtu = htonl(pi->pi_AdvLinkMTU);
259 
260 		packetlen += sizeof (struct nd_opt_mtu);
261 		pptr += sizeof (struct nd_opt_mtu);
262 	}
263 
264 	if (no_prefixes) {
265 		if (debug & D_PKTOUT) {
266 			print_route_adv("Sending advert to ", pi,
267 			    ra, packetlen, sin6);
268 		}
269 		sendpacket(sin6, pi->pi_sock, packetlen, 0);
270 		/* Feed packet back in for router operation */
271 		loopback_ra_enqueue(pi, ra, packetlen);
272 		return;
273 	}
274 
275 	po = (struct nd_opt_prefix_info *)pptr;
276 	for (adv_pr = pi->pi_adv_prefix_list; adv_pr != NULL;
277 	    adv_pr = adv_pr->adv_pr_next) {
278 		if (!adv_pr->adv_pr_AdvOnLinkFlag &&
279 		    !adv_pr->adv_pr_AdvAutonomousFlag) {
280 			continue;
281 		}
282 
283 		/*
284 		 * If the prefix doesn't fit in packet send
285 		 * what we have so far and start with new packet.
286 		 */
287 		if (packetlen + sizeof (*po) >
288 		    pi->pi_LinkMTU - sizeof (struct ip6_hdr)) {
289 			if (debug & D_PKTOUT) {
290 				print_route_adv("Sending advert "
291 				    "(FRAG) to ",
292 				    pi, ra, packetlen, sin6);
293 			}
294 			sendpacket(sin6, pi->pi_sock, packetlen, 0);
295 			/* Feed packet back in for router operation */
296 			loopback_ra_enqueue(pi, ra, packetlen);
297 			packetlen = sizeof (*ra);
298 			pptr = (char *)packet + sizeof (*ra);
299 			po = (struct nd_opt_prefix_info *)pptr;
300 		}
301 		po->nd_opt_pi_type = ND_OPT_PREFIX_INFORMATION;
302 		po->nd_opt_pi_len = sizeof (*po)/8;
303 		po->nd_opt_pi_flags_reserved = 0;
304 		if (adv_pr->adv_pr_AdvOnLinkFlag) {
305 			po->nd_opt_pi_flags_reserved |=
306 			    ND_OPT_PI_FLAG_ONLINK;
307 		}
308 		if (adv_pr->adv_pr_AdvAutonomousFlag) {
309 			po->nd_opt_pi_flags_reserved |=
310 			    ND_OPT_PI_FLAG_AUTO;
311 		}
312 		po->nd_opt_pi_prefix_len = adv_pr->adv_pr_prefix_len;
313 		/*
314 		 * If both Adv*Expiration and Adv*Lifetime are
315 		 * set we prefer the former and make the lifetime
316 		 * decrement in real time.
317 		 */
318 		if (adv_pr->adv_pr_AdvValidRealTime) {
319 			po->nd_opt_pi_valid_time =
320 			    htonl(adv_pr->adv_pr_AdvValidExpiration);
321 		} else {
322 			po->nd_opt_pi_valid_time =
323 			    htonl(adv_pr->adv_pr_AdvValidLifetime);
324 		}
325 		if (adv_pr->adv_pr_AdvPreferredRealTime) {
326 			po->nd_opt_pi_preferred_time =
327 			    htonl(adv_pr->adv_pr_AdvPreferredExpiration);
328 		} else {
329 			po->nd_opt_pi_preferred_time =
330 			    htonl(adv_pr->adv_pr_AdvPreferredLifetime);
331 		}
332 		po->nd_opt_pi_reserved2 = htonl(0);
333 		po->nd_opt_pi_prefix = adv_pr->adv_pr_prefix;
334 
335 		po++;
336 		packetlen += sizeof (*po);
337 	}
338 	if (debug & D_PKTOUT) {
339 		print_route_adv("Sending advert to ", pi,
340 		    ra, packetlen, sin6);
341 	}
342 	sendpacket(sin6, pi->pi_sock, packetlen, 0);
343 	/* Feed packet back in for router operation */
344 	loopback_ra_enqueue(pi, ra, packetlen);
345 }
346 
347 /* Poll support */
348 static int		pollfd_num = 0;	/* Allocated and initialized */
349 static struct pollfd	*pollfds = NULL;
350 
351 /*
352  * Add fd to the set being polled. Returns 0 if ok; -1 if failed.
353  */
354 int
355 poll_add(int fd)
356 {
357 	int i;
358 	int new_num;
359 	struct pollfd *newfds;
360 
361 	/* Check if already present */
362 	for (i = 0; i < pollfd_num; i++) {
363 		if (pollfds[i].fd == fd)
364 			return (0);
365 	}
366 	/* Check for empty spot already present */
367 	for (i = 0; i < pollfd_num; i++) {
368 		if (pollfds[i].fd == -1) {
369 			pollfds[i].fd = fd;
370 			return (0);
371 		}
372 	}
373 
374 	/* Allocate space for 32 more fds and initialize to -1 */
375 	new_num = pollfd_num + 32;
376 	newfds = realloc(pollfds, new_num * sizeof (struct pollfd));
377 	if (newfds == NULL) {
378 		logperror("realloc");
379 		return (-1);
380 	}
381 
382 	newfds[pollfd_num].fd = fd;
383 	newfds[pollfd_num++].events = POLLIN;
384 
385 	for (i = pollfd_num; i < new_num; i++) {
386 		newfds[i].fd = -1;
387 		newfds[i].events = POLLIN;
388 	}
389 	pollfd_num = new_num;
390 	pollfds = newfds;
391 	return (0);
392 }
393 
394 /*
395  * Remove fd from the set being polled. Returns 0 if ok; -1 if failed.
396  */
397 int
398 poll_remove(int fd)
399 {
400 	int i;
401 
402 	/* Check if already present */
403 	for (i = 0; i < pollfd_num; i++) {
404 		if (pollfds[i].fd == fd) {
405 			pollfds[i].fd = -1;
406 			return (0);
407 		}
408 	}
409 	return (-1);
410 }
411 
412 /*
413  * Extract information about the ifname (either a physical interface and
414  * the ":0" logical interface or just a logical interface).
415  * If the interface (still) exists in kernel set pr_in_use
416  * for caller to be able to detect interfaces that are removed.
417  * Starts sending advertisements/solicitations when new physical interfaces
418  * are detected.
419  */
420 static void
421 if_process(int s, char *ifname, boolean_t first)
422 {
423 	struct lifreq lifr;
424 	struct phyint *pi;
425 	struct prefix *pr;
426 	char *cp;
427 	char phyintname[LIFNAMSIZ + 1];
428 
429 	if (debug & D_IFSCAN)
430 		logmsg(LOG_DEBUG, "if_process(%s)\n", ifname);
431 
432 	(void) strncpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
433 	lifr.lifr_name[sizeof (lifr.lifr_name) - 1] = '\0';
434 	if (ioctl(s, SIOCGLIFFLAGS, (char *)&lifr) < 0) {
435 		if (errno == ENXIO) {
436 			/*
437 			 * Interface has disappeared
438 			 */
439 			return;
440 		}
441 		logperror("if_process: ioctl (get interface flags)");
442 		return;
443 	}
444 
445 	/*
446 	 * Ignore loopback, point-to-multipoint and VRRP interfaces.
447 	 * The IP addresses over VRRP interfaces cannot be auto-configured.
448 	 * Point-to-point interfaces always have IFF_MULTICAST set.
449 	 */
450 	if (!(lifr.lifr_flags & IFF_MULTICAST) ||
451 	    (lifr.lifr_flags & (IFF_LOOPBACK|IFF_VRRP))) {
452 		return;
453 	}
454 
455 	if (!(lifr.lifr_flags & IFF_IPV6))
456 		return;
457 
458 	(void) strncpy(phyintname, ifname, sizeof (phyintname));
459 	phyintname[sizeof (phyintname) - 1] = '\0';
460 	if ((cp = strchr(phyintname, IF_SEPARATOR)) != NULL) {
461 		*cp = '\0';
462 	}
463 
464 	pi = phyint_lookup(phyintname);
465 	if (pi == NULL) {
466 		pi = phyint_create(phyintname);
467 		if (pi == NULL) {
468 			logmsg(LOG_ERR, "if_process: out of memory\n");
469 			return;
470 		}
471 		/*
472 		 * if in.ndpd is restarted, check with ipmgmtd if there is any
473 		 * interface id to be configured for this interface.
474 		 */
475 		if (first) {
476 			if (phyint_check_ipadm_intfid(pi) == -1)
477 				logmsg(LOG_ERR, "Could not get ipadm info\n");
478 		}
479 	} else {
480 		/*
481 		 * if the phyint already exists, synchronize it with
482 		 * the kernel state. For a newly created phyint, phyint_create
483 		 * calls phyint_init_from_k().
484 		 */
485 		(void) phyint_init_from_k(pi);
486 	}
487 	if (pi->pi_sock == -1 && !(pi->pi_kernel_state & PI_PRESENT)) {
488 		/* Interface is not yet present */
489 		if (debug & D_PHYINT) {
490 			logmsg(LOG_DEBUG, "if_process: interface not yet "
491 			    "present %s\n", pi->pi_name);
492 		}
493 		return;
494 	}
495 
496 	if (pi->pi_sock != -1) {
497 		if (poll_add(pi->pi_sock) == -1) {
498 			/*
499 			 * reset state.
500 			 */
501 			phyint_cleanup(pi);
502 		}
503 	}
504 
505 	/*
506 	 * Check if IFF_ROUTER has been turned off in kernel in which
507 	 * case we have to turn off AdvSendAdvertisements.
508 	 * The kernel will automatically turn off IFF_ROUTER if
509 	 * ip6_forwarding is turned off.
510 	 * Note that we do not switch back should IFF_ROUTER be turned on.
511 	 */
512 	if (!first &&
513 	    pi->pi_AdvSendAdvertisements && !(pi->pi_flags & IFF_ROUTER)) {
514 		logmsg(LOG_INFO, "No longer a router on %s\n", pi->pi_name);
515 		check_to_advertise(pi, START_FINAL_ADV);
516 
517 		pi->pi_AdvSendAdvertisements = 0;
518 		pi->pi_sol_state = NO_SOLICIT;
519 	}
520 
521 	/*
522 	 * Send advertisments and solicitation only if the interface is
523 	 * present in the kernel.
524 	 */
525 	if (pi->pi_kernel_state & PI_PRESENT) {
526 
527 		if (pi->pi_AdvSendAdvertisements) {
528 			if (pi->pi_adv_state == NO_ADV)
529 				check_to_advertise(pi, START_INIT_ADV);
530 		} else {
531 			if (pi->pi_sol_state == NO_SOLICIT)
532 				check_to_solicit(pi, START_INIT_SOLICIT);
533 		}
534 	}
535 
536 	/*
537 	 * Track static kernel prefixes to prevent in.ndpd from clobbering
538 	 * them by creating a struct prefix for each prefix detected in the
539 	 * kernel.
540 	 */
541 	pr = prefix_lookup_name(pi, ifname);
542 	if (pr == NULL) {
543 		pr = prefix_create_name(pi, ifname);
544 		if (pr == NULL) {
545 			logmsg(LOG_ERR, "if_process: out of memory\n");
546 			return;
547 		}
548 		if (prefix_init_from_k(pr) == -1) {
549 			prefix_delete(pr);
550 			return;
551 		}
552 	}
553 	/* Detect prefixes which are removed */
554 	if (pr->pr_kernel_state != 0)
555 		pr->pr_in_use = _B_TRUE;
556 
557 	if ((lifr.lifr_flags & IFF_DUPLICATE) &&
558 	    !(lifr.lifr_flags & IFF_DHCPRUNNING) &&
559 	    (pr->pr_flags & IFF_TEMPORARY)) {
560 		in6_addr_t *token;
561 		int i;
562 		char abuf[INET6_ADDRSTRLEN];
563 
564 		if (++pr->pr_attempts >= MAX_DAD_FAILURES) {
565 			logmsg(LOG_ERR, "%s: token %s is duplicate after %d "
566 			    "attempts; disabling temporary addresses on %s",
567 			    pr->pr_name, inet_ntop(AF_INET6,
568 			    (void *)&pi->pi_tmp_token, abuf, sizeof (abuf)),
569 			    pr->pr_attempts, pi->pi_name);
570 			pi->pi_TmpAddrsEnabled = 0;
571 			tmptoken_delete(pi);
572 			prefix_delete(pr);
573 			return;
574 		}
575 		logmsg(LOG_WARNING, "%s: token %s is duplicate; trying again",
576 		    pr->pr_name, inet_ntop(AF_INET6, (void *)&pi->pi_tmp_token,
577 		    abuf, sizeof (abuf)));
578 		if (!tmptoken_create(pi)) {
579 			prefix_delete(pr);
580 			return;
581 		}
582 		token = &pi->pi_tmp_token;
583 		for (i = 0; i < 16; i++) {
584 			/*
585 			 * prefix_create ensures that pr_prefix has all-zero
586 			 * bits after prefixlen.
587 			 */
588 			pr->pr_address.s6_addr[i] = pr->pr_prefix.s6_addr[i] |
589 			    token->s6_addr[i];
590 		}
591 		if (prefix_lookup_addr_match(pr) != NULL) {
592 			prefix_delete(pr);
593 			return;
594 		}
595 		pr->pr_CreateTime = getcurrenttime() / MILLISEC;
596 		/*
597 		 * We've got a new token.  Clearing PR_AUTO causes
598 		 * prefix_update_k to bring the interface up and set the
599 		 * address.
600 		 */
601 		pr->pr_kernel_state &= ~PR_AUTO;
602 		prefix_update_k(pr);
603 	}
604 }
605 
606 static int ifsock = -1;
607 
608 /*
609  * Scan all interfaces to detect changes as well as new and deleted intefaces
610  * 'first' is set for the initial call only. Do not effect anything.
611  */
612 static void
613 initifs(boolean_t first)
614 {
615 	char *buf;
616 	int bufsize;
617 	int numifs;
618 	int n;
619 	struct lifnum lifn;
620 	struct lifconf lifc;
621 	struct lifreq *lifr;
622 	struct phyint *pi;
623 	struct phyint *next_pi;
624 	struct prefix *pr;
625 
626 	if (debug & D_IFSCAN)
627 		logmsg(LOG_DEBUG, "Reading interface configuration\n");
628 	if (ifsock < 0) {
629 		ifsock = socket(AF_INET6, SOCK_DGRAM, 0);
630 		if (ifsock < 0) {
631 			logperror("initifs: socket");
632 			return;
633 		}
634 	}
635 	lifn.lifn_family = AF_INET6;
636 	lifn.lifn_flags = LIFC_NOXMIT | LIFC_TEMPORARY;
637 	if (ioctl(ifsock, SIOCGLIFNUM, (char *)&lifn) < 0) {
638 		logperror("initifs: ioctl (get interface numbers)");
639 		return;
640 	}
641 	numifs = lifn.lifn_count;
642 	bufsize = numifs * sizeof (struct lifreq);
643 
644 	buf = (char *)malloc(bufsize);
645 	if (buf == NULL) {
646 		logmsg(LOG_ERR, "initifs: out of memory\n");
647 		return;
648 	}
649 
650 	/*
651 	 * Mark the interfaces so that we can find phyints and prefixes
652 	 * which have disappeared from the kernel.
653 	 * if_process will set pr_in_use when it finds the interface
654 	 * in the kernel.
655 	 */
656 	for (pi = phyints; pi != NULL; pi = pi->pi_next) {
657 		/*
658 		 * Before re-examining the state of the interfaces,
659 		 * PI_PRESENT should be cleared from pi_kernel_state.
660 		 */
661 		pi->pi_kernel_state &= ~PI_PRESENT;
662 		for (pr = pi->pi_prefix_list; pr != NULL; pr = pr->pr_next) {
663 			pr->pr_in_use = _B_FALSE;
664 		}
665 	}
666 
667 	lifc.lifc_family = AF_INET6;
668 	lifc.lifc_flags = LIFC_NOXMIT | LIFC_TEMPORARY;
669 	lifc.lifc_len = bufsize;
670 	lifc.lifc_buf = buf;
671 
672 	if (ioctl(ifsock, SIOCGLIFCONF, (char *)&lifc) < 0) {
673 		logperror("initifs: ioctl (get interface configuration)");
674 		free(buf);
675 		return;
676 	}
677 
678 	lifr = (struct lifreq *)lifc.lifc_req;
679 	for (n = lifc.lifc_len / sizeof (struct lifreq); n > 0; n--, lifr++)
680 		if_process(ifsock, lifr->lifr_name, first);
681 	free(buf);
682 
683 	/*
684 	 * Detect phyints that have been removed from the kernel.
685 	 * Since we can't recreate it here (would require ifconfig plumb
686 	 * logic) we just terminate use of that phyint.
687 	 */
688 	for (pi = phyints; pi != NULL; pi = next_pi) {
689 		next_pi = pi->pi_next;
690 		/*
691 		 * If interface (still) exists in kernel, set
692 		 * pi_state to indicate that.
693 		 */
694 		if (pi->pi_kernel_state & PI_PRESENT) {
695 			pi->pi_state |= PI_PRESENT;
696 		}
697 
698 		check_if_removed(pi);
699 	}
700 	if (show_ifs)
701 		phyint_print_all();
702 }
703 
704 
705 /*
706  * Router advertisement state machine. Used for everything but timer
707  * events which use advertise_event directly.
708  */
709 void
710 check_to_advertise(struct phyint *pi, enum adv_events event)
711 {
712 	uint_t delay;
713 	enum adv_states old_state = pi->pi_adv_state;
714 
715 	if (debug & D_STATE) {
716 		logmsg(LOG_DEBUG, "check_to_advertise(%s, %d) state %d\n",
717 		    pi->pi_name, (int)event, (int)old_state);
718 	}
719 	delay = advertise_event(pi, event, 0);
720 	if (delay != TIMER_INFINITY) {
721 		/* Make sure the global next event is updated */
722 		timer_schedule(delay);
723 	}
724 
725 	if (debug & D_STATE) {
726 		logmsg(LOG_DEBUG, "check_to_advertise(%s, %d) state %d -> %d\n",
727 		    pi->pi_name, (int)event, (int)old_state,
728 		    (int)pi->pi_adv_state);
729 	}
730 }
731 
732 /*
733  * Router advertisement state machine.
734  * Return the number of milliseconds until next timeout (TIMER_INFINITY
735  * if never).
736  * For the ADV_TIMER event the caller passes in the number of milliseconds
737  * since the last timer event in the 'elapsed' parameter.
738  */
739 uint_t
740 advertise_event(struct phyint *pi, enum adv_events event, uint_t elapsed)
741 {
742 	uint_t delay;
743 
744 	if (debug & D_STATE) {
745 		logmsg(LOG_DEBUG, "advertise_event(%s, %d, %d) state %d\n",
746 		    pi->pi_name, (int)event, elapsed, (int)pi->pi_adv_state);
747 	}
748 	check_daemonize();
749 	if (!pi->pi_AdvSendAdvertisements)
750 		return (TIMER_INFINITY);
751 	if (pi->pi_flags & IFF_NORTEXCH) {
752 		if (debug & D_PKTOUT) {
753 			logmsg(LOG_DEBUG, "Suppress sending RA packet on %s "
754 			    "(no route exchange on interface)\n",
755 			    pi->pi_name);
756 		}
757 		return (TIMER_INFINITY);
758 	}
759 
760 	switch (event) {
761 	case ADV_OFF:
762 		pi->pi_adv_state = NO_ADV;
763 		return (TIMER_INFINITY);
764 
765 	case START_INIT_ADV:
766 		if (pi->pi_adv_state == INIT_ADV)
767 			return (pi->pi_adv_time_left);
768 		pi->pi_adv_count = ND_MAX_INITIAL_RTR_ADVERTISEMENTS;
769 		pi->pi_adv_time_left = 0;
770 		pi->pi_adv_state = INIT_ADV;
771 		break;	/* send advertisement */
772 
773 	case START_FINAL_ADV:
774 		if (pi->pi_adv_state == NO_ADV)
775 			return (TIMER_INFINITY);
776 		if (pi->pi_adv_state == FINAL_ADV)
777 			return (pi->pi_adv_time_left);
778 		pi->pi_adv_count = ND_MAX_FINAL_RTR_ADVERTISEMENTS;
779 		pi->pi_adv_time_left = 0;
780 		pi->pi_adv_state = FINAL_ADV;
781 		break;	/* send advertisement */
782 
783 	case RECEIVED_SOLICIT:
784 		if (pi->pi_adv_state == NO_ADV)
785 			return (TIMER_INFINITY);
786 		if (pi->pi_adv_state == SOLICIT_ADV) {
787 			if (pi->pi_adv_time_left != 0)
788 				return (pi->pi_adv_time_left);
789 			break;
790 		}
791 		delay = GET_RANDOM(0, ND_MAX_RA_DELAY_TIME);
792 		if (delay < pi->pi_adv_time_left)
793 			pi->pi_adv_time_left = delay;
794 		if (pi->pi_adv_time_since_sent < ND_MIN_DELAY_BETWEEN_RAS) {
795 			/*
796 			 * Send an advertisement (ND_MIN_DELAY_BETWEEN_RAS
797 			 * plus random delay) after the previous
798 			 * advertisement was sent.
799 			 */
800 			pi->pi_adv_time_left = delay +
801 			    ND_MIN_DELAY_BETWEEN_RAS -
802 			    pi->pi_adv_time_since_sent;
803 		}
804 		pi->pi_adv_state = SOLICIT_ADV;
805 		break;
806 
807 	case ADV_TIMER:
808 		if (pi->pi_adv_state == NO_ADV)
809 			return (TIMER_INFINITY);
810 		/* Decrease time left */
811 		if (pi->pi_adv_time_left >= elapsed)
812 			pi->pi_adv_time_left -= elapsed;
813 		else
814 			pi->pi_adv_time_left = 0;
815 
816 		/* Increase time since last advertisement was sent */
817 		pi->pi_adv_time_since_sent += elapsed;
818 		break;
819 	default:
820 		logmsg(LOG_ERR, "advertise_event: Unknown event %d\n",
821 		    (int)event);
822 		return (TIMER_INFINITY);
823 	}
824 
825 	if (pi->pi_adv_time_left != 0)
826 		return (pi->pi_adv_time_left);
827 
828 	/* Send advertisement and calculate next time to send */
829 	if (pi->pi_adv_state == FINAL_ADV) {
830 		/* Omit the prefixes */
831 		advertise(&v6allnodes, pi, _B_TRUE);
832 	} else {
833 		advertise(&v6allnodes, pi, _B_FALSE);
834 	}
835 	pi->pi_adv_time_since_sent = 0;
836 
837 	switch (pi->pi_adv_state) {
838 	case SOLICIT_ADV:
839 		/*
840 		 * The solicited advertisement has been sent.
841 		 * Revert to periodic advertisements.
842 		 */
843 		pi->pi_adv_state = REG_ADV;
844 		/* FALLTHRU */
845 	case REG_ADV:
846 		pi->pi_adv_time_left =
847 		    GET_RANDOM(1000 * pi->pi_MinRtrAdvInterval,
848 		    1000 * pi->pi_MaxRtrAdvInterval);
849 		break;
850 
851 	case INIT_ADV:
852 		if (--pi->pi_adv_count > 0) {
853 			delay = GET_RANDOM(1000 * pi->pi_MinRtrAdvInterval,
854 			    1000 * pi->pi_MaxRtrAdvInterval);
855 			if (delay > ND_MAX_INITIAL_RTR_ADVERT_INTERVAL)
856 				delay = ND_MAX_INITIAL_RTR_ADVERT_INTERVAL;
857 			pi->pi_adv_time_left = delay;
858 		} else {
859 			pi->pi_adv_time_left =
860 			    GET_RANDOM(1000 * pi->pi_MinRtrAdvInterval,
861 			    1000 * pi->pi_MaxRtrAdvInterval);
862 			pi->pi_adv_state = REG_ADV;
863 		}
864 		break;
865 
866 	case FINAL_ADV:
867 		if (--pi->pi_adv_count > 0) {
868 			pi->pi_adv_time_left =
869 			    ND_MAX_INITIAL_RTR_ADVERT_INTERVAL;
870 		} else {
871 			pi->pi_adv_state = NO_ADV;
872 		}
873 		break;
874 	}
875 	if (pi->pi_adv_state != NO_ADV)
876 		return (pi->pi_adv_time_left);
877 	else
878 		return (TIMER_INFINITY);
879 }
880 
881 /*
882  * Router solicitation state machine. Used for everything but timer
883  * events which use solicit_event directly.
884  */
885 void
886 check_to_solicit(struct phyint *pi, enum solicit_events event)
887 {
888 	uint_t delay;
889 	enum solicit_states old_state = pi->pi_sol_state;
890 
891 	if (debug & D_STATE) {
892 		logmsg(LOG_DEBUG, "check_to_solicit(%s, %d) state %d\n",
893 		    pi->pi_name, (int)event, (int)old_state);
894 	}
895 	delay = solicit_event(pi, event, 0);
896 	if (delay != TIMER_INFINITY) {
897 		/* Make sure the global next event is updated */
898 		timer_schedule(delay);
899 	}
900 
901 	if (debug & D_STATE) {
902 		logmsg(LOG_DEBUG, "check_to_solicit(%s, %d) state %d -> %d\n",
903 		    pi->pi_name, (int)event, (int)old_state,
904 		    (int)pi->pi_sol_state);
905 	}
906 }
907 
908 static void
909 daemonize_ndpd(void)
910 {
911 	struct itimerval it;
912 	boolean_t timerval = _B_TRUE;
913 
914 	/*
915 	 * Need to get current timer settings so they can be restored
916 	 * after the fork(), as the it_value and it_interval values for
917 	 * the ITIMER_REAL timer are reset to 0 in the child process.
918 	 */
919 	if (getitimer(ITIMER_REAL, &it) < 0) {
920 		if (debug & D_TIMER)
921 			logmsg(LOG_DEBUG,
922 			    "daemonize_ndpd: failed to get itimerval\n");
923 		timerval = _B_FALSE;
924 	}
925 
926 	/* Daemonize. */
927 	if (daemon(0, 0) == -1) {
928 		logperror("fork");
929 		exit(1);
930 	}
931 
932 	already_daemonized = _B_TRUE;
933 
934 	/*
935 	 * Restore timer values, if we were able to save them; if not,
936 	 * check and set the right value by calling run_timeouts().
937 	 */
938 	if (timerval) {
939 		if (setitimer(ITIMER_REAL, &it, NULL) < 0) {
940 			logperror("daemonize_ndpd: setitimer");
941 			exit(2);
942 		}
943 	} else {
944 		run_timeouts();
945 	}
946 }
947 
948 /*
949  * Check to see if the time is right to daemonize.  The right time is when:
950  *
951  * 1.  We haven't already daemonized.
952  * 2.  We are not in debug mode.
953  * 3.  All interfaces are marked IFF_NOXMIT.
954  * 4.  All non-router interfaces have their prefixes set up and we're
955  *     done sending router solicitations on those interfaces without
956  *     prefixes.
957  */
958 static void
959 check_daemonize(void)
960 {
961 	struct phyint		*pi;
962 
963 	if (already_daemonized || debug != 0)
964 		return;
965 
966 	for (pi = phyints; pi != NULL; pi = pi->pi_next) {
967 		if (!(pi->pi_flags & IFF_NOXMIT))
968 			break;
969 	}
970 
971 	/*
972 	 * If we can't transmit on any of the interfaces there is no reason
973 	 * to hold up progress.
974 	 */
975 	if (pi == NULL) {
976 		daemonize_ndpd();
977 		return;
978 	}
979 
980 	/* Check all interfaces.  If any are still soliciting, just return. */
981 	for (pi = phyints; pi != NULL; pi = pi->pi_next) {
982 		if (pi->pi_AdvSendAdvertisements ||
983 		    !(pi->pi_kernel_state & PI_PRESENT))
984 			continue;
985 
986 		if (pi->pi_sol_state == INIT_SOLICIT)
987 			return;
988 	}
989 
990 	daemonize_ndpd();
991 }
992 
993 /*
994  * Router solicitation state machine.
995  * Return the number of milliseconds until next timeout (TIMER_INFINITY
996  * if never).
997  * For the SOL_TIMER event the caller passes in the number of milliseconds
998  * since the last timer event in the 'elapsed' parameter.
999  */
1000 uint_t
1001 solicit_event(struct phyint *pi, enum solicit_events event, uint_t elapsed)
1002 {
1003 	if (debug & D_STATE) {
1004 		logmsg(LOG_DEBUG, "solicit_event(%s, %d, %d) state %d\n",
1005 		    pi->pi_name, (int)event, elapsed, (int)pi->pi_sol_state);
1006 	}
1007 
1008 	if (pi->pi_AdvSendAdvertisements)
1009 		return (TIMER_INFINITY);
1010 	if (pi->pi_flags & IFF_NORTEXCH) {
1011 		if (debug & D_PKTOUT) {
1012 			logmsg(LOG_DEBUG, "Suppress sending RS packet on %s "
1013 			    "(no route exchange on interface)\n",
1014 			    pi->pi_name);
1015 		}
1016 		return (TIMER_INFINITY);
1017 	}
1018 
1019 	switch (event) {
1020 	case SOLICIT_OFF:
1021 		pi->pi_sol_state = NO_SOLICIT;
1022 		check_daemonize();
1023 		return (TIMER_INFINITY);
1024 
1025 	case SOLICIT_DONE:
1026 		pi->pi_sol_state = DONE_SOLICIT;
1027 		check_daemonize();
1028 		return (TIMER_INFINITY);
1029 
1030 	case RESTART_INIT_SOLICIT:
1031 		/*
1032 		 * This event allows us to start solicitation over again
1033 		 * without losing the RA flags.  We start solicitation over
1034 		 * when we are missing an interface prefix for a newly-
1035 		 * encountered DHCP interface.
1036 		 */
1037 		if (pi->pi_sol_state == INIT_SOLICIT)
1038 			return (pi->pi_sol_time_left);
1039 		pi->pi_sol_count = ND_MAX_RTR_SOLICITATIONS;
1040 		pi->pi_sol_time_left =
1041 		    GET_RANDOM(0, ND_MAX_RTR_SOLICITATION_DELAY);
1042 		pi->pi_sol_state = INIT_SOLICIT;
1043 		break;
1044 
1045 	case START_INIT_SOLICIT:
1046 		if (pi->pi_sol_state == INIT_SOLICIT)
1047 			return (pi->pi_sol_time_left);
1048 		pi->pi_ra_flags = 0;
1049 		pi->pi_sol_count = ND_MAX_RTR_SOLICITATIONS;
1050 		pi->pi_sol_time_left =
1051 		    GET_RANDOM(0, ND_MAX_RTR_SOLICITATION_DELAY);
1052 		pi->pi_sol_state = INIT_SOLICIT;
1053 		break;
1054 
1055 	case SOL_TIMER:
1056 		if (pi->pi_sol_state == NO_SOLICIT)
1057 			return (TIMER_INFINITY);
1058 		/* Decrease time left */
1059 		if (pi->pi_sol_time_left >= elapsed)
1060 			pi->pi_sol_time_left -= elapsed;
1061 		else
1062 			pi->pi_sol_time_left = 0;
1063 		break;
1064 	default:
1065 		logmsg(LOG_ERR, "solicit_event: Unknown event %d\n",
1066 		    (int)event);
1067 		return (TIMER_INFINITY);
1068 	}
1069 
1070 	if (pi->pi_sol_time_left != 0)
1071 		return (pi->pi_sol_time_left);
1072 
1073 	/* Send solicitation and calculate next time */
1074 	switch (pi->pi_sol_state) {
1075 	case INIT_SOLICIT:
1076 		solicit(&v6allrouters, pi);
1077 		if (--pi->pi_sol_count == 0) {
1078 			if (debug & D_STATE) {
1079 				logmsg(LOG_DEBUG, "solicit_event: no routers "
1080 				    "found on %s; assuming default flags\n",
1081 				    pi->pi_name);
1082 			}
1083 			if (pi->pi_autoconf && pi->pi_StatefulAddrConf) {
1084 				pi->pi_ra_flags |= ND_RA_FLAG_MANAGED |
1085 				    ND_RA_FLAG_OTHER;
1086 				start_dhcp(pi);
1087 			}
1088 			pi->pi_sol_state = DONE_SOLICIT;
1089 			check_daemonize();
1090 			return (TIMER_INFINITY);
1091 		}
1092 		pi->pi_sol_time_left = ND_RTR_SOLICITATION_INTERVAL;
1093 		return (pi->pi_sol_time_left);
1094 	case NO_SOLICIT:
1095 	case DONE_SOLICIT:
1096 		return (TIMER_INFINITY);
1097 	default:
1098 		return (pi->pi_sol_time_left);
1099 	}
1100 }
1101 
1102 /*
1103  * Timer mechanism using relative time (in milliseconds) from the
1104  * previous timer event. Timers exceeding TIMER_INFINITY milliseconds
1105  * will fire after TIMER_INFINITY milliseconds.
1106  */
1107 static uint_t timer_previous;	/* When last SIGALRM occurred */
1108 static uint_t timer_next;	/* Currently scheduled timeout */
1109 
1110 static void
1111 timer_init(void)
1112 {
1113 	timer_previous = getcurrenttime();
1114 	timer_next = TIMER_INFINITY;
1115 	run_timeouts();
1116 }
1117 
1118 /*
1119  * Make sure the next SIGALRM occurs delay milliseconds from the current
1120  * time if not earlier.
1121  * Handles getcurrenttime (32 bit integer holding milliseconds) wraparound
1122  * by treating differences greater than 0x80000000 as negative.
1123  */
1124 void
1125 timer_schedule(uint_t delay)
1126 {
1127 	uint_t now;
1128 	struct itimerval itimerval;
1129 
1130 	now = getcurrenttime();
1131 	if (debug & D_TIMER) {
1132 		logmsg(LOG_DEBUG, "timer_schedule(%u): now %u next %u\n",
1133 		    delay, now, timer_next);
1134 	}
1135 	/* Will this timer occur before the currently scheduled SIGALRM? */
1136 	if (delay >= timer_next - now) {
1137 		if (debug & D_TIMER) {
1138 			logmsg(LOG_DEBUG, "timer_schedule(%u): no action - "
1139 			    "next in %u ms\n",
1140 			    delay, timer_next - now);
1141 		}
1142 		return;
1143 	}
1144 	if (delay == 0) {
1145 		/* Minimum allowed delay */
1146 		delay = 1;
1147 	}
1148 	timer_next = now + delay;
1149 
1150 	itimerval.it_value.tv_sec = delay / 1000;
1151 	itimerval.it_value.tv_usec = (delay % 1000) * 1000;
1152 	itimerval.it_interval.tv_sec = 0;
1153 	itimerval.it_interval.tv_usec = 0;
1154 	if (debug & D_TIMER) {
1155 		logmsg(LOG_DEBUG, "timer_schedule(%u): sec %lu usec %lu\n",
1156 		    delay,
1157 		    itimerval.it_value.tv_sec, itimerval.it_value.tv_usec);
1158 	}
1159 	if (setitimer(ITIMER_REAL, &itimerval, NULL) < 0) {
1160 		logperror("timer_schedule: setitimer");
1161 		exit(2);
1162 	}
1163 }
1164 
1165 /*
1166  * Conditional running of timer. If more than 'minimal_time' millseconds
1167  * since the timer routines were last run we run them.
1168  * Used when packets arrive.
1169  */
1170 static void
1171 conditional_run_timeouts(uint_t minimal_time)
1172 {
1173 	uint_t now;
1174 	uint_t elapsed;
1175 
1176 	now = getcurrenttime();
1177 	elapsed = now - timer_previous;
1178 	if (elapsed > minimal_time) {
1179 		if (debug & D_TIMER) {
1180 			logmsg(LOG_DEBUG, "conditional_run_timeouts: "
1181 			    "elapsed %d\n", elapsed);
1182 		}
1183 		run_timeouts();
1184 	}
1185 }
1186 
1187 /*
1188  * Timer has fired.
1189  * Determine when the next timer event will occur by asking all
1190  * the timer routines.
1191  * Should not be called from a timer routine but in some cases this is
1192  * done because the code doesn't know that e.g. it was called from
1193  * ifconfig_timer(). In this case the nested run_timeouts will just return but
1194  * the running run_timeouts will ensure to call all the timer functions by
1195  * looping once more.
1196  */
1197 static void
1198 run_timeouts(void)
1199 {
1200 	uint_t now;
1201 	uint_t elapsed;
1202 	uint_t next;
1203 	uint_t nexti;
1204 	struct phyint *pi;
1205 	struct phyint *next_pi;
1206 	struct prefix *pr;
1207 	struct prefix *next_pr;
1208 	struct adv_prefix *adv_pr;
1209 	struct adv_prefix *next_adv_pr;
1210 	struct router *dr;
1211 	struct router *next_dr;
1212 	static boolean_t timeout_running;
1213 	static boolean_t do_retry;
1214 
1215 	if (timeout_running) {
1216 		if (debug & D_TIMER)
1217 			logmsg(LOG_DEBUG, "run_timeouts: nested call\n");
1218 		do_retry = _B_TRUE;
1219 		return;
1220 	}
1221 	timeout_running = _B_TRUE;
1222 retry:
1223 	/* How much time since the last time we were called? */
1224 	now = getcurrenttime();
1225 	elapsed = now - timer_previous;
1226 	timer_previous = now;
1227 
1228 	if (debug & D_TIMER)
1229 		logmsg(LOG_DEBUG, "run_timeouts: elapsed %d\n", elapsed);
1230 
1231 	next = TIMER_INFINITY;
1232 	for (pi = phyints; pi != NULL; pi = next_pi) {
1233 		next_pi = pi->pi_next;
1234 		nexti = phyint_timer(pi, elapsed);
1235 		if (nexti != TIMER_INFINITY && nexti < next)
1236 			next = nexti;
1237 		if (debug & D_TIMER) {
1238 			logmsg(LOG_DEBUG, "run_timeouts (pi %s): %d -> %u ms\n",
1239 			    pi->pi_name, nexti, next);
1240 		}
1241 		for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) {
1242 			next_pr = pr->pr_next;
1243 			nexti = prefix_timer(pr, elapsed);
1244 			if (nexti != TIMER_INFINITY && nexti < next)
1245 				next = nexti;
1246 			if (debug & D_TIMER) {
1247 				logmsg(LOG_DEBUG, "run_timeouts (pr %s): "
1248 				    "%d -> %u ms\n", pr->pr_name, nexti, next);
1249 			}
1250 		}
1251 		for (adv_pr = pi->pi_adv_prefix_list; adv_pr != NULL;
1252 		    adv_pr = next_adv_pr) {
1253 			next_adv_pr = adv_pr->adv_pr_next;
1254 			nexti = adv_prefix_timer(adv_pr, elapsed);
1255 			if (nexti != TIMER_INFINITY && nexti < next)
1256 				next = nexti;
1257 			if (debug & D_TIMER) {
1258 				logmsg(LOG_DEBUG, "run_timeouts "
1259 				    "(adv pr on %s): %d -> %u ms\n",
1260 				    adv_pr->adv_pr_physical->pi_name,
1261 				    nexti, next);
1262 			}
1263 		}
1264 		for (dr = pi->pi_router_list; dr != NULL; dr = next_dr) {
1265 			next_dr = dr->dr_next;
1266 			nexti = router_timer(dr, elapsed);
1267 			if (nexti != TIMER_INFINITY && nexti < next)
1268 				next = nexti;
1269 			if (debug & D_TIMER) {
1270 				logmsg(LOG_DEBUG, "run_timeouts (dr): "
1271 				    "%d -> %u ms\n", nexti, next);
1272 			}
1273 		}
1274 		if (pi->pi_TmpAddrsEnabled) {
1275 			nexti = tmptoken_timer(pi, elapsed);
1276 			if (nexti != TIMER_INFINITY && nexti < next)
1277 				next = nexti;
1278 			if (debug & D_TIMER) {
1279 				logmsg(LOG_DEBUG, "run_timeouts (tmp on %s): "
1280 				    "%d -> %u ms\n", pi->pi_name, nexti, next);
1281 			}
1282 		}
1283 	}
1284 	/*
1285 	 * Make sure the timer functions are run at least once
1286 	 * an hour.
1287 	 */
1288 	if (next == TIMER_INFINITY)
1289 		next = 3600 * 1000;	/* 1 hour */
1290 
1291 	if (debug & D_TIMER)
1292 		logmsg(LOG_DEBUG, "run_timeouts: %u ms\n", next);
1293 	timer_schedule(next);
1294 	if (do_retry) {
1295 		if (debug & D_TIMER)
1296 			logmsg(LOG_DEBUG, "run_timeouts: retry\n");
1297 		do_retry = _B_FALSE;
1298 		goto retry;
1299 	}
1300 	timeout_running = _B_FALSE;
1301 }
1302 
1303 static int eventpipe_read = -1;	/* Used for synchronous signal delivery */
1304 static int eventpipe_write = -1;
1305 
1306 /*
1307  * Ensure that signals are processed synchronously with the rest of
1308  * the code by just writing a one character signal number on the pipe.
1309  * The poll loop will pick this up and process the signal event.
1310  */
1311 static void
1312 sig_handler(int signo)
1313 {
1314 	uchar_t buf = (uchar_t)signo;
1315 
1316 	if (eventpipe_write == -1) {
1317 		logmsg(LOG_ERR, "sig_handler: no pipe\n");
1318 		return;
1319 	}
1320 	if (write(eventpipe_write, &buf, sizeof (buf)) < 0)
1321 		logperror("sig_handler: write");
1322 }
1323 
1324 /*
1325  * Pick up a signal "byte" from the pipe and process it.
1326  */
1327 static void
1328 in_signal(int fd)
1329 {
1330 	uchar_t buf;
1331 	struct phyint *pi;
1332 	struct phyint *next_pi;
1333 
1334 	switch (read(fd, &buf, sizeof (buf))) {
1335 	case -1:
1336 		logperror("in_signal: read");
1337 		exit(1);
1338 		/* NOTREACHED */
1339 	case 1:
1340 		break;
1341 	case 0:
1342 		logmsg(LOG_ERR, "in_signal: read eof\n");
1343 		exit(1);
1344 		/* NOTREACHED */
1345 	default:
1346 		logmsg(LOG_ERR, "in_signal: read > 1\n");
1347 		exit(1);
1348 	}
1349 
1350 	if (debug & D_TIMER)
1351 		logmsg(LOG_DEBUG, "in_signal() got %d\n", buf);
1352 
1353 	switch (buf) {
1354 	case SIGALRM:
1355 		if (debug & D_TIMER) {
1356 			uint_t now = getcurrenttime();
1357 
1358 			logmsg(LOG_DEBUG, "in_signal(SIGALRM) delta %u\n",
1359 			    now - timer_next);
1360 		}
1361 		timer_next = TIMER_INFINITY;
1362 		run_timeouts();
1363 		break;
1364 	case SIGHUP:
1365 		/* Re-read config file by exec'ing ourselves */
1366 		for (pi = phyints; pi != NULL; pi = next_pi) {
1367 			next_pi = pi->pi_next;
1368 			if (pi->pi_AdvSendAdvertisements)
1369 				check_to_advertise(pi, START_FINAL_ADV);
1370 
1371 			/*
1372 			 * Remove all the configured addresses.
1373 			 * Remove the addrobj names created with ipmgmtd.
1374 			 * Release the dhcpv6 addresses if any.
1375 			 * Cleanup the phyints.
1376 			 */
1377 			phyint_delete(pi);
1378 		}
1379 
1380 		/*
1381 		 * Prevent fd leaks.  Everything gets re-opened at start-up
1382 		 * time.  0, 1, and 2 are closed and re-opened as
1383 		 * /dev/null, so we'll leave those open.
1384 		 */
1385 		closefrom(3);
1386 
1387 		logmsg(LOG_ERR, "SIGHUP: restart and reread config file\n");
1388 		(void) execv(argv0[0], argv0);
1389 		_exit(0177);
1390 		/* NOTREACHED */
1391 	case SIGUSR1:
1392 		logmsg(LOG_DEBUG, "Printing configuration:\n");
1393 		phyint_print_all();
1394 		break;
1395 	case SIGINT:
1396 	case SIGTERM:
1397 	case SIGQUIT:
1398 		for (pi = phyints; pi != NULL; pi = next_pi) {
1399 			next_pi = pi->pi_next;
1400 			if (pi->pi_AdvSendAdvertisements)
1401 				check_to_advertise(pi, START_FINAL_ADV);
1402 
1403 			phyint_delete(pi);
1404 		}
1405 		(void) unlink(NDPD_SNMP_SOCKET);
1406 		exit(0);
1407 		/* NOTREACHED */
1408 	case 255:
1409 		/*
1410 		 * Special "signal" from loopback_ra_enqueue.
1411 		 * Handle any queued loopback router advertisements.
1412 		 */
1413 		loopback_ra_dequeue();
1414 		break;
1415 	default:
1416 		logmsg(LOG_ERR, "in_signal: unknown signal: %d\n", buf);
1417 	}
1418 }
1419 
1420 /*
1421  * Create pipe for signal delivery and set up signal handlers.
1422  */
1423 static void
1424 setup_eventpipe(void)
1425 {
1426 	int fds[2];
1427 	struct sigaction act;
1428 
1429 	if ((pipe(fds)) < 0) {
1430 		logperror("setup_eventpipe: pipe");
1431 		exit(1);
1432 	}
1433 	eventpipe_read = fds[0];
1434 	eventpipe_write = fds[1];
1435 	if (poll_add(eventpipe_read) == -1) {
1436 		exit(1);
1437 	}
1438 	act.sa_handler = sig_handler;
1439 	act.sa_flags = SA_RESTART;
1440 	(void) sigaction(SIGALRM, &act, NULL);
1441 
1442 	(void) sigset(SIGHUP, sig_handler);
1443 	(void) sigset(SIGUSR1, sig_handler);
1444 	(void) sigset(SIGTERM, sig_handler);
1445 	(void) sigset(SIGINT, sig_handler);
1446 	(void) sigset(SIGQUIT, sig_handler);
1447 }
1448 
1449 /*
1450  * Create a routing socket for receiving RTM_IFINFO messages and initialize
1451  * the routing socket message header and as much of the sockaddrs as possible.
1452  */
1453 static int
1454 setup_rtsock(void)
1455 {
1456 	int s;
1457 	int ret;
1458 	char *cp;
1459 	struct sockaddr_in6 *sin6;
1460 
1461 	s = socket(PF_ROUTE, SOCK_RAW, AF_INET6);
1462 	if (s == -1) {
1463 		logperror("socket(PF_ROUTE)");
1464 		exit(1);
1465 	}
1466 	ret = fcntl(s, F_SETFL, O_NDELAY|O_NONBLOCK);
1467 	if (ret < 0) {
1468 		logperror("fcntl(O_NDELAY)");
1469 		exit(1);
1470 	}
1471 	if (poll_add(s) == -1) {
1472 		exit(1);
1473 	}
1474 
1475 	/*
1476 	 * Allocate storage for the routing socket message.
1477 	 */
1478 	rt_msg = (struct rt_msghdr *)malloc(NDP_RTM_MSGLEN);
1479 	if (rt_msg == NULL) {
1480 		logperror("malloc");
1481 		exit(1);
1482 	}
1483 
1484 	/*
1485 	 * Initialize the routing socket message by zero-filling it and then
1486 	 * setting the fields where are constant through the lifetime of the
1487 	 * process.
1488 	 */
1489 	bzero(rt_msg, NDP_RTM_MSGLEN);
1490 	rt_msg->rtm_msglen = NDP_RTM_MSGLEN;
1491 	rt_msg->rtm_version = RTM_VERSION;
1492 	rt_msg->rtm_addrs = RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFP;
1493 	rt_msg->rtm_pid = getpid();
1494 	if (rt_msg->rtm_pid < 0) {
1495 		logperror("getpid");
1496 		exit(1);
1497 	}
1498 
1499 	/*
1500 	 * The RTA_DST sockaddr does not change during the lifetime of the
1501 	 * process so it can be completely initialized at this time.
1502 	 */
1503 	cp = (char *)rt_msg + sizeof (struct rt_msghdr);
1504 	sin6 = (struct sockaddr_in6 *)cp;
1505 	sin6->sin6_family = AF_INET6;
1506 	sin6->sin6_addr = in6addr_any;
1507 
1508 	/*
1509 	 * Initialize the constant portion of the RTA_GATEWAY sockaddr.
1510 	 */
1511 	cp += sizeof (struct sockaddr_in6);
1512 	rta_gateway = (struct sockaddr_in6 *)cp;
1513 	rta_gateway->sin6_family = AF_INET6;
1514 
1515 	/*
1516 	 * The RTA_NETMASK sockaddr does not change during the lifetime of the
1517 	 * process so it can be completely initialized at this time.
1518 	 */
1519 	cp += sizeof (struct sockaddr_in6);
1520 	sin6 = (struct sockaddr_in6 *)cp;
1521 	sin6->sin6_family = AF_INET6;
1522 	sin6->sin6_addr = in6addr_any;
1523 
1524 	/*
1525 	 * Initialize the constant portion of the RTA_IFP sockaddr.
1526 	 */
1527 	cp += sizeof (struct sockaddr_in6);
1528 	rta_ifp = (struct sockaddr_dl *)cp;
1529 	rta_ifp->sdl_family = AF_LINK;
1530 
1531 	return (s);
1532 }
1533 
1534 static int
1535 setup_mibsock(void)
1536 {
1537 	int sock;
1538 	int ret;
1539 	int len;
1540 	struct sockaddr_un laddr;
1541 
1542 	sock = socket(AF_UNIX, SOCK_DGRAM, 0);
1543 	if (sock == -1) {
1544 		logperror("setup_mibsock: socket(AF_UNIX)");
1545 		exit(1);
1546 	}
1547 
1548 	bzero(&laddr, sizeof (laddr));
1549 	laddr.sun_family = AF_UNIX;
1550 
1551 	(void) strncpy(laddr.sun_path, NDPD_SNMP_SOCKET,
1552 	    sizeof (laddr.sun_path));
1553 	len = sizeof (struct sockaddr_un);
1554 
1555 	(void) unlink(NDPD_SNMP_SOCKET);
1556 	ret = bind(sock, (struct sockaddr *)&laddr, len);
1557 	if (ret < 0) {
1558 		logperror("setup_mibsock: bind\n");
1559 		exit(1);
1560 	}
1561 
1562 	ret = fcntl(sock, F_SETFL, O_NONBLOCK);
1563 	if (ret < 0) {
1564 		logperror("fcntl(O_NONBLOCK)");
1565 		exit(1);
1566 	}
1567 	if (poll_add(sock) == -1) {
1568 		exit(1);
1569 	}
1570 	return (sock);
1571 }
1572 
1573 /*
1574  * Retrieve one routing socket message. If RTM_IFINFO indicates
1575  * new phyint do a full scan of the interfaces. If RTM_IFINFO
1576  * indicates an existing phyint, only scan that phyint and associated
1577  * prefixes.
1578  */
1579 static void
1580 process_rtsock(int rtsock)
1581 {
1582 	int n;
1583 #define	MSG_SIZE	2048/8
1584 	int64_t msg[MSG_SIZE];
1585 	struct rt_msghdr *rtm;
1586 	struct if_msghdr *ifm;
1587 	struct phyint *pi;
1588 	struct prefix *pr;
1589 	boolean_t need_initifs = _B_FALSE;
1590 	boolean_t need_ifscan = _B_FALSE;
1591 	int64_t	ifscan_msg[10][MSG_SIZE];
1592 	int ifscan_index = 0;
1593 	int i;
1594 
1595 	/* Empty the rtsock and coealesce all the work that we have */
1596 	while (ifscan_index < 10) {
1597 		n = read(rtsock, msg, sizeof (msg));
1598 		if (n <= 0) {
1599 			/* No more messages */
1600 			break;
1601 		}
1602 		rtm = (struct rt_msghdr *)msg;
1603 		if (rtm->rtm_version != RTM_VERSION) {
1604 			logmsg(LOG_ERR,
1605 			    "process_rtsock: version %d not understood\n",
1606 			    rtm->rtm_version);
1607 			return;
1608 		}
1609 		switch (rtm->rtm_type) {
1610 		case RTM_NEWADDR:
1611 		case RTM_DELADDR:
1612 			/*
1613 			 * Some logical interface has changed - have to scan
1614 			 * everything to determine what actually changed.
1615 			 */
1616 			if (debug & D_IFSCAN) {
1617 				logmsg(LOG_DEBUG, "process_rtsock: "
1618 				    "message %d\n", rtm->rtm_type);
1619 			}
1620 			need_initifs = _B_TRUE;
1621 			break;
1622 		case RTM_IFINFO:
1623 			need_ifscan = _B_TRUE;
1624 			(void) memcpy(ifscan_msg[ifscan_index], rtm,
1625 			    sizeof (msg));
1626 			ifscan_index++;
1627 			/* Handled below */
1628 			break;
1629 		default:
1630 			/* Not interesting */
1631 			break;
1632 		}
1633 	}
1634 	/*
1635 	 * If we do full scan i.e initifs, we don't need to
1636 	 * scan a particular interface as we should have
1637 	 * done that as part of initifs.
1638 	 */
1639 	if (need_initifs) {
1640 		initifs(_B_FALSE);
1641 		return;
1642 	}
1643 
1644 	if (!need_ifscan)
1645 		return;
1646 
1647 	for (i = 0; i < ifscan_index; i++) {
1648 		ifm = (struct if_msghdr *)ifscan_msg[i];
1649 		if (debug & D_IFSCAN)
1650 			logmsg(LOG_DEBUG, "process_rtsock: index %d\n",
1651 			    ifm->ifm_index);
1652 
1653 		pi = phyint_lookup_on_index(ifm->ifm_index);
1654 		if (pi == NULL) {
1655 			/*
1656 			 * A new physical interface. Do a full scan of the
1657 			 * to catch any new logical interfaces.
1658 			 */
1659 			initifs(_B_FALSE);
1660 			return;
1661 		}
1662 
1663 		if (ifm->ifm_flags != (uint_t)pi->pi_flags) {
1664 			if (debug & D_IFSCAN) {
1665 				logmsg(LOG_DEBUG, "process_rtsock: clr for "
1666 				    "%s old flags 0x%llx new flags 0x%x\n",
1667 				    pi->pi_name, pi->pi_flags, ifm->ifm_flags);
1668 			}
1669 		}
1670 
1671 
1672 		/*
1673 		 * Mark the interfaces so that we can find phyints and prefixes
1674 		 * which have disappeared from the kernel.
1675 		 * if_process will set pr_in_use when it finds the
1676 		 * interface in the kernel.
1677 		 * Before re-examining the state of the interfaces,
1678 		 * PI_PRESENT should be cleared from pi_kernel_state.
1679 		 */
1680 		pi->pi_kernel_state &= ~PI_PRESENT;
1681 		for (pr = pi->pi_prefix_list; pr != NULL; pr = pr->pr_next) {
1682 			pr->pr_in_use = _B_FALSE;
1683 		}
1684 
1685 		if (ifsock < 0) {
1686 			ifsock = socket(AF_INET6, SOCK_DGRAM, 0);
1687 			if (ifsock < 0) {
1688 				logperror("process_rtsock: socket");
1689 				return;
1690 			}
1691 		}
1692 		if_process(ifsock, pi->pi_name, _B_FALSE);
1693 		for (pr = pi->pi_prefix_list; pr != NULL; pr = pr->pr_next) {
1694 			if_process(ifsock, pr->pr_name, _B_FALSE);
1695 		}
1696 		/*
1697 		 * If interface (still) exists in kernel, set
1698 		 * pi_state to indicate that.
1699 		 */
1700 		if (pi->pi_kernel_state & PI_PRESENT) {
1701 			pi->pi_state |= PI_PRESENT;
1702 		}
1703 		check_if_removed(pi);
1704 		if (show_ifs)
1705 			phyint_print_all();
1706 	}
1707 }
1708 
1709 static void
1710 process_mibsock(int mibsock)
1711 {
1712 	struct phyint *pi;
1713 	socklen_t fromlen;
1714 	struct sockaddr_un from;
1715 	ndpd_info_t ndpd_info;
1716 	ssize_t len;
1717 	int command;
1718 
1719 	fromlen = (socklen_t)sizeof (from);
1720 	len = recvfrom(mibsock, &command, sizeof (int), 0,
1721 	    (struct sockaddr *)&from, &fromlen);
1722 
1723 	if (len < sizeof (int) || command != NDPD_SNMP_INFO_REQ) {
1724 		logperror("process_mibsock: bad command \n");
1725 		return;
1726 	}
1727 
1728 	ndpd_info.info_type = NDPD_SNMP_INFO_RESPONSE;
1729 	ndpd_info.info_version = NDPD_SNMP_INFO_VER;
1730 	ndpd_info.info_num_of_phyints = num_of_phyints;
1731 
1732 	(void) sendto(mibsock, &ndpd_info, sizeof (ndpd_info_t), 0,
1733 	    (struct sockaddr *)&from, fromlen);
1734 
1735 	for (pi = phyints; pi != NULL; pi = pi->pi_next) {
1736 		int prefixes;
1737 		int routers;
1738 		struct prefix   *prefix_list;
1739 		struct router   *router_list;
1740 		ndpd_phyint_info_t phyint;
1741 		ndpd_prefix_info_t prefix;
1742 		ndpd_router_info_t router;
1743 		/*
1744 		 * get number of prefixes
1745 		 */
1746 		routers = 0;
1747 		prefixes = 0;
1748 		prefix_list = pi->pi_prefix_list;
1749 		while (prefix_list != NULL) {
1750 			prefixes++;
1751 			prefix_list = prefix_list->pr_next;
1752 		}
1753 
1754 		/*
1755 		 * get number of routers
1756 		 */
1757 		router_list = pi->pi_router_list;
1758 		while (router_list != NULL) {
1759 			routers++;
1760 			router_list = router_list->dr_next;
1761 		}
1762 
1763 		phyint.phyint_info_type = NDPD_PHYINT_INFO;
1764 		phyint.phyint_info_version = NDPD_PHYINT_INFO_VER;
1765 		phyint.phyint_index = pi->pi_index;
1766 		bcopy(pi->pi_config,
1767 		    phyint.phyint_config, I_IFSIZE);
1768 		phyint.phyint_num_of_prefixes = prefixes;
1769 		phyint.phyint_num_of_routers = routers;
1770 		(void) sendto(mibsock, &phyint, sizeof (phyint), 0,
1771 		    (struct sockaddr *)&from, fromlen);
1772 
1773 		/*
1774 		 * Copy prefix information
1775 		 */
1776 
1777 		prefix_list = pi->pi_prefix_list;
1778 		while (prefix_list != NULL) {
1779 			prefix.prefix_info_type = NDPD_PREFIX_INFO;
1780 			prefix.prefix_info_version = NDPD_PREFIX_INFO_VER;
1781 			prefix.prefix_prefix = prefix_list->pr_prefix;
1782 			prefix.prefix_len = prefix_list->pr_prefix_len;
1783 			prefix.prefix_flags = prefix_list->pr_flags;
1784 			prefix.prefix_phyint_index = pi->pi_index;
1785 			prefix.prefix_ValidLifetime =
1786 			    prefix_list->pr_ValidLifetime;
1787 			prefix.prefix_PreferredLifetime =
1788 			    prefix_list->pr_PreferredLifetime;
1789 			prefix.prefix_OnLinkLifetime =
1790 			    prefix_list->pr_OnLinkLifetime;
1791 			prefix.prefix_OnLinkFlag =
1792 			    prefix_list->pr_OnLinkFlag;
1793 			prefix.prefix_AutonomousFlag =
1794 			    prefix_list->pr_AutonomousFlag;
1795 			(void) sendto(mibsock, &prefix, sizeof (prefix), 0,
1796 			    (struct sockaddr *)&from, fromlen);
1797 			prefix_list = prefix_list->pr_next;
1798 		}
1799 		/*
1800 		 * Copy router information
1801 		 */
1802 		router_list = pi->pi_router_list;
1803 		while (router_list != NULL) {
1804 			router.router_info_type = NDPD_ROUTER_INFO;
1805 			router.router_info_version = NDPD_ROUTER_INFO_VER;
1806 			router.router_address = router_list->dr_address;
1807 			router.router_lifetime = router_list->dr_lifetime;
1808 			router.router_phyint_index = pi->pi_index;
1809 			(void) sendto(mibsock, &router, sizeof (router), 0,
1810 			    (struct sockaddr *)&from, fromlen);
1811 			router_list = router_list->dr_next;
1812 		}
1813 	}
1814 }
1815 
1816 /*
1817  * Look if the phyint or one of its prefixes have been removed from
1818  * the kernel and take appropriate action.
1819  * Uses pr_in_use and pi{,_kernel}_state.
1820  */
1821 static void
1822 check_if_removed(struct phyint *pi)
1823 {
1824 	struct prefix *pr, *next_pr;
1825 
1826 	/*
1827 	 * Detect prefixes which are removed.
1828 	 * Static prefixes are just removed from our tables.
1829 	 * Non-static prefixes are recreated i.e. in.ndpd takes precedence
1830 	 * over manually removing prefixes via ifconfig.
1831 	 */
1832 	for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) {
1833 		next_pr = pr->pr_next;
1834 		if (!pr->pr_in_use) {
1835 			/* Clear everything except PR_STATIC */
1836 			pr->pr_kernel_state &= PR_STATIC;
1837 			if (pr->pr_state & PR_STATIC)
1838 				prefix_update_ipadm_addrobj(pr, _B_FALSE);
1839 			pr->pr_name[0] = '\0';
1840 			if (pr->pr_state & PR_STATIC) {
1841 				prefix_delete(pr);
1842 			} else if (!(pi->pi_kernel_state & PI_PRESENT)) {
1843 				/*
1844 				 * Ensure that there are no future attempts to
1845 				 * run prefix_update_k since the phyint is gone.
1846 				 */
1847 				pr->pr_state = pr->pr_kernel_state;
1848 			} else if (pr->pr_state != pr->pr_kernel_state) {
1849 				logmsg(LOG_INFO, "Prefix manually removed "
1850 				    "on %s; recreating\n", pi->pi_name);
1851 				prefix_update_k(pr);
1852 			}
1853 		}
1854 	}
1855 
1856 	/*
1857 	 * Detect phyints that have been removed from the kernel, and tear
1858 	 * down any prefixes we created that are associated with that phyint.
1859 	 * (NOTE: IPMP depends on in.ndpd tearing down these prefixes so an
1860 	 * administrator can easily place an IP interface with ADDRCONF'd
1861 	 * addresses into an IPMP group.)
1862 	 */
1863 	if (!(pi->pi_kernel_state & PI_PRESENT) &&
1864 	    (pi->pi_state & PI_PRESENT)) {
1865 		logmsg(LOG_ERR, "Interface %s has been removed from kernel. "
1866 		    "in.ndpd will no longer use it\n", pi->pi_name);
1867 
1868 		for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) {
1869 			next_pr = pr->pr_next;
1870 			if (pr->pr_state & PR_AUTO)
1871 				prefix_update_ipadm_addrobj(pr, _B_FALSE);
1872 			prefix_delete(pr);
1873 		}
1874 
1875 		/*
1876 		 * Clear state so that should the phyint reappear we will
1877 		 * start with initial advertisements or solicitations.
1878 		 */
1879 		phyint_cleanup(pi);
1880 	}
1881 }
1882 
1883 
1884 /*
1885  * Queuing mechanism for router advertisements that are sent by in.ndpd
1886  * and that also need to be processed by in.ndpd.
1887  * Uses "signal number" 255 to indicate to the main poll loop
1888  * that there is something to dequeue and send to incomining_ra().
1889  */
1890 struct raq {
1891 	struct raq	*raq_next;
1892 	struct phyint	*raq_pi;
1893 	int		raq_packetlen;
1894 	uchar_t		*raq_packet;
1895 };
1896 static struct raq *raq_head = NULL;
1897 
1898 /*
1899  * Allocate a struct raq and memory for the packet.
1900  * Send signal 255 to have poll dequeue.
1901  */
1902 static void
1903 loopback_ra_enqueue(struct phyint *pi, struct nd_router_advert *ra, int len)
1904 {
1905 	struct raq *raq;
1906 	struct raq **raqp;
1907 
1908 	if (no_loopback)
1909 		return;
1910 
1911 	if (debug & D_PKTOUT)
1912 		logmsg(LOG_DEBUG, "loopback_ra_enqueue for %s\n", pi->pi_name);
1913 
1914 	raq = calloc(sizeof (struct raq), 1);
1915 	if (raq == NULL) {
1916 		logmsg(LOG_ERR, "loopback_ra_enqueue: out of memory\n");
1917 		return;
1918 	}
1919 	raq->raq_packet = malloc(len);
1920 	if (raq->raq_packet == NULL) {
1921 		free(raq);
1922 		logmsg(LOG_ERR, "loopback_ra_enqueue: out of memory\n");
1923 		return;
1924 	}
1925 	bcopy(ra, raq->raq_packet, len);
1926 	raq->raq_packetlen = len;
1927 	raq->raq_pi = pi;
1928 
1929 	/* Tail insert */
1930 	raqp = &raq_head;
1931 	while (*raqp != NULL)
1932 		raqp = &((*raqp)->raq_next);
1933 	*raqp = raq;
1934 
1935 	/* Signal for poll loop */
1936 	sig_handler(255);
1937 }
1938 
1939 /*
1940  * Dequeue and process all queued advertisements.
1941  */
1942 static void
1943 loopback_ra_dequeue(void)
1944 {
1945 	struct sockaddr_in6 from = IN6ADDR_LOOPBACK_INIT;
1946 	struct raq *raq;
1947 
1948 	if (debug & D_PKTIN)
1949 		logmsg(LOG_DEBUG, "loopback_ra_dequeue()\n");
1950 
1951 	while ((raq = raq_head) != NULL) {
1952 		raq_head = raq->raq_next;
1953 		raq->raq_next = NULL;
1954 
1955 		if (debug & D_PKTIN) {
1956 			logmsg(LOG_DEBUG, "loopback_ra_dequeue for %s\n",
1957 			    raq->raq_pi->pi_name);
1958 		}
1959 
1960 		incoming_ra(raq->raq_pi,
1961 		    (struct nd_router_advert *)raq->raq_packet,
1962 		    raq->raq_packetlen, &from, _B_TRUE);
1963 		free(raq->raq_packet);
1964 		free(raq);
1965 	}
1966 }
1967 
1968 
1969 static void
1970 usage(char *cmd)
1971 {
1972 	(void) fprintf(stderr,
1973 	    "usage: %s [ -adt ] [-f <config file>]\n", cmd);
1974 }
1975 
1976 int
1977 main(int argc, char *argv[])
1978 {
1979 	int i;
1980 	struct phyint *pi;
1981 	int c;
1982 	char *config_file = PATH_NDPD_CONF;
1983 	boolean_t file_required = _B_FALSE;
1984 
1985 	argv0 = argv;
1986 	srandom(gethostid());
1987 	(void) umask(0022);
1988 
1989 	while ((c = getopt(argc, argv, "adD:ntIf:")) != EOF) {
1990 		switch (c) {
1991 		case 'a':
1992 			/*
1993 			 * The StatelessAddrConf variable in ndpd.conf, if
1994 			 * present, will override this setting.
1995 			 */
1996 			ifdefaults[I_StatelessAddrConf].cf_value = 0;
1997 			break;
1998 		case 'd':
1999 			debug = D_ALL;
2000 			break;
2001 		case 'D':
2002 			i = strtol((char *)optarg, NULL, 0);
2003 			if (i == 0) {
2004 				(void) fprintf(stderr, "Bad debug flags: %s\n",
2005 				    (char *)optarg);
2006 				exit(1);
2007 			}
2008 			debug |= i;
2009 			break;
2010 		case 'n':
2011 			no_loopback = 1;
2012 			break;
2013 		case 'I':
2014 			show_ifs = 1;
2015 			break;
2016 		case 't':
2017 			debug |= D_PKTIN | D_PKTOUT | D_PKTBAD;
2018 			break;
2019 		case 'f':
2020 			config_file = (char *)optarg;
2021 			file_required = _B_TRUE;
2022 			break;
2023 		case '?':
2024 			usage(argv[0]);
2025 			exit(1);
2026 		}
2027 	}
2028 
2029 	if (parse_config(config_file, file_required) == -1)
2030 		exit(2);
2031 
2032 	if (show_ifs)
2033 		phyint_print_all();
2034 
2035 	if (debug == 0)
2036 		initlog();
2037 
2038 	cmdsock = ndpd_setup_cmd_listener();
2039 	setup_eventpipe();
2040 	rtsock = setup_rtsock();
2041 	mibsock = setup_mibsock();
2042 	timer_init();
2043 	initifs(_B_TRUE);
2044 
2045 	check_daemonize();
2046 
2047 	for (;;) {
2048 		if (poll(pollfds, pollfd_num, -1) < 0) {
2049 			if (errno == EINTR)
2050 				continue;
2051 			logperror("main: poll");
2052 			exit(1);
2053 		}
2054 		for (i = 0; i < pollfd_num; i++) {
2055 			if (!(pollfds[i].revents & POLLIN))
2056 				continue;
2057 			if (pollfds[i].fd == eventpipe_read) {
2058 				in_signal(eventpipe_read);
2059 				break;
2060 			}
2061 			if (pollfds[i].fd == rtsock) {
2062 				process_rtsock(rtsock);
2063 				break;
2064 			}
2065 			if (pollfds[i].fd == mibsock) {
2066 				process_mibsock(mibsock);
2067 				break;
2068 			}
2069 			if (pollfds[i].fd == cmdsock) {
2070 				ndpd_cmd_handler(cmdsock);
2071 				break;
2072 			}
2073 			/*
2074 			 * Run timer routine to advance clock if more than
2075 			 * half a second since the clock was advanced.
2076 			 * This limits CPU usage under severe packet
2077 			 * arrival rates but it creates a slight inaccuracy
2078 			 * in the timer mechanism.
2079 			 */
2080 			conditional_run_timeouts(500U);
2081 			for (pi = phyints; pi != NULL; pi = pi->pi_next) {
2082 				if (pollfds[i].fd == pi->pi_sock) {
2083 					in_data(pi);
2084 					break;
2085 				}
2086 			}
2087 		}
2088 	}
2089 	/* NOTREACHED */
2090 	return (0);
2091 }
2092 
2093 /*
2094  * LOGGER
2095  */
2096 
2097 static boolean_t logging = _B_FALSE;
2098 
2099 static void
2100 initlog(void)
2101 {
2102 	logging = _B_TRUE;
2103 	openlog("in.ndpd", LOG_PID | LOG_CONS, LOG_DAEMON);
2104 }
2105 
2106 /* Print the date/time without a trailing carridge return */
2107 static void
2108 fprintdate(FILE *file)
2109 {
2110 	char buf[BUFSIZ];
2111 	struct tm tms;
2112 	time_t now;
2113 
2114 	now = time(NULL);
2115 	(void) localtime_r(&now, &tms);
2116 	(void) strftime(buf, sizeof (buf), "%h %d %X", &tms);
2117 	(void) fprintf(file, "%s ", buf);
2118 }
2119 
2120 /* PRINTFLIKE2 */
2121 void
2122 logmsg(int level, const char *fmt, ...)
2123 {
2124 	va_list ap;
2125 	va_start(ap, fmt);
2126 
2127 	if (logging) {
2128 		vsyslog(level, fmt, ap);
2129 	} else {
2130 		fprintdate(stderr);
2131 		(void) vfprintf(stderr, fmt, ap);
2132 	}
2133 	va_end(ap);
2134 }
2135 
2136 void
2137 logperror(const char *str)
2138 {
2139 	if (logging) {
2140 		syslog(LOG_ERR, "%s: %m\n", str);
2141 	} else {
2142 		fprintdate(stderr);
2143 		(void) fprintf(stderr, "%s: %s\n", str, strerror(errno));
2144 	}
2145 }
2146 
2147 void
2148 logperror_pi(const struct phyint *pi, const char *str)
2149 {
2150 	if (logging) {
2151 		syslog(LOG_ERR, "%s (interface %s): %m\n",
2152 		    str, pi->pi_name);
2153 	} else {
2154 		fprintdate(stderr);
2155 		(void) fprintf(stderr, "%s (interface %s): %s\n",
2156 		    str, pi->pi_name, strerror(errno));
2157 	}
2158 }
2159 
2160 void
2161 logperror_pr(const struct prefix *pr, const char *str)
2162 {
2163 	if (logging) {
2164 		syslog(LOG_ERR, "%s (prefix %s if %s): %m\n",
2165 		    str, pr->pr_name, pr->pr_physical->pi_name);
2166 	} else {
2167 		fprintdate(stderr);
2168 		(void) fprintf(stderr, "%s (prefix %s if %s): %s\n",
2169 		    str, pr->pr_name, pr->pr_physical->pi_name,
2170 		    strerror(errno));
2171 	}
2172 }
2173 
2174 static int
2175 ndpd_setup_cmd_listener(void)
2176 {
2177 	int sock;
2178 	int ret;
2179 	struct sockaddr_un servaddr;
2180 
2181 	sock = socket(AF_UNIX, SOCK_STREAM, 0);
2182 	if (sock < 0) {
2183 		logperror("socket");
2184 		exit(1);
2185 	}
2186 
2187 	bzero(&servaddr, sizeof (servaddr));
2188 	servaddr.sun_family = AF_UNIX;
2189 	(void) strlcpy(servaddr.sun_path, IPADM_UDS_PATH,
2190 	    sizeof (servaddr.sun_path));
2191 	(void) unlink(servaddr.sun_path);
2192 	ret = bind(sock, (struct sockaddr *)&servaddr, sizeof (servaddr));
2193 	if (ret < 0) {
2194 		logperror("bind");
2195 		exit(1);
2196 	}
2197 	if (listen(sock, 30) < 0) {
2198 		logperror("listen");
2199 		exit(1);
2200 	}
2201 	if (poll_add(sock) == -1) {
2202 		logmsg(LOG_ERR, "command socket could not be added to the "
2203 		    "polling set\n");
2204 		exit(1);
2205 	}
2206 
2207 	return (sock);
2208 }
2209 
2210 /*
2211  * Commands received over the command socket come here
2212  */
2213 static void
2214 ndpd_cmd_handler(int sock)
2215 {
2216 	int			newfd;
2217 	struct sockaddr_storage	peer;
2218 	socklen_t		peerlen;
2219 	ipadm_ndpd_msg_t	ndpd_msg;
2220 	int			retval;
2221 
2222 	peerlen = sizeof (peer);
2223 	newfd = accept(sock, (struct sockaddr *)&peer, &peerlen);
2224 	if (newfd < 0) {
2225 		logperror("accept");
2226 		return;
2227 	}
2228 
2229 	retval = ipadm_ndpd_read(newfd, &ndpd_msg, sizeof (ndpd_msg));
2230 	if (retval != 0)
2231 		logperror("Could not read ndpd command");
2232 
2233 	retval = ndpd_process_cmd(newfd, &ndpd_msg);
2234 	if (retval != 0) {
2235 		logmsg(LOG_ERR, "ndpd command on interface %s failed with "
2236 		    "error %s\n", ndpd_msg.inm_ifname, strerror(retval));
2237 	}
2238 	(void) close(newfd);
2239 }
2240 
2241 /*
2242  * Process the commands received from the cmd listener socket.
2243  */
2244 static int
2245 ndpd_process_cmd(int newfd, ipadm_ndpd_msg_t *msg)
2246 {
2247 	int err;
2248 
2249 	if (!ipadm_check_auth()) {
2250 		logmsg(LOG_ERR, "User not authorized to send the command\n");
2251 		(void) ndpd_send_error(newfd, EPERM);
2252 		return (EPERM);
2253 	}
2254 	switch (msg->inm_cmd) {
2255 	case IPADM_DISABLE_AUTOCONF:
2256 		err = ndpd_set_autoconf(msg->inm_ifname, _B_FALSE);
2257 		break;
2258 
2259 	case IPADM_ENABLE_AUTOCONF:
2260 		err = ndpd_set_autoconf(msg->inm_ifname, _B_TRUE);
2261 		break;
2262 
2263 	case IPADM_CREATE_ADDRS:
2264 		err = ndpd_create_addrs(msg->inm_ifname, msg->inm_intfid,
2265 		    msg->inm_intfidlen, msg->inm_stateless,
2266 		    msg->inm_stateful, msg->inm_aobjname);
2267 		break;
2268 
2269 	case IPADM_DELETE_ADDRS:
2270 		err = ndpd_delete_addrs(msg->inm_ifname);
2271 		break;
2272 
2273 	default:
2274 		err = EINVAL;
2275 		break;
2276 	}
2277 
2278 	(void) ndpd_send_error(newfd, err);
2279 
2280 	return (err);
2281 }
2282 
2283 static int
2284 ndpd_send_error(int fd, int error)
2285 {
2286 	return (ipadm_ndpd_write(fd, &error, sizeof (error)));
2287 }
2288 
2289 /*
2290  * Disables/Enables autoconfiguration of addresses on the
2291  * given physical interface.
2292  * This is provided to support the legacy method of configuring IPv6
2293  * addresses. i.e. `ifconfig bge0 inet6 plumb` will plumb the interface
2294  * and start stateless and stateful autoconfiguration. If this function is
2295  * not called with enable=_B_FALSE, no autoconfiguration will be done until
2296  * ndpd_create_addrs() is called with an Interface ID.
2297  */
2298 static int
2299 ndpd_set_autoconf(const char *ifname, boolean_t enable)
2300 {
2301 	struct phyint *pi;
2302 
2303 	pi = phyint_lookup((char *)ifname);
2304 	if (pi == NULL) {
2305 		/*
2306 		 * If the physical interface was plumbed but no
2307 		 * addresses were configured yet, phyint will not exist.
2308 		 */
2309 		pi = phyint_create((char *)ifname);
2310 		if (pi == NULL) {
2311 			logmsg(LOG_ERR, "could not create phyint for "
2312 			    "interface %s", ifname);
2313 			return (ENOMEM);
2314 		}
2315 	}
2316 	pi->pi_autoconf = enable;
2317 
2318 	if (debug & D_PHYINT) {
2319 		logmsg(LOG_DEBUG, "ndpd_set_autoconf: %s autoconf for "
2320 		    "interface %s\n", (enable ? "enabled" : "disabled"),
2321 		    pi->pi_name);
2322 	}
2323 	return (0);
2324 }
2325 
2326 /*
2327  * Create auto-configured addresses on the given interface using
2328  * the given token as the interface id during the next Router Advertisement.
2329  * Currently, only one token per interface is supported.
2330  */
2331 static int
2332 ndpd_create_addrs(const char *ifname, struct sockaddr_in6 intfid, int intfidlen,
2333     boolean_t stateless, boolean_t stateful, char *addrobj)
2334 {
2335 	struct phyint *pi;
2336 	struct lifreq lifr;
2337 	struct sockaddr_in6 *sin6;
2338 	int err;
2339 
2340 	pi = phyint_lookup((char *)ifname);
2341 	if (pi == NULL) {
2342 		/*
2343 		 * If the physical interface was plumbed but no
2344 		 * addresses were configured yet, phyint will not exist.
2345 		 */
2346 		pi = phyint_create((char *)ifname);
2347 		if (pi == NULL) {
2348 			if (debug & D_PHYINT)
2349 				logmsg(LOG_ERR, "could not create phyint "
2350 				    "for interface %s", ifname);
2351 			return (ENOMEM);
2352 		}
2353 	} else if (pi->pi_autoconf) {
2354 		logmsg(LOG_ERR, "autoconfiguration already in progress\n");
2355 		return (EEXIST);
2356 	}
2357 	check_autoconf_var_consistency(pi, stateless, stateful);
2358 
2359 	if (intfidlen == 0) {
2360 		pi->pi_default_token = _B_TRUE;
2361 		if (ifsock < 0) {
2362 			ifsock = socket(AF_INET6, SOCK_DGRAM, 0);
2363 			if (ifsock < 0) {
2364 				err = errno;
2365 				logperror("ndpd_create_addrs: socket");
2366 				return (err);
2367 			}
2368 		}
2369 		(void) strncpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
2370 		sin6 = (struct sockaddr_in6 *)&lifr.lifr_addr;
2371 		if (ioctl(ifsock, SIOCGLIFTOKEN, (char *)&lifr) < 0) {
2372 			err = errno;
2373 			logperror("SIOCGLIFTOKEN");
2374 			return (err);
2375 		}
2376 		pi->pi_token = sin6->sin6_addr;
2377 		pi->pi_token_length = lifr.lifr_addrlen;
2378 	} else {
2379 		pi->pi_default_token = _B_FALSE;
2380 		pi->pi_token = intfid.sin6_addr;
2381 		pi->pi_token_length = intfidlen;
2382 	}
2383 	pi->pi_stateless = stateless;
2384 	pi->pi_stateful = stateful;
2385 	(void) strlcpy(pi->pi_ipadm_aobjname, addrobj,
2386 	    sizeof (pi->pi_ipadm_aobjname));
2387 
2388 	/* We can allow autoconfiguration now. */
2389 	pi->pi_autoconf = _B_TRUE;
2390 
2391 	/* Restart the solicitations. */
2392 	if (pi->pi_sol_state == DONE_SOLICIT)
2393 		pi->pi_sol_state = NO_SOLICIT;
2394 	if (pi->pi_sol_state == NO_SOLICIT)
2395 		check_to_solicit(pi, START_INIT_SOLICIT);
2396 	if (debug & D_PHYINT)
2397 		logmsg(LOG_DEBUG, "ndpd_create_addrs: "
2398 		    "added token to interface %s\n", pi->pi_name);
2399 	return (0);
2400 }
2401 
2402 /*
2403  * This function deletes all addresses on the given interface
2404  * with the given Interface ID.
2405  */
2406 static int
2407 ndpd_delete_addrs(const char *ifname)
2408 {
2409 	struct phyint *pi;
2410 	struct prefix *pr, *next_pr;
2411 	struct lifreq lifr;
2412 	int err;
2413 
2414 	pi = phyint_lookup((char *)ifname);
2415 	if (pi == NULL) {
2416 		logmsg(LOG_ERR, "no phyint found for %s", ifname);
2417 		return (ENXIO);
2418 	}
2419 	if (IN6_IS_ADDR_UNSPECIFIED(&pi->pi_token)) {
2420 		logmsg(LOG_ERR, "token does not exist for %s", ifname);
2421 		return (EINVAL);
2422 	}
2423 
2424 	if (ifsock < 0) {
2425 		ifsock = socket(AF_INET6, SOCK_DGRAM, 0);
2426 		if (ifsock < 0) {
2427 			err = errno;
2428 			logperror("ndpd_create_addrs: socket");
2429 			return (err);
2430 		}
2431 	}
2432 	/* Remove the prefixes for this phyint if they exist */
2433 	for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) {
2434 		next_pr = pr->pr_next;
2435 		if (pr->pr_name[0] == '\0') {
2436 			prefix_delete(pr);
2437 			continue;
2438 		}
2439 		/*
2440 		 * Delete all the prefixes for the auto-configured
2441 		 * addresses as well as the DHCPv6 addresses.
2442 		 */
2443 		(void) strncpy(lifr.lifr_name, pr->pr_name,
2444 		    sizeof (lifr.lifr_name));
2445 		if (ioctl(ifsock, SIOCGLIFFLAGS, (char *)&lifr) < 0) {
2446 			err = errno;
2447 			logperror("SIOCGLIFFLAGS");
2448 			return (err);
2449 		}
2450 		if ((lifr.lifr_flags & IFF_ADDRCONF) ||
2451 		    (lifr.lifr_flags & IFF_DHCPRUNNING)) {
2452 			prefix_update_ipadm_addrobj(pr, _B_FALSE);
2453 		}
2454 		prefix_delete(pr);
2455 	}
2456 
2457 	/*
2458 	 * If we had started dhcpagent, we need to release the leases
2459 	 * if any are required.
2460 	 */
2461 	if (pi->pi_stateful) {
2462 		(void) strncpy(lifr.lifr_name, pi->pi_name,
2463 		    sizeof (lifr.lifr_name));
2464 		if (ioctl(ifsock, SIOCGLIFFLAGS, (char *)&lifr) < 0) {
2465 			err = errno;
2466 			logperror("SIOCGLIFFLAGS");
2467 			return (err);
2468 		}
2469 		if (lifr.lifr_flags & IFF_DHCPRUNNING)
2470 			release_dhcp(pi);
2471 	}
2472 
2473 	/*
2474 	 * Reset the Interface ID on this phyint and stop autoconfigurations
2475 	 * until a new interface ID is provided.
2476 	 */
2477 	pi->pi_token = in6addr_any;
2478 	pi->pi_token_length = 0;
2479 	pi->pi_autoconf = _B_FALSE;
2480 	pi->pi_ipadm_aobjname[0] = '\0';
2481 
2482 	/* Reset the stateless and stateful settings to default. */
2483 	pi->pi_stateless = pi->pi_StatelessAddrConf;
2484 	pi->pi_stateful = pi->pi_StatefulAddrConf;
2485 
2486 	if (debug & D_PHYINT) {
2487 		logmsg(LOG_DEBUG, "ndpd_delete_addrs: "
2488 		    "removed token from interface %s\n", pi->pi_name);
2489 	}
2490 	return (0);
2491 }
2492 
2493 void
2494 check_autoconf_var_consistency(struct phyint *pi, boolean_t stateless,
2495     boolean_t stateful)
2496 {
2497 	/*
2498 	 * If StatelessAddrConf and StatelessAddrConf are set in
2499 	 * /etc/inet/ndpd.conf, check if the new values override those
2500 	 * settings. If so, log a warning.
2501 	 */
2502 	if ((pi->pi_StatelessAddrConf !=
2503 	    ifdefaults[I_StatelessAddrConf].cf_value &&
2504 	    stateless != pi->pi_StatelessAddrConf) ||
2505 	    (pi->pi_StatefulAddrConf !=
2506 	    ifdefaults[I_StatefulAddrConf].cf_value &&
2507 	    stateful != pi->pi_StatefulAddrConf)) {
2508 		logmsg(LOG_ERR, "check_autoconf_var_consistency: "
2509 		    "Overriding the StatelessAddrConf or StatefulAddrConf "
2510 		    "settings in ndpd.conf with the new values for "
2511 		    "interface %s\n", pi->pi_name);
2512 	}
2513 }
2514 
2515 /*
2516  * If ipadm was used to start autoconfiguration and in.ndpd was restarted
2517  * for some reason, in.ndpd has to resume autoconfiguration when it comes up.
2518  * In this function, it scans the ipadm_addr_info() output to find a link-local
2519  * on this interface with address type "addrconf" and extracts the interface id.
2520  * It also stores the addrobj name to be used later when new addresses are
2521  * created for the prefixes advertised by the router.
2522  * If autoconfiguration was never started on this interface before in.ndpd
2523  * was killed, then in.ndpd should refrain from configuring prefixes, even if
2524  * there is a valid link-local on this interface, created by ipadm (identified
2525  * if there is a valid addrobj name).
2526  */
2527 static int
2528 phyint_check_ipadm_intfid(struct phyint *pi)
2529 {
2530 	ipadm_status_t		status;
2531 	ipadm_addr_info_t	*addrinfo;
2532 	struct ifaddrs		*ifap;
2533 	ipadm_addr_info_t	*ainfop;
2534 	struct sockaddr_in6	*sin6;
2535 	ipadm_handle_t		iph;
2536 
2537 	if (ipadm_open(&iph, 0) != IPADM_SUCCESS) {
2538 		logmsg(LOG_ERR, "could not open handle to libipadm\n");
2539 		return (-1);
2540 	}
2541 
2542 	status = ipadm_addr_info(iph, pi->pi_name, &addrinfo,
2543 	    IPADM_OPT_ZEROADDR, LIFC_NOXMIT|LIFC_TEMPORARY);
2544 	if (status != IPADM_SUCCESS) {
2545 		ipadm_close(iph);
2546 		return (-1);
2547 	}
2548 	pi->pi_autoconf = _B_TRUE;
2549 	for (ainfop = addrinfo; ainfop != NULL; ainfop = IA_NEXT(ainfop)) {
2550 		ifap = &ainfop->ia_ifa;
2551 		if (ifap->ifa_addr->sa_family != AF_INET6 ||
2552 		    ainfop->ia_state == IFA_DISABLED)
2553 			continue;
2554 		sin6 = (struct sockaddr_in6 *)ifap->ifa_addr;
2555 		if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
2556 			if (ainfop->ia_atype == IPADM_ADDR_IPV6_ADDRCONF) {
2557 				pi->pi_token = sin6->sin6_addr;
2558 				pi->pi_token._S6_un._S6_u32[0] = 0;
2559 				pi->pi_token._S6_un._S6_u32[1] = 0;
2560 				pi->pi_autoconf = _B_TRUE;
2561 				(void) strlcpy(pi->pi_ipadm_aobjname,
2562 				    ainfop->ia_aobjname,
2563 				    sizeof (pi->pi_ipadm_aobjname));
2564 				break;
2565 			}
2566 			/*
2567 			 * If IFF_NOLINKLOCAL is set, then the link-local
2568 			 * was created using ipadm. Do not autoconfigure until
2569 			 * ipadm is explicitly used for autoconfiguration.
2570 			 */
2571 			if (ifap->ifa_flags & IFF_NOLINKLOCAL)
2572 				pi->pi_autoconf = _B_FALSE;
2573 		} else if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) &&
2574 		    strrchr(ifap->ifa_name, ':') == NULL) {
2575 			/* The interface was created using ipadm. */
2576 			pi->pi_autoconf = _B_FALSE;
2577 		}
2578 	}
2579 	ipadm_free_addr_info(addrinfo);
2580 	if (!pi->pi_autoconf) {
2581 		pi->pi_token = in6addr_any;
2582 		pi->pi_token_length = 0;
2583 	}
2584 	ipadm_close(iph);
2585 	return (0);
2586 }
2587