zfsimpl.h revision 199767f8919635c4928607450d9e0abb932109ce
1/*-
2 * Copyright (c) 2002 McAfee, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and McAfee Research,, the Security Research Division of
7 * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as
8 * part of the DARPA CHATS research program
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31/*
32 * CDDL HEADER START
33 *
34 * The contents of this file are subject to the terms of the
35 * Common Development and Distribution License (the "License").
36 * You may not use this file except in compliance with the License.
37 *
38 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
39 * or http://www.opensolaris.org/os/licensing.
40 * See the License for the specific language governing permissions
41 * and limitations under the License.
42 *
43 * When distributing Covered Code, include this CDDL HEADER in each
44 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
45 * If applicable, add the following below this CDDL HEADER, with the
46 * fields enclosed by brackets "[]" replaced with your own identifying
47 * information: Portions Copyright [yyyy] [name of copyright owner]
48 *
49 * CDDL HEADER END
50 */
51/*
52 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
53 * Use is subject to license terms.
54 */
55/*
56 * Copyright 2013 by Saso Kiselkov. All rights reserved.
57 */
58/*
59 * Copyright (c) 2013 by Delphix. All rights reserved.
60 */
61
62#define	MAXNAMELEN	256
63
64#define _NOTE(s)
65
66typedef enum { B_FALSE, B_TRUE } boolean_t;
67
68/* CRC64 table */
69#define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
70
71/*
72 * Macros for various sorts of alignment and rounding when the alignment
73 * is known to be a power of 2.
74 */
75#define	P2ALIGN(x, align)		((x) & -(align))
76#define	P2PHASE(x, align)		((x) & ((align) - 1))
77#define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
78#define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
79#define	P2END(x, align)			(-(~(x) & -(align)))
80#define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
81#define	P2BOUNDARY(off, len, align)	(((off) ^ ((off) + (len) - 1)) > (align) - 1)
82
83/*
84 * General-purpose 32-bit and 64-bit bitfield encodings.
85 */
86#define	BF32_DECODE(x, low, len)	P2PHASE((x) >> (low), 1U << (len))
87#define	BF64_DECODE(x, low, len)	P2PHASE((x) >> (low), 1ULL << (len))
88#define	BF32_ENCODE(x, low, len)	(P2PHASE((x), 1U << (len)) << (low))
89#define	BF64_ENCODE(x, low, len)	(P2PHASE((x), 1ULL << (len)) << (low))
90
91#define	BF32_GET(x, low, len)		BF32_DECODE(x, low, len)
92#define	BF64_GET(x, low, len)		BF64_DECODE(x, low, len)
93
94#define	BF32_SET(x, low, len, val)	\
95	((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len))
96#define	BF64_SET(x, low, len, val)	\
97	((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len))
98
99#define	BF32_GET_SB(x, low, len, shift, bias)	\
100	((BF32_GET(x, low, len) + (bias)) << (shift))
101#define	BF64_GET_SB(x, low, len, shift, bias)	\
102	((BF64_GET(x, low, len) + (bias)) << (shift))
103
104#define	BF32_SET_SB(x, low, len, shift, bias, val)	\
105	BF32_SET(x, low, len, ((val) >> (shift)) - (bias))
106#define	BF64_SET_SB(x, low, len, shift, bias, val)	\
107	BF64_SET(x, low, len, ((val) >> (shift)) - (bias))
108
109/*
110 * Macros to reverse byte order
111 */
112#define	BSWAP_8(x)	((x) & 0xff)
113#define	BSWAP_16(x)	((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8))
114#define	BSWAP_32(x)	((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16))
115#define	BSWAP_64(x)	((BSWAP_32(x) << 32) | BSWAP_32((x) >> 32))
116
117#define	SPA_MINBLOCKSHIFT	9
118#define	SPA_OLDMAXBLOCKSHIFT	17
119#define	SPA_MAXBLOCKSHIFT	24
120#define	SPA_MINBLOCKSIZE	(1ULL << SPA_MINBLOCKSHIFT)
121#define	SPA_OLDMAXBLOCKSIZE	(1ULL << SPA_OLDMAXBLOCKSHIFT)
122#define	SPA_MAXBLOCKSIZE	(1ULL << SPA_MAXBLOCKSHIFT)
123
124/*
125 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
126 * The ASIZE encoding should be at least 64 times larger (6 more bits)
127 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
128 * overhead, three DVAs per bp, plus one more bit in case we do anything
129 * else that expands the ASIZE.
130 */
131#define	SPA_LSIZEBITS		16	/* LSIZE up to 32M (2^16 * 512)	*/
132#define	SPA_PSIZEBITS		16	/* PSIZE up to 32M (2^16 * 512)	*/
133#define	SPA_ASIZEBITS		24	/* ASIZE up to 64 times larger	*/
134
135/*
136 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
137 * The members of the dva_t should be considered opaque outside the SPA.
138 */
139typedef struct dva {
140	uint64_t	dva_word[2];
141} dva_t;
142
143/*
144 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes.
145 */
146typedef struct zio_cksum {
147	uint64_t	zc_word[4];
148} zio_cksum_t;
149
150/*
151 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept
152 * secret and is suitable for use in MAC algorithms as the key.
153 */
154typedef struct zio_cksum_salt {
155	uint8_t		zcs_bytes[32];
156} zio_cksum_salt_t;
157
158/*
159 * Each block is described by its DVAs, time of birth, checksum, etc.
160 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
161 *
162 *	64	56	48	40	32	24	16	8	0
163 *	+-------+-------+-------+-------+-------+-------+-------+-------+
164 * 0	|		vdev1		| GRID  |	  ASIZE		|
165 *	+-------+-------+-------+-------+-------+-------+-------+-------+
166 * 1	|G|			 offset1				|
167 *	+-------+-------+-------+-------+-------+-------+-------+-------+
168 * 2	|		vdev2		| GRID  |	  ASIZE		|
169 *	+-------+-------+-------+-------+-------+-------+-------+-------+
170 * 3	|G|			 offset2				|
171 *	+-------+-------+-------+-------+-------+-------+-------+-------+
172 * 4	|		vdev3		| GRID  |	  ASIZE		|
173 *	+-------+-------+-------+-------+-------+-------+-------+-------+
174 * 5	|G|			 offset3				|
175 *	+-------+-------+-------+-------+-------+-------+-------+-------+
176 * 6	|BDX|lvl| type	| cksum |E| comp|    PSIZE	|     LSIZE	|
177 *	+-------+-------+-------+-------+-------+-------+-------+-------+
178 * 7	|			padding					|
179 *	+-------+-------+-------+-------+-------+-------+-------+-------+
180 * 8	|			padding					|
181 *	+-------+-------+-------+-------+-------+-------+-------+-------+
182 * 9	|			physical birth txg			|
183 *	+-------+-------+-------+-------+-------+-------+-------+-------+
184 * a	|			logical birth txg			|
185 *	+-------+-------+-------+-------+-------+-------+-------+-------+
186 * b	|			fill count				|
187 *	+-------+-------+-------+-------+-------+-------+-------+-------+
188 * c	|			checksum[0]				|
189 *	+-------+-------+-------+-------+-------+-------+-------+-------+
190 * d	|			checksum[1]				|
191 *	+-------+-------+-------+-------+-------+-------+-------+-------+
192 * e	|			checksum[2]				|
193 *	+-------+-------+-------+-------+-------+-------+-------+-------+
194 * f	|			checksum[3]				|
195 *	+-------+-------+-------+-------+-------+-------+-------+-------+
196 *
197 * Legend:
198 *
199 * vdev		virtual device ID
200 * offset	offset into virtual device
201 * LSIZE	logical size
202 * PSIZE	physical size (after compression)
203 * ASIZE	allocated size (including RAID-Z parity and gang block headers)
204 * GRID		RAID-Z layout information (reserved for future use)
205 * cksum	checksum function
206 * comp		compression function
207 * G		gang block indicator
208 * B		byteorder (endianness)
209 * D		dedup
210 * X		encryption (on version 30, which is not supported)
211 * E		blkptr_t contains embedded data (see below)
212 * lvl		level of indirection
213 * type		DMU object type
214 * phys birth	txg of block allocation; zero if same as logical birth txg
215 * log. birth	transaction group in which the block was logically born
216 * fill count	number of non-zero blocks under this bp
217 * checksum[4]	256-bit checksum of the data this bp describes
218 */
219
220/*
221 * "Embedded" blkptr_t's don't actually point to a block, instead they
222 * have a data payload embedded in the blkptr_t itself.  See the comment
223 * in blkptr.c for more details.
224 *
225 * The blkptr_t is laid out as follows:
226 *
227 *	64	56	48	40	32	24	16	8	0
228 *	+-------+-------+-------+-------+-------+-------+-------+-------+
229 * 0	|      payload                                                  |
230 * 1	|      payload                                                  |
231 * 2	|      payload                                                  |
232 * 3	|      payload                                                  |
233 * 4	|      payload                                                  |
234 * 5	|      payload                                                  |
235 *	+-------+-------+-------+-------+-------+-------+-------+-------+
236 * 6	|BDX|lvl| type	| etype |E| comp| PSIZE|              LSIZE	|
237 *	+-------+-------+-------+-------+-------+-------+-------+-------+
238 * 7	|      payload                                                  |
239 * 8	|      payload                                                  |
240 * 9	|      payload                                                  |
241 *	+-------+-------+-------+-------+-------+-------+-------+-------+
242 * a	|			logical birth txg			|
243 *	+-------+-------+-------+-------+-------+-------+-------+-------+
244 * b	|      payload                                                  |
245 * c	|      payload                                                  |
246 * d	|      payload                                                  |
247 * e	|      payload                                                  |
248 * f	|      payload                                                  |
249 *	+-------+-------+-------+-------+-------+-------+-------+-------+
250 *
251 * Legend:
252 *
253 * payload		contains the embedded data
254 * B (byteorder)	byteorder (endianness)
255 * D (dedup)		padding (set to zero)
256 * X			encryption (set to zero; see above)
257 * E (embedded)		set to one
258 * lvl			indirection level
259 * type			DMU object type
260 * etype		how to interpret embedded data (BP_EMBEDDED_TYPE_*)
261 * comp			compression function of payload
262 * PSIZE		size of payload after compression, in bytes
263 * LSIZE		logical size of payload, in bytes
264 *			note that 25 bits is enough to store the largest
265 *			"normal" BP's LSIZE (2^16 * 2^9) in bytes
266 * log. birth		transaction group in which the block was logically born
267 *
268 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
269 * bp's they are stored in units of SPA_MINBLOCKSHIFT.
270 * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
271 * The B, D, X, lvl, type, and comp fields are stored the same as with normal
272 * BP's so the BP_SET_* macros can be used with them.  etype, PSIZE, LSIZE must
273 * be set with the BPE_SET_* macros.  BP_SET_EMBEDDED() should be called before
274 * other macros, as they assert that they are only used on BP's of the correct
275 * "embedded-ness".
276 */
277
278#define	BPE_GET_ETYPE(bp)	\
279	(ASSERT(BP_IS_EMBEDDED(bp)), \
280	BF64_GET((bp)->blk_prop, 40, 8))
281#define	BPE_SET_ETYPE(bp, t)	do { \
282	ASSERT(BP_IS_EMBEDDED(bp)); \
283	BF64_SET((bp)->blk_prop, 40, 8, t); \
284_NOTE(CONSTCOND) } while (0)
285
286#define	BPE_GET_LSIZE(bp)	\
287	(ASSERT(BP_IS_EMBEDDED(bp)), \
288	BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
289#define	BPE_SET_LSIZE(bp, x)	do { \
290	ASSERT(BP_IS_EMBEDDED(bp)); \
291	BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
292_NOTE(CONSTCOND) } while (0)
293
294#define	BPE_GET_PSIZE(bp)	\
295	(ASSERT(BP_IS_EMBEDDED(bp)), \
296	BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
297#define	BPE_SET_PSIZE(bp, x)	do { \
298	ASSERT(BP_IS_EMBEDDED(bp)); \
299	BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
300_NOTE(CONSTCOND) } while (0)
301
302typedef enum bp_embedded_type {
303	BP_EMBEDDED_TYPE_DATA,
304	BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */
305	NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED
306} bp_embedded_type_t;
307
308#define	BPE_NUM_WORDS 14
309#define	BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
310#define	BPE_IS_PAYLOADWORD(bp, wp) \
311	((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
312
313#define	SPA_BLKPTRSHIFT	7		/* blkptr_t is 128 bytes	*/
314#define	SPA_DVAS_PER_BP	3		/* Number of DVAs in a bp	*/
315
316typedef struct blkptr {
317	dva_t		blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
318	uint64_t	blk_prop;	/* size, compression, type, etc	    */
319	uint64_t	blk_pad[2];	/* Extra space for the future	    */
320	uint64_t	blk_phys_birth;	/* txg when block was allocated	    */
321	uint64_t	blk_birth;	/* transaction group at birth	    */
322	uint64_t	blk_fill;	/* fill count			    */
323	zio_cksum_t	blk_cksum;	/* 256-bit checksum		    */
324} blkptr_t;
325
326/*
327 * Macros to get and set fields in a bp or DVA.
328 */
329#define	DVA_GET_ASIZE(dva)	\
330	BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
331#define	DVA_SET_ASIZE(dva, x)	\
332	BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
333	SPA_MINBLOCKSHIFT, 0, x)
334
335#define	DVA_GET_GRID(dva)	BF64_GET((dva)->dva_word[0], 24, 8)
336#define	DVA_SET_GRID(dva, x)	BF64_SET((dva)->dva_word[0], 24, 8, x)
337
338#define	DVA_GET_VDEV(dva)	BF64_GET((dva)->dva_word[0], 32, 32)
339#define	DVA_SET_VDEV(dva, x)	BF64_SET((dva)->dva_word[0], 32, 32, x)
340
341#define	DVA_GET_OFFSET(dva)	\
342	BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
343#define	DVA_SET_OFFSET(dva, x)	\
344	BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
345
346#define	DVA_GET_GANG(dva)	BF64_GET((dva)->dva_word[1], 63, 1)
347#define	DVA_SET_GANG(dva, x)	BF64_SET((dva)->dva_word[1], 63, 1, x)
348
349#define	BP_GET_LSIZE(bp)	\
350	(BP_IS_EMBEDDED(bp) ?	\
351	(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
352	BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
353#define	BP_SET_LSIZE(bp, x)	do { \
354	ASSERT(!BP_IS_EMBEDDED(bp)); \
355	BF64_SET_SB((bp)->blk_prop, \
356	    0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
357_NOTE(CONSTCOND) } while (0)
358
359#define	BP_GET_PSIZE(bp)	\
360	BF64_GET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)
361#define	BP_SET_PSIZE(bp, x)	\
362	BF64_SET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x)
363
364#define	BP_GET_COMPRESS(bp)	BF64_GET((bp)->blk_prop, 32, 7)
365#define	BP_SET_COMPRESS(bp, x)	BF64_SET((bp)->blk_prop, 32, 7, x)
366
367#define	BP_GET_CHECKSUM(bp)	BF64_GET((bp)->blk_prop, 40, 8)
368#define	BP_SET_CHECKSUM(bp, x)	BF64_SET((bp)->blk_prop, 40, 8, x)
369
370#define	BP_GET_TYPE(bp)		BF64_GET((bp)->blk_prop, 48, 8)
371#define	BP_SET_TYPE(bp, x)	BF64_SET((bp)->blk_prop, 48, 8, x)
372
373#define	BP_GET_LEVEL(bp)	BF64_GET((bp)->blk_prop, 56, 5)
374#define	BP_SET_LEVEL(bp, x)	BF64_SET((bp)->blk_prop, 56, 5, x)
375
376#define	BP_IS_EMBEDDED(bp)	BF64_GET((bp)->blk_prop, 39, 1)
377
378#define	BP_GET_DEDUP(bp)	BF64_GET((bp)->blk_prop, 62, 1)
379#define	BP_SET_DEDUP(bp, x)	BF64_SET((bp)->blk_prop, 62, 1, x)
380
381#define	BP_GET_BYTEORDER(bp)	BF64_GET((bp)->blk_prop, 63, 1)
382#define	BP_SET_BYTEORDER(bp, x)	BF64_SET((bp)->blk_prop, 63, 1, x)
383
384#define	BP_PHYSICAL_BIRTH(bp)		\
385	((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
386
387#define	BP_GET_ASIZE(bp)	\
388	(DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
389		DVA_GET_ASIZE(&(bp)->blk_dva[2]))
390
391#define	BP_GET_UCSIZE(bp) \
392	((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \
393	BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp));
394
395#define	BP_GET_NDVAS(bp)	\
396	(!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
397	!!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
398	!!DVA_GET_ASIZE(&(bp)->blk_dva[2]))
399
400#define	DVA_EQUAL(dva1, dva2)	\
401	((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
402	(dva1)->dva_word[0] == (dva2)->dva_word[0])
403
404#define	ZIO_CHECKSUM_EQUAL(zc1, zc2) \
405	(0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \
406	((zc1).zc_word[1] - (zc2).zc_word[1]) | \
407	((zc1).zc_word[2] - (zc2).zc_word[2]) | \
408	((zc1).zc_word[3] - (zc2).zc_word[3])))
409
410
411#define	DVA_IS_VALID(dva)	(DVA_GET_ASIZE(dva) != 0)
412
413#define	ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3)	\
414{						\
415	(zcp)->zc_word[0] = w0;			\
416	(zcp)->zc_word[1] = w1;			\
417	(zcp)->zc_word[2] = w2;			\
418	(zcp)->zc_word[3] = w3;			\
419}
420
421#define	BP_IDENTITY(bp)		(&(bp)->blk_dva[0])
422#define	BP_IS_GANG(bp)		DVA_GET_GANG(BP_IDENTITY(bp))
423#define	DVA_IS_EMPTY(dva)	((dva)->dva_word[0] == 0ULL &&  \
424	(dva)->dva_word[1] == 0ULL)
425#define	BP_IS_HOLE(bp)		DVA_IS_EMPTY(BP_IDENTITY(bp))
426#define	BP_IS_OLDER(bp, txg)	(!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg))
427
428#define	BP_ZERO(bp)				\
429{						\
430	(bp)->blk_dva[0].dva_word[0] = 0;	\
431	(bp)->blk_dva[0].dva_word[1] = 0;	\
432	(bp)->blk_dva[1].dva_word[0] = 0;	\
433	(bp)->blk_dva[1].dva_word[1] = 0;	\
434	(bp)->blk_dva[2].dva_word[0] = 0;	\
435	(bp)->blk_dva[2].dva_word[1] = 0;	\
436	(bp)->blk_prop = 0;			\
437	(bp)->blk_pad[0] = 0;			\
438	(bp)->blk_pad[1] = 0;			\
439	(bp)->blk_phys_birth = 0;		\
440	(bp)->blk_birth = 0;			\
441	(bp)->blk_fill = 0;			\
442	ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0);	\
443}
444
445#define	BPE_NUM_WORDS 14
446#define	BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
447#define	BPE_IS_PAYLOADWORD(bp, wp) \
448	((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
449
450/*
451 * Embedded checksum
452 */
453#define	ZEC_MAGIC	0x210da7ab10c7a11ULL
454
455typedef struct zio_eck {
456	uint64_t	zec_magic;	/* for validation, endianness	*/
457	zio_cksum_t	zec_cksum;	/* 256-bit checksum		*/
458} zio_eck_t;
459
460/*
461 * Gang block headers are self-checksumming and contain an array
462 * of block pointers.
463 */
464#define	SPA_GANGBLOCKSIZE	SPA_MINBLOCKSIZE
465#define	SPA_GBH_NBLKPTRS	((SPA_GANGBLOCKSIZE - \
466	sizeof (zio_eck_t)) / sizeof (blkptr_t))
467#define	SPA_GBH_FILLER		((SPA_GANGBLOCKSIZE - \
468	sizeof (zio_eck_t) - \
469	(SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\
470	sizeof (uint64_t))
471
472typedef struct zio_gbh {
473	blkptr_t		zg_blkptr[SPA_GBH_NBLKPTRS];
474	uint64_t		zg_filler[SPA_GBH_FILLER];
475	zio_eck_t		zg_tail;
476} zio_gbh_phys_t;
477
478#define	VDEV_RAIDZ_MAXPARITY	3
479
480#define	VDEV_PAD_SIZE		(8 << 10)
481/* 2 padding areas (vl_pad1 and vl_pad2) to skip */
482#define	VDEV_SKIP_SIZE		VDEV_PAD_SIZE * 2
483#define	VDEV_PHYS_SIZE		(112 << 10)
484#define	VDEV_UBERBLOCK_RING	(128 << 10)
485
486#define	VDEV_UBERBLOCK_SHIFT(vd)	\
487	MAX((vd)->v_top->v_ashift, UBERBLOCK_SHIFT)
488#define	VDEV_UBERBLOCK_COUNT(vd)	\
489	(VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd))
490#define	VDEV_UBERBLOCK_OFFSET(vd, n)	\
491	offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)])
492#define	VDEV_UBERBLOCK_SIZE(vd)		(1ULL << VDEV_UBERBLOCK_SHIFT(vd))
493
494typedef struct vdev_phys {
495	char		vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)];
496	zio_eck_t	vp_zbt;
497} vdev_phys_t;
498
499typedef struct vdev_label {
500	char		vl_pad1[VDEV_PAD_SIZE];			/*  8K  */
501	char		vl_pad2[VDEV_PAD_SIZE];			/*  8K  */
502	vdev_phys_t	vl_vdev_phys;				/* 112K	*/
503	char		vl_uberblock[VDEV_UBERBLOCK_RING];	/* 128K	*/
504} vdev_label_t;							/* 256K total */
505
506/*
507 * vdev_dirty() flags
508 */
509#define	VDD_METASLAB	0x01
510#define	VDD_DTL		0x02
511
512/*
513 * Size and offset of embedded boot loader region on each label.
514 * The total size of the first two labels plus the boot area is 4MB.
515 */
516#define	VDEV_BOOT_OFFSET	(2 * sizeof (vdev_label_t))
517#define	VDEV_BOOT_SIZE		(7ULL << 19)			/* 3.5M	*/
518
519/*
520 * Size of label regions at the start and end of each leaf device.
521 */
522#define	VDEV_LABEL_START_SIZE	(2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE)
523#define	VDEV_LABEL_END_SIZE	(2 * sizeof (vdev_label_t))
524#define	VDEV_LABELS		4
525
526enum zio_checksum {
527	ZIO_CHECKSUM_INHERIT = 0,
528	ZIO_CHECKSUM_ON,
529	ZIO_CHECKSUM_OFF,
530	ZIO_CHECKSUM_LABEL,
531	ZIO_CHECKSUM_GANG_HEADER,
532	ZIO_CHECKSUM_ZILOG,
533	ZIO_CHECKSUM_FLETCHER_2,
534	ZIO_CHECKSUM_FLETCHER_4,
535	ZIO_CHECKSUM_SHA256,
536	ZIO_CHECKSUM_ZILOG2,
537	ZIO_CHECKSUM_NOPARITY,
538	ZIO_CHECKSUM_SHA512,
539	ZIO_CHECKSUM_SKEIN,
540	ZIO_CHECKSUM_EDONR,
541	ZIO_CHECKSUM_FUNCTIONS
542};
543
544#define	ZIO_CHECKSUM_ON_VALUE	ZIO_CHECKSUM_FLETCHER_4
545#define	ZIO_CHECKSUM_DEFAULT	ZIO_CHECKSUM_ON
546
547enum zio_compress {
548	ZIO_COMPRESS_INHERIT = 0,
549	ZIO_COMPRESS_ON,
550	ZIO_COMPRESS_OFF,
551	ZIO_COMPRESS_LZJB,
552	ZIO_COMPRESS_EMPTY,
553	ZIO_COMPRESS_GZIP_1,
554	ZIO_COMPRESS_GZIP_2,
555	ZIO_COMPRESS_GZIP_3,
556	ZIO_COMPRESS_GZIP_4,
557	ZIO_COMPRESS_GZIP_5,
558	ZIO_COMPRESS_GZIP_6,
559	ZIO_COMPRESS_GZIP_7,
560	ZIO_COMPRESS_GZIP_8,
561	ZIO_COMPRESS_GZIP_9,
562	ZIO_COMPRESS_ZLE,
563	ZIO_COMPRESS_LZ4,
564	ZIO_COMPRESS_FUNCTIONS
565};
566
567#define	ZIO_COMPRESS_ON_VALUE	ZIO_COMPRESS_LZJB
568#define	ZIO_COMPRESS_DEFAULT	ZIO_COMPRESS_OFF
569
570/* nvlist pack encoding */
571#define	NV_ENCODE_NATIVE	0
572#define	NV_ENCODE_XDR		1
573
574typedef enum {
575	DATA_TYPE_UNKNOWN = 0,
576	DATA_TYPE_BOOLEAN,
577	DATA_TYPE_BYTE,
578	DATA_TYPE_INT16,
579	DATA_TYPE_UINT16,
580	DATA_TYPE_INT32,
581	DATA_TYPE_UINT32,
582	DATA_TYPE_INT64,
583	DATA_TYPE_UINT64,
584	DATA_TYPE_STRING,
585	DATA_TYPE_BYTE_ARRAY,
586	DATA_TYPE_INT16_ARRAY,
587	DATA_TYPE_UINT16_ARRAY,
588	DATA_TYPE_INT32_ARRAY,
589	DATA_TYPE_UINT32_ARRAY,
590	DATA_TYPE_INT64_ARRAY,
591	DATA_TYPE_UINT64_ARRAY,
592	DATA_TYPE_STRING_ARRAY,
593	DATA_TYPE_HRTIME,
594	DATA_TYPE_NVLIST,
595	DATA_TYPE_NVLIST_ARRAY,
596	DATA_TYPE_BOOLEAN_VALUE,
597	DATA_TYPE_INT8,
598	DATA_TYPE_UINT8,
599	DATA_TYPE_BOOLEAN_ARRAY,
600	DATA_TYPE_INT8_ARRAY,
601	DATA_TYPE_UINT8_ARRAY
602} data_type_t;
603
604/*
605 * On-disk version number.
606 */
607#define	SPA_VERSION_1			1ULL
608#define	SPA_VERSION_2			2ULL
609#define	SPA_VERSION_3			3ULL
610#define	SPA_VERSION_4			4ULL
611#define	SPA_VERSION_5			5ULL
612#define	SPA_VERSION_6			6ULL
613#define	SPA_VERSION_7			7ULL
614#define	SPA_VERSION_8			8ULL
615#define	SPA_VERSION_9			9ULL
616#define	SPA_VERSION_10			10ULL
617#define	SPA_VERSION_11			11ULL
618#define	SPA_VERSION_12			12ULL
619#define	SPA_VERSION_13			13ULL
620#define	SPA_VERSION_14			14ULL
621#define	SPA_VERSION_15			15ULL
622#define	SPA_VERSION_16			16ULL
623#define	SPA_VERSION_17			17ULL
624#define	SPA_VERSION_18			18ULL
625#define	SPA_VERSION_19			19ULL
626#define	SPA_VERSION_20			20ULL
627#define	SPA_VERSION_21			21ULL
628#define	SPA_VERSION_22			22ULL
629#define	SPA_VERSION_23			23ULL
630#define	SPA_VERSION_24			24ULL
631#define	SPA_VERSION_25			25ULL
632#define	SPA_VERSION_26			26ULL
633#define	SPA_VERSION_27			27ULL
634#define	SPA_VERSION_28			28ULL
635#define	SPA_VERSION_5000		5000ULL
636
637/*
638 * When bumping up SPA_VERSION, make sure GRUB ZFS understands the on-disk
639 * format change. Go to usr/src/grub/grub-0.97/stage2/{zfs-include/, fsys_zfs*},
640 * and do the appropriate changes.  Also bump the version number in
641 * usr/src/grub/capability.
642 */
643#define	SPA_VERSION			SPA_VERSION_5000
644#define	SPA_VERSION_STRING		"5000"
645
646/*
647 * Symbolic names for the changes that caused a SPA_VERSION switch.
648 * Used in the code when checking for presence or absence of a feature.
649 * Feel free to define multiple symbolic names for each version if there
650 * were multiple changes to on-disk structures during that version.
651 *
652 * NOTE: When checking the current SPA_VERSION in your code, be sure
653 *       to use spa_version() since it reports the version of the
654 *       last synced uberblock.  Checking the in-flight version can
655 *       be dangerous in some cases.
656 */
657#define	SPA_VERSION_INITIAL		SPA_VERSION_1
658#define	SPA_VERSION_DITTO_BLOCKS	SPA_VERSION_2
659#define	SPA_VERSION_SPARES		SPA_VERSION_3
660#define	SPA_VERSION_RAID6		SPA_VERSION_3
661#define	SPA_VERSION_BPLIST_ACCOUNT	SPA_VERSION_3
662#define	SPA_VERSION_RAIDZ_DEFLATE	SPA_VERSION_3
663#define	SPA_VERSION_DNODE_BYTES		SPA_VERSION_3
664#define	SPA_VERSION_ZPOOL_HISTORY	SPA_VERSION_4
665#define	SPA_VERSION_GZIP_COMPRESSION	SPA_VERSION_5
666#define	SPA_VERSION_BOOTFS		SPA_VERSION_6
667#define	SPA_VERSION_SLOGS		SPA_VERSION_7
668#define	SPA_VERSION_DELEGATED_PERMS	SPA_VERSION_8
669#define	SPA_VERSION_FUID		SPA_VERSION_9
670#define	SPA_VERSION_REFRESERVATION	SPA_VERSION_9
671#define	SPA_VERSION_REFQUOTA		SPA_VERSION_9
672#define	SPA_VERSION_UNIQUE_ACCURATE	SPA_VERSION_9
673#define	SPA_VERSION_L2CACHE		SPA_VERSION_10
674#define	SPA_VERSION_NEXT_CLONES		SPA_VERSION_11
675#define	SPA_VERSION_ORIGIN		SPA_VERSION_11
676#define	SPA_VERSION_DSL_SCRUB		SPA_VERSION_11
677#define	SPA_VERSION_SNAP_PROPS		SPA_VERSION_12
678#define	SPA_VERSION_USED_BREAKDOWN	SPA_VERSION_13
679#define	SPA_VERSION_PASSTHROUGH_X	SPA_VERSION_14
680#define SPA_VERSION_USERSPACE		SPA_VERSION_15
681#define	SPA_VERSION_STMF_PROP		SPA_VERSION_16
682#define	SPA_VERSION_RAIDZ3		SPA_VERSION_17
683#define	SPA_VERSION_USERREFS		SPA_VERSION_18
684#define	SPA_VERSION_HOLES		SPA_VERSION_19
685#define	SPA_VERSION_ZLE_COMPRESSION	SPA_VERSION_20
686#define	SPA_VERSION_DEDUP		SPA_VERSION_21
687#define	SPA_VERSION_RECVD_PROPS		SPA_VERSION_22
688#define	SPA_VERSION_SLIM_ZIL		SPA_VERSION_23
689#define	SPA_VERSION_SA			SPA_VERSION_24
690#define	SPA_VERSION_SCAN		SPA_VERSION_25
691#define	SPA_VERSION_DIR_CLONES		SPA_VERSION_26
692#define	SPA_VERSION_DEADLISTS		SPA_VERSION_26
693#define	SPA_VERSION_FAST_SNAP		SPA_VERSION_27
694#define	SPA_VERSION_MULTI_REPLACE	SPA_VERSION_28
695#define	SPA_VERSION_BEFORE_FEATURES	SPA_VERSION_28
696#define	SPA_VERSION_FEATURES		SPA_VERSION_5000
697
698#define	SPA_VERSION_IS_SUPPORTED(v) \
699	(((v) >= SPA_VERSION_INITIAL && (v) <= SPA_VERSION_BEFORE_FEATURES) || \
700	((v) >= SPA_VERSION_FEATURES && (v) <= SPA_VERSION))
701
702/*
703 * The following are configuration names used in the nvlist describing a pool's
704 * configuration.
705 */
706#define	ZPOOL_CONFIG_VERSION		"version"
707#define	ZPOOL_CONFIG_POOL_NAME		"name"
708#define	ZPOOL_CONFIG_POOL_STATE		"state"
709#define	ZPOOL_CONFIG_POOL_TXG		"txg"
710#define	ZPOOL_CONFIG_POOL_GUID		"pool_guid"
711#define	ZPOOL_CONFIG_CREATE_TXG		"create_txg"
712#define	ZPOOL_CONFIG_TOP_GUID		"top_guid"
713#define	ZPOOL_CONFIG_VDEV_TREE		"vdev_tree"
714#define	ZPOOL_CONFIG_TYPE		"type"
715#define	ZPOOL_CONFIG_CHILDREN		"children"
716#define	ZPOOL_CONFIG_ID			"id"
717#define	ZPOOL_CONFIG_GUID		"guid"
718#define	ZPOOL_CONFIG_PATH		"path"
719#define	ZPOOL_CONFIG_DEVID		"devid"
720#define	ZPOOL_CONFIG_PHYS_PATH		"phys_path"
721#define	ZPOOL_CONFIG_METASLAB_ARRAY	"metaslab_array"
722#define	ZPOOL_CONFIG_METASLAB_SHIFT	"metaslab_shift"
723#define	ZPOOL_CONFIG_ASHIFT		"ashift"
724#define	ZPOOL_CONFIG_ASIZE		"asize"
725#define	ZPOOL_CONFIG_DTL		"DTL"
726#define	ZPOOL_CONFIG_STATS		"stats"
727#define	ZPOOL_CONFIG_WHOLE_DISK		"whole_disk"
728#define	ZPOOL_CONFIG_ERRCOUNT		"error_count"
729#define	ZPOOL_CONFIG_NOT_PRESENT	"not_present"
730#define	ZPOOL_CONFIG_SPARES		"spares"
731#define	ZPOOL_CONFIG_IS_SPARE		"is_spare"
732#define	ZPOOL_CONFIG_NPARITY		"nparity"
733#define	ZPOOL_CONFIG_HOSTID		"hostid"
734#define	ZPOOL_CONFIG_HOSTNAME		"hostname"
735#define	ZPOOL_CONFIG_IS_LOG		"is_log"
736#define	ZPOOL_CONFIG_TIMESTAMP		"timestamp" /* not stored on disk */
737#define	ZPOOL_CONFIG_FEATURES_FOR_READ	"features_for_read"
738
739/*
740 * The persistent vdev state is stored as separate values rather than a single
741 * 'vdev_state' entry.  This is because a device can be in multiple states, such
742 * as offline and degraded.
743 */
744#define	ZPOOL_CONFIG_OFFLINE            "offline"
745#define	ZPOOL_CONFIG_FAULTED            "faulted"
746#define	ZPOOL_CONFIG_DEGRADED           "degraded"
747#define	ZPOOL_CONFIG_REMOVED            "removed"
748#define	ZPOOL_CONFIG_FRU		"fru"
749#define	ZPOOL_CONFIG_AUX_STATE		"aux_state"
750
751#define	VDEV_TYPE_ROOT			"root"
752#define	VDEV_TYPE_MIRROR		"mirror"
753#define	VDEV_TYPE_REPLACING		"replacing"
754#define	VDEV_TYPE_RAIDZ			"raidz"
755#define	VDEV_TYPE_DISK			"disk"
756#define	VDEV_TYPE_FILE			"file"
757#define	VDEV_TYPE_MISSING		"missing"
758#define	VDEV_TYPE_HOLE			"hole"
759#define	VDEV_TYPE_SPARE			"spare"
760#define	VDEV_TYPE_LOG			"log"
761#define	VDEV_TYPE_L2CACHE		"l2cache"
762
763/*
764 * This is needed in userland to report the minimum necessary device size.
765 */
766#define	SPA_MINDEVSIZE		(64ULL << 20)
767
768/*
769 * The location of the pool configuration repository, shared between kernel and
770 * userland.
771 */
772#define	ZPOOL_CACHE		"/boot/zfs/zpool.cache"
773
774/*
775 * vdev states are ordered from least to most healthy.
776 * A vdev that's CANT_OPEN or below is considered unusable.
777 */
778typedef enum vdev_state {
779	VDEV_STATE_UNKNOWN = 0,	/* Uninitialized vdev			*/
780	VDEV_STATE_CLOSED,	/* Not currently open			*/
781	VDEV_STATE_OFFLINE,	/* Not allowed to open			*/
782	VDEV_STATE_REMOVED,	/* Explicitly removed from system	*/
783	VDEV_STATE_CANT_OPEN,	/* Tried to open, but failed		*/
784	VDEV_STATE_FAULTED,	/* External request to fault device	*/
785	VDEV_STATE_DEGRADED,	/* Replicated vdev with unhealthy kids	*/
786	VDEV_STATE_HEALTHY	/* Presumed good			*/
787} vdev_state_t;
788
789/*
790 * vdev aux states.  When a vdev is in the CANT_OPEN state, the aux field
791 * of the vdev stats structure uses these constants to distinguish why.
792 */
793typedef enum vdev_aux {
794	VDEV_AUX_NONE,		/* no error				*/
795	VDEV_AUX_OPEN_FAILED,	/* ldi_open_*() or vn_open() failed	*/
796	VDEV_AUX_CORRUPT_DATA,	/* bad label or disk contents		*/
797	VDEV_AUX_NO_REPLICAS,	/* insufficient number of replicas	*/
798	VDEV_AUX_BAD_GUID_SUM,	/* vdev guid sum doesn't match		*/
799	VDEV_AUX_TOO_SMALL,	/* vdev size is too small		*/
800	VDEV_AUX_BAD_LABEL,	/* the label is OK but invalid		*/
801	VDEV_AUX_VERSION_NEWER,	/* on-disk version is too new		*/
802	VDEV_AUX_VERSION_OLDER,	/* on-disk version is too old		*/
803	VDEV_AUX_SPARED		/* hot spare used in another pool	*/
804} vdev_aux_t;
805
806/*
807 * pool state.  The following states are written to disk as part of the normal
808 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE.  The remaining states are
809 * software abstractions used at various levels to communicate pool state.
810 */
811typedef enum pool_state {
812	POOL_STATE_ACTIVE = 0,		/* In active use		*/
813	POOL_STATE_EXPORTED,		/* Explicitly exported		*/
814	POOL_STATE_DESTROYED,		/* Explicitly destroyed		*/
815	POOL_STATE_SPARE,		/* Reserved for hot spare use	*/
816	POOL_STATE_UNINITIALIZED,	/* Internal spa_t state		*/
817	POOL_STATE_UNAVAIL,		/* Internal libzfs state	*/
818	POOL_STATE_POTENTIALLY_ACTIVE	/* Internal libzfs state	*/
819} pool_state_t;
820
821/*
822 * The uberblock version is incremented whenever an incompatible on-disk
823 * format change is made to the SPA, DMU, or ZAP.
824 *
825 * Note: the first two fields should never be moved.  When a storage pool
826 * is opened, the uberblock must be read off the disk before the version
827 * can be checked.  If the ub_version field is moved, we may not detect
828 * version mismatch.  If the ub_magic field is moved, applications that
829 * expect the magic number in the first word won't work.
830 */
831#define	UBERBLOCK_MAGIC		0x00bab10c		/* oo-ba-bloc!	*/
832#define	UBERBLOCK_SHIFT		10			/* up to 1K	*/
833
834struct uberblock {
835	uint64_t	ub_magic;	/* UBERBLOCK_MAGIC		*/
836	uint64_t	ub_version;	/* SPA_VERSION			*/
837	uint64_t	ub_txg;		/* txg of last sync		*/
838	uint64_t	ub_guid_sum;	/* sum of all vdev guids	*/
839	uint64_t	ub_timestamp;	/* UTC time of last sync	*/
840	blkptr_t	ub_rootbp;	/* MOS objset_phys_t		*/
841};
842
843/*
844 * Flags.
845 */
846#define	DNODE_MUST_BE_ALLOCATED	1
847#define	DNODE_MUST_BE_FREE	2
848
849/*
850 * Fixed constants.
851 */
852#define	DNODE_SHIFT		9	/* 512 bytes */
853#define	DN_MIN_INDBLKSHIFT	12	/* 4k */
854#define	DN_MAX_INDBLKSHIFT	14	/* 16k */
855#define	DNODE_BLOCK_SHIFT	14	/* 16k */
856#define	DNODE_CORE_SIZE		64	/* 64 bytes for dnode sans blkptrs */
857#define	DN_MAX_OBJECT_SHIFT	48	/* 256 trillion (zfs_fid_t limit) */
858#define	DN_MAX_OFFSET_SHIFT	64	/* 2^64 bytes in a dnode */
859
860/*
861 * Derived constants.
862 */
863#define	DNODE_SIZE	(1 << DNODE_SHIFT)
864#define	DN_MAX_NBLKPTR	((DNODE_SIZE - DNODE_CORE_SIZE) >> SPA_BLKPTRSHIFT)
865#define	DN_MAX_BONUSLEN	(DNODE_SIZE - DNODE_CORE_SIZE - (1 << SPA_BLKPTRSHIFT))
866#define	DN_MAX_OBJECT	(1ULL << DN_MAX_OBJECT_SHIFT)
867
868#define	DNODES_PER_BLOCK_SHIFT	(DNODE_BLOCK_SHIFT - DNODE_SHIFT)
869#define	DNODES_PER_BLOCK	(1ULL << DNODES_PER_BLOCK_SHIFT)
870#define	DNODES_PER_LEVEL_SHIFT	(DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT)
871
872/* The +2 here is a cheesy way to round up */
873#define	DN_MAX_LEVELS	(2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \
874	(DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT)))
875
876#define	DN_BONUS(dnp)	((void*)((dnp)->dn_bonus + \
877	(((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t))))
878
879#define	DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \
880	(dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT)
881
882#define	EPB(blkshift, typeshift)	(1 << (blkshift - typeshift))
883
884/* Is dn_used in bytes?  if not, it's in multiples of SPA_MINBLOCKSIZE */
885#define	DNODE_FLAG_USED_BYTES		(1<<0)
886#define	DNODE_FLAG_USERUSED_ACCOUNTED	(1<<1)
887
888/* Does dnode have a SA spill blkptr in bonus? */
889#define	DNODE_FLAG_SPILL_BLKPTR	(1<<2)
890
891typedef struct dnode_phys {
892	uint8_t dn_type;		/* dmu_object_type_t */
893	uint8_t dn_indblkshift;		/* ln2(indirect block size) */
894	uint8_t dn_nlevels;		/* 1=dn_blkptr->data blocks */
895	uint8_t dn_nblkptr;		/* length of dn_blkptr */
896	uint8_t dn_bonustype;		/* type of data in bonus buffer */
897	uint8_t	dn_checksum;		/* ZIO_CHECKSUM type */
898	uint8_t	dn_compress;		/* ZIO_COMPRESS type */
899	uint8_t dn_flags;		/* DNODE_FLAG_* */
900	uint16_t dn_datablkszsec;	/* data block size in 512b sectors */
901	uint16_t dn_bonuslen;		/* length of dn_bonus */
902	uint8_t dn_pad2[4];
903
904	/* accounting is protected by dn_dirty_mtx */
905	uint64_t dn_maxblkid;		/* largest allocated block ID */
906	uint64_t dn_used;		/* bytes (or sectors) of disk space */
907
908	uint64_t dn_pad3[4];
909
910	blkptr_t dn_blkptr[1];
911	uint8_t dn_bonus[DN_MAX_BONUSLEN - sizeof (blkptr_t)];
912	blkptr_t dn_spill;
913} dnode_phys_t;
914
915typedef enum dmu_object_byteswap {
916	DMU_BSWAP_UINT8,
917	DMU_BSWAP_UINT16,
918	DMU_BSWAP_UINT32,
919	DMU_BSWAP_UINT64,
920	DMU_BSWAP_ZAP,
921	DMU_BSWAP_DNODE,
922	DMU_BSWAP_OBJSET,
923	DMU_BSWAP_ZNODE,
924	DMU_BSWAP_OLDACL,
925	DMU_BSWAP_ACL,
926	/*
927	 * Allocating a new byteswap type number makes the on-disk format
928	 * incompatible with any other format that uses the same number.
929	 *
930	 * Data can usually be structured to work with one of the
931	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
932	 */
933	DMU_BSWAP_NUMFUNCS
934} dmu_object_byteswap_t;
935
936#define	DMU_OT_NEWTYPE 0x80
937#define	DMU_OT_METADATA 0x40
938#define	DMU_OT_BYTESWAP_MASK 0x3f
939
940/*
941 * Defines a uint8_t object type. Object types specify if the data
942 * in the object is metadata (boolean) and how to byteswap the data
943 * (dmu_object_byteswap_t).
944 */
945#define	DMU_OT(byteswap, metadata) \
946	(DMU_OT_NEWTYPE | \
947	((metadata) ? DMU_OT_METADATA : 0) | \
948	((byteswap) & DMU_OT_BYTESWAP_MASK))
949
950typedef enum dmu_object_type {
951	DMU_OT_NONE,
952	/* general: */
953	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
954	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
955	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
956	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
957	DMU_OT_BPLIST,			/* UINT64 */
958	DMU_OT_BPLIST_HDR,		/* UINT64 */
959	/* spa: */
960	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
961	DMU_OT_SPACE_MAP,		/* UINT64 */
962	/* zil: */
963	DMU_OT_INTENT_LOG,		/* UINT64 */
964	/* dmu: */
965	DMU_OT_DNODE,			/* DNODE */
966	DMU_OT_OBJSET,			/* OBJSET */
967	/* dsl: */
968	DMU_OT_DSL_DIR,			/* UINT64 */
969	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
970	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
971	DMU_OT_DSL_PROPS,		/* ZAP */
972	DMU_OT_DSL_DATASET,		/* UINT64 */
973	/* zpl: */
974	DMU_OT_ZNODE,			/* ZNODE */
975	DMU_OT_OLDACL,			/* Old ACL */
976	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
977	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
978	DMU_OT_MASTER_NODE,		/* ZAP */
979	DMU_OT_UNLINKED_SET,		/* ZAP */
980	/* zvol: */
981	DMU_OT_ZVOL,			/* UINT8 */
982	DMU_OT_ZVOL_PROP,		/* ZAP */
983	/* other; for testing only! */
984	DMU_OT_PLAIN_OTHER,		/* UINT8 */
985	DMU_OT_UINT64_OTHER,		/* UINT64 */
986	DMU_OT_ZAP_OTHER,		/* ZAP */
987	/* new object types: */
988	DMU_OT_ERROR_LOG,		/* ZAP */
989	DMU_OT_SPA_HISTORY,		/* UINT8 */
990	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
991	DMU_OT_POOL_PROPS,		/* ZAP */
992	DMU_OT_DSL_PERMS,		/* ZAP */
993	DMU_OT_ACL,			/* ACL */
994	DMU_OT_SYSACL,			/* SYSACL */
995	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
996	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
997	DMU_OT_NEXT_CLONES,		/* ZAP */
998	DMU_OT_SCAN_QUEUE,		/* ZAP */
999	DMU_OT_USERGROUP_USED,		/* ZAP */
1000	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
1001	DMU_OT_USERREFS,		/* ZAP */
1002	DMU_OT_DDT_ZAP,			/* ZAP */
1003	DMU_OT_DDT_STATS,		/* ZAP */
1004	DMU_OT_SA,			/* System attr */
1005	DMU_OT_SA_MASTER_NODE,		/* ZAP */
1006	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
1007	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
1008	DMU_OT_SCAN_XLATE,		/* ZAP */
1009	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
1010	DMU_OT_NUMTYPES,
1011
1012	/*
1013	 * Names for valid types declared with DMU_OT().
1014	 */
1015	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
1016	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
1017	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
1018	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
1019	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
1020	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
1021	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
1022	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
1023	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
1024	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE)
1025} dmu_object_type_t;
1026
1027typedef enum dmu_objset_type {
1028	DMU_OST_NONE,
1029	DMU_OST_META,
1030	DMU_OST_ZFS,
1031	DMU_OST_ZVOL,
1032	DMU_OST_OTHER,			/* For testing only! */
1033	DMU_OST_ANY,			/* Be careful! */
1034	DMU_OST_NUMTYPES
1035} dmu_objset_type_t;
1036
1037/*
1038 * header for all bonus and spill buffers.
1039 * The header has a fixed portion with a variable number
1040 * of "lengths" depending on the number of variable sized
1041 * attribues which are determined by the "layout number"
1042 */
1043
1044#define	SA_MAGIC	0x2F505A  /* ZFS SA */
1045typedef struct sa_hdr_phys {
1046	uint32_t sa_magic;
1047	uint16_t sa_layout_info;  /* Encoded with hdrsize and layout number */
1048	uint16_t sa_lengths[1];	/* optional sizes for variable length attrs */
1049	/* ... Data follows the lengths.  */
1050} sa_hdr_phys_t;
1051
1052/*
1053 * sa_hdr_phys -> sa_layout_info
1054 *
1055 * 16      10       0
1056 * +--------+-------+
1057 * | hdrsz  |layout |
1058 * +--------+-------+
1059 *
1060 * Bits 0-10 are the layout number
1061 * Bits 11-16 are the size of the header.
1062 * The hdrsize is the number * 8
1063 *
1064 * For example.
1065 * hdrsz of 1 ==> 8 byte header
1066 *          2 ==> 16 byte header
1067 *
1068 */
1069
1070#define	SA_HDR_LAYOUT_NUM(hdr) BF32_GET(hdr->sa_layout_info, 0, 10)
1071#define	SA_HDR_SIZE(hdr) BF32_GET_SB(hdr->sa_layout_info, 10, 16, 3, 0)
1072#define	SA_HDR_LAYOUT_INFO_ENCODE(x, num, size) \
1073{ \
1074	BF32_SET_SB(x, 10, 6, 3, 0, size); \
1075	BF32_SET(x, 0, 10, num); \
1076}
1077
1078#define	SA_MODE_OFFSET		0
1079#define	SA_SIZE_OFFSET		8
1080#define	SA_GEN_OFFSET		16
1081#define	SA_UID_OFFSET		24
1082#define	SA_GID_OFFSET		32
1083#define	SA_PARENT_OFFSET	40
1084
1085/*
1086 * Intent log header - this on disk structure holds fields to manage
1087 * the log.  All fields are 64 bit to easily handle cross architectures.
1088 */
1089typedef struct zil_header {
1090	uint64_t zh_claim_txg;	/* txg in which log blocks were claimed */
1091	uint64_t zh_replay_seq;	/* highest replayed sequence number */
1092	blkptr_t zh_log;	/* log chain */
1093	uint64_t zh_claim_seq;	/* highest claimed sequence number */
1094	uint64_t zh_pad[5];
1095} zil_header_t;
1096
1097#define	OBJSET_PHYS_SIZE 2048
1098
1099typedef struct objset_phys {
1100	dnode_phys_t os_meta_dnode;
1101	zil_header_t os_zil_header;
1102	uint64_t os_type;
1103	uint64_t os_flags;
1104	char os_pad[OBJSET_PHYS_SIZE - sizeof (dnode_phys_t)*3 -
1105	    sizeof (zil_header_t) - sizeof (uint64_t)*2];
1106	dnode_phys_t os_userused_dnode;
1107	dnode_phys_t os_groupused_dnode;
1108} objset_phys_t;
1109
1110typedef struct dsl_dir_phys {
1111	uint64_t dd_creation_time; /* not actually used */
1112	uint64_t dd_head_dataset_obj;
1113	uint64_t dd_parent_obj;
1114	uint64_t dd_clone_parent_obj;
1115	uint64_t dd_child_dir_zapobj;
1116	/*
1117	 * how much space our children are accounting for; for leaf
1118	 * datasets, == physical space used by fs + snaps
1119	 */
1120	uint64_t dd_used_bytes;
1121	uint64_t dd_compressed_bytes;
1122	uint64_t dd_uncompressed_bytes;
1123	/* Administrative quota setting */
1124	uint64_t dd_quota;
1125	/* Administrative reservation setting */
1126	uint64_t dd_reserved;
1127	uint64_t dd_props_zapobj;
1128	uint64_t dd_pad[21]; /* pad out to 256 bytes for good measure */
1129} dsl_dir_phys_t;
1130
1131typedef struct dsl_dataset_phys {
1132	uint64_t ds_dir_obj;
1133	uint64_t ds_prev_snap_obj;
1134	uint64_t ds_prev_snap_txg;
1135	uint64_t ds_next_snap_obj;
1136	uint64_t ds_snapnames_zapobj;	/* zap obj of snaps; ==0 for snaps */
1137	uint64_t ds_num_children;	/* clone/snap children; ==0 for head */
1138	uint64_t ds_creation_time;	/* seconds since 1970 */
1139	uint64_t ds_creation_txg;
1140	uint64_t ds_deadlist_obj;
1141	uint64_t ds_used_bytes;
1142	uint64_t ds_compressed_bytes;
1143	uint64_t ds_uncompressed_bytes;
1144	uint64_t ds_unique_bytes;	/* only relevant to snapshots */
1145	/*
1146	 * The ds_fsid_guid is a 56-bit ID that can change to avoid
1147	 * collisions.  The ds_guid is a 64-bit ID that will never
1148	 * change, so there is a small probability that it will collide.
1149	 */
1150	uint64_t ds_fsid_guid;
1151	uint64_t ds_guid;
1152	uint64_t ds_flags;
1153	blkptr_t ds_bp;
1154	uint64_t ds_pad[8]; /* pad out to 320 bytes for good measure */
1155} dsl_dataset_phys_t;
1156
1157/*
1158 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
1159 */
1160#define	DMU_POOL_DIRECTORY_OBJECT	1
1161#define	DMU_POOL_CONFIG			"config"
1162#define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
1163#define	DMU_POOL_ROOT_DATASET		"root_dataset"
1164#define	DMU_POOL_SYNC_BPLIST		"sync_bplist"
1165#define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
1166#define	DMU_POOL_ERRLOG_LAST		"errlog_last"
1167#define	DMU_POOL_SPARES			"spares"
1168#define	DMU_POOL_DEFLATE		"deflate"
1169#define	DMU_POOL_HISTORY		"history"
1170#define	DMU_POOL_PROPS			"pool_props"
1171
1172#define	ZAP_MAGIC 0x2F52AB2ABULL
1173
1174#define	FZAP_BLOCK_SHIFT(zap)	((zap)->zap_block_shift)
1175
1176#define	ZAP_MAXCD		(uint32_t)(-1)
1177#define	ZAP_HASHBITS		28
1178#define	MZAP_ENT_LEN		64
1179#define	MZAP_NAME_LEN		(MZAP_ENT_LEN - 8 - 4 - 2)
1180#define	MZAP_MAX_BLKSHIFT	SPA_MAXBLOCKSHIFT
1181#define	MZAP_MAX_BLKSZ		(1 << MZAP_MAX_BLKSHIFT)
1182
1183typedef struct mzap_ent_phys {
1184	uint64_t mze_value;
1185	uint32_t mze_cd;
1186	uint16_t mze_pad;	/* in case we want to chain them someday */
1187	char mze_name[MZAP_NAME_LEN];
1188} mzap_ent_phys_t;
1189
1190typedef struct mzap_phys {
1191	uint64_t mz_block_type;	/* ZBT_MICRO */
1192	uint64_t mz_salt;
1193	uint64_t mz_pad[6];
1194	mzap_ent_phys_t mz_chunk[1];
1195	/* actually variable size depending on block size */
1196} mzap_phys_t;
1197
1198/*
1199 * The (fat) zap is stored in one object. It is an array of
1200 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of:
1201 *
1202 * ptrtbl fits in first block:
1203 * 	[zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ...
1204 *
1205 * ptrtbl too big for first block:
1206 * 	[zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ...
1207 *
1208 */
1209
1210#define	ZBT_LEAF		((1ULL << 63) + 0)
1211#define	ZBT_HEADER		((1ULL << 63) + 1)
1212#define	ZBT_MICRO		((1ULL << 63) + 3)
1213/* any other values are ptrtbl blocks */
1214
1215/*
1216 * the embedded pointer table takes up half a block:
1217 * block size / entry size (2^3) / 2
1218 */
1219#define	ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1)
1220
1221/*
1222 * The embedded pointer table starts half-way through the block.  Since
1223 * the pointer table itself is half the block, it starts at (64-bit)
1224 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)).
1225 */
1226#define	ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \
1227	((uint64_t *)(zap)->zap_phys) \
1228	[(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))]
1229
1230/*
1231 * TAKE NOTE:
1232 * If zap_phys_t is modified, zap_byteswap() must be modified.
1233 */
1234typedef struct zap_phys {
1235	uint64_t zap_block_type;	/* ZBT_HEADER */
1236	uint64_t zap_magic;		/* ZAP_MAGIC */
1237
1238	struct zap_table_phys {
1239		uint64_t zt_blk;	/* starting block number */
1240		uint64_t zt_numblks;	/* number of blocks */
1241		uint64_t zt_shift;	/* bits to index it */
1242		uint64_t zt_nextblk;	/* next (larger) copy start block */
1243		uint64_t zt_blks_copied; /* number source blocks copied */
1244	} zap_ptrtbl;
1245
1246	uint64_t zap_freeblk;		/* the next free block */
1247	uint64_t zap_num_leafs;		/* number of leafs */
1248	uint64_t zap_num_entries;	/* number of entries */
1249	uint64_t zap_salt;		/* salt to stir into hash function */
1250	/*
1251	 * This structure is followed by padding, and then the embedded
1252	 * pointer table.  The embedded pointer table takes up second
1253	 * half of the block.  It is accessed using the
1254	 * ZAP_EMBEDDED_PTRTBL_ENT() macro.
1255	 */
1256} zap_phys_t;
1257
1258typedef struct zap_table_phys zap_table_phys_t;
1259
1260typedef struct fat_zap {
1261	int zap_block_shift;			/* block size shift */
1262	zap_phys_t *zap_phys;
1263} fat_zap_t;
1264
1265#define	ZAP_LEAF_MAGIC 0x2AB1EAF
1266
1267/* chunk size = 24 bytes */
1268#define	ZAP_LEAF_CHUNKSIZE 24
1269
1270/*
1271 * The amount of space available for chunks is:
1272 * block size (1<<l->l_bs) - hash entry size (2) * number of hash
1273 * entries - header space (2*chunksize)
1274 */
1275#define	ZAP_LEAF_NUMCHUNKS(l) \
1276	(((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \
1277	ZAP_LEAF_CHUNKSIZE - 2)
1278
1279/*
1280 * The amount of space within the chunk available for the array is:
1281 * chunk size - space for type (1) - space for next pointer (2)
1282 */
1283#define	ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
1284
1285#define	ZAP_LEAF_ARRAY_NCHUNKS(bytes) \
1286	(((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES)
1287
1288/*
1289 * Low water mark:  when there are only this many chunks free, start
1290 * growing the ptrtbl.  Ideally, this should be larger than a
1291 * "reasonably-sized" entry.  20 chunks is more than enough for the
1292 * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value),
1293 * while still being only around 3% for 16k blocks.
1294 */
1295#define	ZAP_LEAF_LOW_WATER (20)
1296
1297/*
1298 * The leaf hash table has block size / 2^5 (32) number of entries,
1299 * which should be more than enough for the maximum number of entries,
1300 * which is less than block size / CHUNKSIZE (24) / minimum number of
1301 * chunks per entry (3).
1302 */
1303#define	ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5)
1304#define	ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l))
1305
1306/*
1307 * The chunks start immediately after the hash table.  The end of the
1308 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
1309 * chunk_t.
1310 */
1311#define	ZAP_LEAF_CHUNK(l, idx) \
1312	((zap_leaf_chunk_t *) \
1313	((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx]
1314#define	ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry)
1315
1316typedef enum zap_chunk_type {
1317	ZAP_CHUNK_FREE = 253,
1318	ZAP_CHUNK_ENTRY = 252,
1319	ZAP_CHUNK_ARRAY = 251,
1320	ZAP_CHUNK_TYPE_MAX = 250
1321} zap_chunk_type_t;
1322
1323/*
1324 * TAKE NOTE:
1325 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified.
1326 */
1327typedef struct zap_leaf_phys {
1328	struct zap_leaf_header {
1329		uint64_t lh_block_type;		/* ZBT_LEAF */
1330		uint64_t lh_pad1;
1331		uint64_t lh_prefix;		/* hash prefix of this leaf */
1332		uint32_t lh_magic;		/* ZAP_LEAF_MAGIC */
1333		uint16_t lh_nfree;		/* number free chunks */
1334		uint16_t lh_nentries;		/* number of entries */
1335		uint16_t lh_prefix_len;		/* num bits used to id this */
1336
1337/* above is accessable to zap, below is zap_leaf private */
1338
1339		uint16_t lh_freelist;		/* chunk head of free list */
1340		uint8_t lh_pad2[12];
1341	} l_hdr; /* 2 24-byte chunks */
1342
1343	/*
1344	 * The header is followed by a hash table with
1345	 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries.  The hash table is
1346	 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap)
1347	 * zap_leaf_chunk structures.  These structures are accessed
1348	 * with the ZAP_LEAF_CHUNK() macro.
1349	 */
1350
1351	uint16_t l_hash[1];
1352} zap_leaf_phys_t;
1353
1354typedef union zap_leaf_chunk {
1355	struct zap_leaf_entry {
1356		uint8_t le_type; 		/* always ZAP_CHUNK_ENTRY */
1357		uint8_t le_value_intlen;	/* size of ints */
1358		uint16_t le_next;		/* next entry in hash chain */
1359		uint16_t le_name_chunk;		/* first chunk of the name */
1360		uint16_t le_name_numints;	/* bytes in name, incl null */
1361		uint16_t le_value_chunk;	/* first chunk of the value */
1362		uint16_t le_value_numints;	/* value length in ints */
1363		uint32_t le_cd;			/* collision differentiator */
1364		uint64_t le_hash;		/* hash value of the name */
1365	} l_entry;
1366	struct zap_leaf_array {
1367		uint8_t la_type;		/* always ZAP_CHUNK_ARRAY */
1368		uint8_t la_array[ZAP_LEAF_ARRAY_BYTES];
1369		uint16_t la_next;		/* next blk or CHAIN_END */
1370	} l_array;
1371	struct zap_leaf_free {
1372		uint8_t lf_type;		/* always ZAP_CHUNK_FREE */
1373		uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES];
1374		uint16_t lf_next;	/* next in free list, or CHAIN_END */
1375	} l_free;
1376} zap_leaf_chunk_t;
1377
1378typedef struct zap_leaf {
1379	int l_bs;			/* block size shift */
1380	zap_leaf_phys_t *l_phys;
1381} zap_leaf_t;
1382
1383/*
1384 * Define special zfs pflags
1385 */
1386#define	ZFS_XATTR	0x1		/* is an extended attribute */
1387#define	ZFS_INHERIT_ACE	0x2		/* ace has inheritable ACEs */
1388#define	ZFS_ACL_TRIVIAL 0x4		/* files ACL is trivial */
1389
1390#define	MASTER_NODE_OBJ	1
1391
1392/*
1393 * special attributes for master node.
1394 */
1395
1396#define	ZFS_FSID		"FSID"
1397#define	ZFS_UNLINKED_SET	"DELETE_QUEUE"
1398#define	ZFS_ROOT_OBJ		"ROOT"
1399#define	ZPL_VERSION_OBJ		"VERSION"
1400#define	ZFS_PROP_BLOCKPERPAGE	"BLOCKPERPAGE"
1401#define	ZFS_PROP_NOGROWBLOCKS	"NOGROWBLOCKS"
1402
1403#define	ZFS_FLAG_BLOCKPERPAGE	0x1
1404#define	ZFS_FLAG_NOGROWBLOCKS	0x2
1405
1406/*
1407 * ZPL version - rev'd whenever an incompatible on-disk format change
1408 * occurs.  Independent of SPA/DMU/ZAP versioning.
1409 */
1410
1411#define	ZPL_VERSION		1ULL
1412
1413/*
1414 * The directory entry has the type (currently unused on Solaris) in the
1415 * top 4 bits, and the object number in the low 48 bits.  The "middle"
1416 * 12 bits are unused.
1417 */
1418#define	ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4)
1419#define	ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48)
1420#define	ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj)
1421
1422typedef struct ace {
1423	uid_t		a_who;		/* uid or gid */
1424	uint32_t	a_access_mask;	/* read,write,... */
1425	uint16_t	a_flags;	/* see below */
1426	uint16_t	a_type;		/* allow or deny */
1427} ace_t;
1428
1429#define ACE_SLOT_CNT	6
1430
1431typedef struct zfs_znode_acl {
1432	uint64_t	z_acl_extern_obj;	  /* ext acl pieces */
1433	uint32_t	z_acl_count;		  /* Number of ACEs */
1434	uint16_t	z_acl_version;		  /* acl version */
1435	uint16_t	z_acl_pad;		  /* pad */
1436	ace_t		z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */
1437} zfs_znode_acl_t;
1438
1439/*
1440 * This is the persistent portion of the znode.  It is stored
1441 * in the "bonus buffer" of the file.  Short symbolic links
1442 * are also stored in the bonus buffer.
1443 */
1444typedef struct znode_phys {
1445	uint64_t zp_atime[2];		/*  0 - last file access time */
1446	uint64_t zp_mtime[2];		/* 16 - last file modification time */
1447	uint64_t zp_ctime[2];		/* 32 - last file change time */
1448	uint64_t zp_crtime[2];		/* 48 - creation time */
1449	uint64_t zp_gen;		/* 64 - generation (txg of creation) */
1450	uint64_t zp_mode;		/* 72 - file mode bits */
1451	uint64_t zp_size;		/* 80 - size of file */
1452	uint64_t zp_parent;		/* 88 - directory parent (`..') */
1453	uint64_t zp_links;		/* 96 - number of links to file */
1454	uint64_t zp_xattr;		/* 104 - DMU object for xattrs */
1455	uint64_t zp_rdev;		/* 112 - dev_t for VBLK & VCHR files */
1456	uint64_t zp_flags;		/* 120 - persistent flags */
1457	uint64_t zp_uid;		/* 128 - file owner */
1458	uint64_t zp_gid;		/* 136 - owning group */
1459	uint64_t zp_pad[4];		/* 144 - future */
1460	zfs_znode_acl_t zp_acl;		/* 176 - 263 ACL */
1461	/*
1462	 * Data may pad out any remaining bytes in the znode buffer, eg:
1463	 *
1464	 * |<---------------------- dnode_phys (512) ------------------------>|
1465	 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->|
1466	 *			|<---- znode (264) ---->|<---- data (56) ---->|
1467	 *
1468	 * At present, we only use this space to store symbolic links.
1469	 */
1470} znode_phys_t;
1471
1472/*
1473 * In-core vdev representation.
1474 */
1475struct vdev;
1476typedef int vdev_phys_read_t(struct vdev *vdev, void *priv,
1477    off_t offset, void *buf, size_t bytes);
1478typedef int vdev_read_t(struct vdev *vdev, const blkptr_t *bp,
1479    void *buf, off_t offset, size_t bytes);
1480
1481typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t;
1482
1483typedef struct vdev {
1484	STAILQ_ENTRY(vdev) v_childlink;	/* link in parent's child list */
1485	STAILQ_ENTRY(vdev) v_alllink;	/* link in global vdev list */
1486	vdev_list_t	v_children;	/* children of this vdev */
1487	const char	*v_name;	/* vdev name */
1488	const char	*v_phys_path;	/* vdev bootpath */
1489	const char	*v_devid;	/* vdev devid */
1490	uint64_t	v_guid;		/* vdev guid */
1491	int		v_id;		/* index in parent */
1492	int		v_ashift;	/* offset to block shift */
1493	int		v_nparity;	/* # parity for raidz */
1494	struct vdev	*v_top;		/* parent vdev */
1495	int		v_nchildren;	/* # children */
1496	vdev_state_t	v_state;	/* current state */
1497	vdev_phys_read_t *v_phys_read;	/* read from raw leaf vdev */
1498	vdev_read_t	*v_read;	/* read from vdev */
1499	void		*v_read_priv;	/* private data for read function */
1500} vdev_t;
1501
1502/*
1503 * In-core pool representation.
1504 */
1505typedef STAILQ_HEAD(spa_list, spa) spa_list_t;
1506
1507typedef struct spa {
1508	STAILQ_ENTRY(spa) spa_link;	/* link in global pool list */
1509	char		*spa_name;	/* pool name */
1510	uint64_t	spa_guid;	/* pool guid */
1511	uint64_t	spa_txg;	/* most recent transaction */
1512	struct uberblock spa_uberblock;	/* best uberblock so far */
1513	vdev_list_t	spa_vdevs;	/* list of all toplevel vdevs */
1514	objset_phys_t	spa_mos;	/* MOS for this pool */
1515	int		spa_inited;	/* initialized */
1516} spa_t;
1517
1518static void decode_embedded_bp_compressed(const blkptr_t *, void *);
1519