in6.c revision 6d89652bc0f7d0aaa4494c739108f5adc374a1bc
1/*	$FreeBSD$	*/
2/*	$KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $	*/
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*-
34 * Copyright (c) 1982, 1986, 1991, 1993
35 *	The Regents of the University of California.  All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 * 4. Neither the name of the University nor the names of its contributors
46 *    may be used to endorse or promote products derived from this software
47 *    without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 *	@(#)in.c	8.2 (Berkeley) 11/15/93
62 */
63
64#include "opt_inet.h"
65#include "opt_inet6.h"
66
67#include <sys/param.h>
68#include <sys/errno.h>
69#include <sys/malloc.h>
70#include <sys/socket.h>
71#include <sys/socketvar.h>
72#include <sys/sockio.h>
73#include <sys/systm.h>
74#include <sys/priv.h>
75#include <sys/proc.h>
76#include <sys/time.h>
77#include <sys/kernel.h>
78#include <sys/syslog.h>
79
80#include <net/if.h>
81#include <net/if_types.h>
82#include <net/route.h>
83#include <net/if_dl.h>
84
85#include <netinet/in.h>
86#include <netinet/in_var.h>
87#include <netinet/if_ether.h>
88#include <netinet/in_systm.h>
89#include <netinet/ip.h>
90#include <netinet/in_pcb.h>
91
92#include <netinet/ip6.h>
93#include <netinet6/ip6_var.h>
94#include <netinet6/nd6.h>
95#include <netinet6/mld6_var.h>
96#include <netinet6/ip6_mroute.h>
97#include <netinet6/in6_ifattach.h>
98#include <netinet6/scope6_var.h>
99#include <netinet6/in6_pcb.h>
100
101MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "internet multicast address");
102
103/*
104 * Definitions of some costant IP6 addresses.
105 */
106const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
107const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
108const struct in6_addr in6addr_nodelocal_allnodes =
109	IN6ADDR_NODELOCAL_ALLNODES_INIT;
110const struct in6_addr in6addr_linklocal_allnodes =
111	IN6ADDR_LINKLOCAL_ALLNODES_INIT;
112const struct in6_addr in6addr_linklocal_allrouters =
113	IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
114
115const struct in6_addr in6mask0 = IN6MASK0;
116const struct in6_addr in6mask32 = IN6MASK32;
117const struct in6_addr in6mask64 = IN6MASK64;
118const struct in6_addr in6mask96 = IN6MASK96;
119const struct in6_addr in6mask128 = IN6MASK128;
120
121const struct sockaddr_in6 sa6_any =
122	{ sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 };
123
124static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
125	struct ifnet *, struct thread *));
126static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
127	struct sockaddr_in6 *, int));
128static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *));
129
130struct in6_multihead in6_multihead;	/* XXX BSS initialization */
131int	(*faithprefix_p)(struct in6_addr *);
132
133/*
134 * Subroutine for in6_ifaddloop() and in6_ifremloop().
135 * This routine does actual work.
136 */
137static void
138in6_ifloop_request(int cmd, struct ifaddr *ifa)
139{
140	struct sockaddr_in6 all1_sa;
141	struct rtentry *nrt = NULL;
142	int e;
143	char ip6buf[INET6_ADDRSTRLEN];
144
145	bzero(&all1_sa, sizeof(all1_sa));
146	all1_sa.sin6_family = AF_INET6;
147	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
148	all1_sa.sin6_addr = in6mask128;
149
150	/*
151	 * We specify the address itself as the gateway, and set the
152	 * RTF_LLINFO flag, so that the corresponding host route would have
153	 * the flag, and thus applications that assume traditional behavior
154	 * would be happy.  Note that we assume the caller of the function
155	 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
156	 * which changes the outgoing interface to the loopback interface.
157	 */
158	e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
159	    (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
160	if (e != 0) {
161		/* XXX need more descriptive message */
162
163		log(LOG_ERR, "in6_ifloop_request: "
164		    "%s operation failed for %s (errno=%d)\n",
165		    cmd == RTM_ADD ? "ADD" : "DELETE",
166		    ip6_sprintf(ip6buf,
167			    &((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), e);
168	}
169
170	/*
171	 * Report the addition/removal of the address to the routing socket.
172	 * XXX: since we called rtinit for a p2p interface with a destination,
173	 *      we end up reporting twice in such a case.  Should we rather
174	 *      omit the second report?
175	 */
176	if (nrt) {
177		RT_LOCK(nrt);
178		/*
179		 * Make sure rt_ifa be equal to IFA, the second argument of
180		 * the function.  We need this because when we refer to
181		 * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa
182		 * points to the address instead of the loopback address.
183		 */
184		if (cmd == RTM_ADD && ifa != nrt->rt_ifa) {
185			IFAFREE(nrt->rt_ifa);
186			IFAREF(ifa);
187			nrt->rt_ifa = ifa;
188		}
189
190		rt_newaddrmsg(cmd, ifa, e, nrt);
191		if (cmd == RTM_DELETE)
192			RTFREE_LOCKED(nrt);
193		else {
194			/* the cmd must be RTM_ADD here */
195			RT_REMREF(nrt);
196			RT_UNLOCK(nrt);
197		}
198	}
199}
200
201/*
202 * Add ownaddr as loopback rtentry.  We previously add the route only if
203 * necessary (ex. on a p2p link).  However, since we now manage addresses
204 * separately from prefixes, we should always add the route.  We can't
205 * rely on the cloning mechanism from the corresponding interface route
206 * any more.
207 */
208void
209in6_ifaddloop(struct ifaddr *ifa)
210{
211	struct rtentry *rt;
212	int need_loop;
213
214	/* If there is no loopback entry, allocate one. */
215	rt = rtalloc1(ifa->ifa_addr, 0, 0);
216	need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
217	    (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0);
218	if (rt)
219		RTFREE_LOCKED(rt);
220	if (need_loop)
221		in6_ifloop_request(RTM_ADD, ifa);
222}
223
224/*
225 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
226 * if it exists.
227 */
228void
229in6_ifremloop(struct ifaddr *ifa)
230{
231	struct in6_ifaddr *ia;
232	struct rtentry *rt;
233	int ia_count = 0;
234
235	/*
236	 * Some of BSD variants do not remove cloned routes
237	 * from an interface direct route, when removing the direct route
238	 * (see comments in net/net_osdep.h).  Even for variants that do remove
239	 * cloned routes, they could fail to remove the cloned routes when
240	 * we handle multple addresses that share a common prefix.
241	 * So, we should remove the route corresponding to the deleted address.
242	 */
243
244	/*
245	 * Delete the entry only if exact one ifa exists.  More than one ifa
246	 * can exist if we assign a same single address to multiple
247	 * (probably p2p) interfaces.
248	 * XXX: we should avoid such a configuration in IPv6...
249	 */
250	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
251		if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
252			ia_count++;
253			if (ia_count > 1)
254				break;
255		}
256	}
257
258	if (ia_count == 1) {
259		/*
260		 * Before deleting, check if a corresponding loopbacked host
261		 * route surely exists.  With this check, we can avoid to
262		 * delete an interface direct route whose destination is same
263		 * as the address being removed.  This can happen when removing
264		 * a subnet-router anycast address on an interface attahced
265		 * to a shared medium.
266		 */
267		rt = rtalloc1(ifa->ifa_addr, 0, 0);
268		if (rt != NULL) {
269			if ((rt->rt_flags & RTF_HOST) != 0 &&
270			    (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
271				RTFREE_LOCKED(rt);
272				in6_ifloop_request(RTM_DELETE, ifa);
273			} else
274				RT_UNLOCK(rt);
275		}
276	}
277}
278
279int
280in6_mask2len(mask, lim0)
281	struct in6_addr *mask;
282	u_char *lim0;
283{
284	int x = 0, y;
285	u_char *lim = lim0, *p;
286
287	/* ignore the scope_id part */
288	if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
289		lim = (u_char *)mask + sizeof(*mask);
290	for (p = (u_char *)mask; p < lim; x++, p++) {
291		if (*p != 0xff)
292			break;
293	}
294	y = 0;
295	if (p < lim) {
296		for (y = 0; y < 8; y++) {
297			if ((*p & (0x80 >> y)) == 0)
298				break;
299		}
300	}
301
302	/*
303	 * when the limit pointer is given, do a stricter check on the
304	 * remaining bits.
305	 */
306	if (p < lim) {
307		if (y != 0 && (*p & (0x00ff >> y)) != 0)
308			return (-1);
309		for (p = p + 1; p < lim; p++)
310			if (*p != 0)
311				return (-1);
312	}
313
314	return x * 8 + y;
315}
316
317#define ifa2ia6(ifa)	((struct in6_ifaddr *)(ifa))
318#define ia62ifa(ia6)	(&((ia6)->ia_ifa))
319
320int
321in6_control(so, cmd, data, ifp, td)
322	struct	socket *so;
323	u_long cmd;
324	caddr_t	data;
325	struct ifnet *ifp;
326	struct thread *td;
327{
328	struct	in6_ifreq *ifr = (struct in6_ifreq *)data;
329	struct	in6_ifaddr *ia = NULL;
330	struct	in6_aliasreq *ifra = (struct in6_aliasreq *)data;
331	struct sockaddr_in6 *sa6;
332	int error;
333
334	switch (cmd) {
335	case SIOCGETSGCNT_IN6:
336	case SIOCGETMIFCNT_IN6:
337		return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP);
338	}
339
340	switch(cmd) {
341	case SIOCAADDRCTL_POLICY:
342	case SIOCDADDRCTL_POLICY:
343		if (td != NULL) {
344			error = priv_check(td, PRIV_NETINET_ADDRCTRL6);
345			if (error)
346				return (error);
347		}
348		return (in6_src_ioctl(cmd, data));
349	}
350
351	if (ifp == NULL)
352		return (EOPNOTSUPP);
353
354	switch (cmd) {
355	case SIOCSNDFLUSH_IN6:
356	case SIOCSPFXFLUSH_IN6:
357	case SIOCSRTRFLUSH_IN6:
358	case SIOCSDEFIFACE_IN6:
359	case SIOCSIFINFO_FLAGS:
360		if (td != NULL) {
361			error = priv_check(td, PRIV_NETINET_ND6);
362			if (error)
363				return (error);
364		}
365		/* FALLTHROUGH */
366	case OSIOCGIFINFO_IN6:
367	case SIOCGIFINFO_IN6:
368	case SIOCSIFINFO_IN6:
369	case SIOCGDRLST_IN6:
370	case SIOCGPRLST_IN6:
371	case SIOCGNBRINFO_IN6:
372	case SIOCGDEFIFACE_IN6:
373		return (nd6_ioctl(cmd, data, ifp));
374	}
375
376	switch (cmd) {
377	case SIOCSIFPREFIX_IN6:
378	case SIOCDIFPREFIX_IN6:
379	case SIOCAIFPREFIX_IN6:
380	case SIOCCIFPREFIX_IN6:
381	case SIOCSGIFPREFIX_IN6:
382	case SIOCGIFPREFIX_IN6:
383		log(LOG_NOTICE,
384		    "prefix ioctls are now invalidated. "
385		    "please use ifconfig.\n");
386		return (EOPNOTSUPP);
387	}
388
389	switch (cmd) {
390	case SIOCSSCOPE6:
391		if (td != NULL) {
392			error = priv_check(td, PRIV_NETINET_SCOPE6);
393			if (error)
394				return (error);
395		}
396		return (scope6_set(ifp,
397		    (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
398	case SIOCGSCOPE6:
399		return (scope6_get(ifp,
400		    (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
401	case SIOCGSCOPE6DEF:
402		return (scope6_get_default((struct scope6_id *)
403		    ifr->ifr_ifru.ifru_scope_id));
404	}
405
406	switch (cmd) {
407	case SIOCALIFADDR:
408	case SIOCDLIFADDR:
409		/*
410		 * XXXRW: Is this checked at another layer?  What priv to use
411		 * here?
412		 */
413		if (td != NULL) {
414			error = suser(td);
415			if (error)
416				return (error);
417		}
418		/* FALLTHROUGH */
419	case SIOCGLIFADDR:
420		return in6_lifaddr_ioctl(so, cmd, data, ifp, td);
421	}
422
423	/*
424	 * Find address for this interface, if it exists.
425	 *
426	 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
427	 * only, and used the first interface address as the target of other
428	 * operations (without checking ifra_addr).  This was because netinet
429	 * code/API assumed at most 1 interface address per interface.
430	 * Since IPv6 allows a node to assign multiple addresses
431	 * on a single interface, we almost always look and check the
432	 * presence of ifra_addr, and reject invalid ones here.
433	 * It also decreases duplicated code among SIOC*_IN6 operations.
434	 */
435	switch (cmd) {
436	case SIOCAIFADDR_IN6:
437	case SIOCSIFPHYADDR_IN6:
438		sa6 = &ifra->ifra_addr;
439		break;
440	case SIOCSIFADDR_IN6:
441	case SIOCGIFADDR_IN6:
442	case SIOCSIFDSTADDR_IN6:
443	case SIOCSIFNETMASK_IN6:
444	case SIOCGIFDSTADDR_IN6:
445	case SIOCGIFNETMASK_IN6:
446	case SIOCDIFADDR_IN6:
447	case SIOCGIFPSRCADDR_IN6:
448	case SIOCGIFPDSTADDR_IN6:
449	case SIOCGIFAFLAG_IN6:
450	case SIOCSNDFLUSH_IN6:
451	case SIOCSPFXFLUSH_IN6:
452	case SIOCSRTRFLUSH_IN6:
453	case SIOCGIFALIFETIME_IN6:
454	case SIOCSIFALIFETIME_IN6:
455	case SIOCGIFSTAT_IN6:
456	case SIOCGIFSTAT_ICMP6:
457		sa6 = &ifr->ifr_addr;
458		break;
459	default:
460		sa6 = NULL;
461		break;
462	}
463	if (sa6 && sa6->sin6_family == AF_INET6) {
464		int error = 0;
465
466		if (sa6->sin6_scope_id != 0)
467			error = sa6_embedscope(sa6, 0);
468		else
469			error = in6_setscope(&sa6->sin6_addr, ifp, NULL);
470		if (error != 0)
471			return (error);
472		ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
473	} else
474		ia = NULL;
475
476	switch (cmd) {
477	case SIOCSIFADDR_IN6:
478	case SIOCSIFDSTADDR_IN6:
479	case SIOCSIFNETMASK_IN6:
480		/*
481		 * Since IPv6 allows a node to assign multiple addresses
482		 * on a single interface, SIOCSIFxxx ioctls are deprecated.
483		 */
484		/* we decided to obsolete this command (20000704) */
485		return (EINVAL);
486
487	case SIOCDIFADDR_IN6:
488		/*
489		 * for IPv4, we look for existing in_ifaddr here to allow
490		 * "ifconfig if0 delete" to remove the first IPv4 address on
491		 * the interface.  For IPv6, as the spec allows multiple
492		 * interface address from the day one, we consider "remove the
493		 * first one" semantics to be not preferable.
494		 */
495		if (ia == NULL)
496			return (EADDRNOTAVAIL);
497		/* FALLTHROUGH */
498	case SIOCAIFADDR_IN6:
499		/*
500		 * We always require users to specify a valid IPv6 address for
501		 * the corresponding operation.
502		 */
503		if (ifra->ifra_addr.sin6_family != AF_INET6 ||
504		    ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
505			return (EAFNOSUPPORT);
506
507		/*
508		 * XXXRW: Is this checked at another layer?  What priv to use
509		 * here?
510		 */
511		if (td != NULL) {
512			error = suser(td);
513			if (error)
514				return (error);
515		}
516
517		break;
518
519	case SIOCGIFADDR_IN6:
520		/* This interface is basically deprecated. use SIOCGIFCONF. */
521		/* FALLTHROUGH */
522	case SIOCGIFAFLAG_IN6:
523	case SIOCGIFNETMASK_IN6:
524	case SIOCGIFDSTADDR_IN6:
525	case SIOCGIFALIFETIME_IN6:
526		/* must think again about its semantics */
527		if (ia == NULL)
528			return (EADDRNOTAVAIL);
529		break;
530	case SIOCSIFALIFETIME_IN6:
531	    {
532		struct in6_addrlifetime *lt;
533
534		if (td != NULL) {
535			error = priv_check(td, PRIV_NETINET_ALIFETIME6);
536			if (error)
537				return (error);
538		}
539		if (ia == NULL)
540			return (EADDRNOTAVAIL);
541		/* sanity for overflow - beware unsigned */
542		lt = &ifr->ifr_ifru.ifru_lifetime;
543		if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME &&
544		    lt->ia6t_vltime + time_second < time_second) {
545			return EINVAL;
546		}
547		if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME &&
548		    lt->ia6t_pltime + time_second < time_second) {
549			return EINVAL;
550		}
551		break;
552	    }
553	}
554
555	switch (cmd) {
556
557	case SIOCGIFADDR_IN6:
558		ifr->ifr_addr = ia->ia_addr;
559		if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0)
560			return (error);
561		break;
562
563	case SIOCGIFDSTADDR_IN6:
564		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
565			return (EINVAL);
566		/*
567		 * XXX: should we check if ifa_dstaddr is NULL and return
568		 * an error?
569		 */
570		ifr->ifr_dstaddr = ia->ia_dstaddr;
571		if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0)
572			return (error);
573		break;
574
575	case SIOCGIFNETMASK_IN6:
576		ifr->ifr_addr = ia->ia_prefixmask;
577		break;
578
579	case SIOCGIFAFLAG_IN6:
580		ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
581		break;
582
583	case SIOCGIFSTAT_IN6:
584		if (ifp == NULL)
585			return EINVAL;
586		bzero(&ifr->ifr_ifru.ifru_stat,
587		    sizeof(ifr->ifr_ifru.ifru_stat));
588		ifr->ifr_ifru.ifru_stat =
589		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
590		break;
591
592	case SIOCGIFSTAT_ICMP6:
593		if (ifp == NULL)
594			return EINVAL;
595		bzero(&ifr->ifr_ifru.ifru_icmp6stat,
596		    sizeof(ifr->ifr_ifru.ifru_icmp6stat));
597		ifr->ifr_ifru.ifru_icmp6stat =
598		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
599		break;
600
601	case SIOCGIFALIFETIME_IN6:
602		ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
603		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
604			time_t maxexpire;
605			struct in6_addrlifetime *retlt =
606			    &ifr->ifr_ifru.ifru_lifetime;
607
608			/*
609			 * XXX: adjust expiration time assuming time_t is
610			 * signed.
611			 */
612			maxexpire = (-1) &
613			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
614			if (ia->ia6_lifetime.ia6t_vltime <
615			    maxexpire - ia->ia6_updatetime) {
616				retlt->ia6t_expire = ia->ia6_updatetime +
617				    ia->ia6_lifetime.ia6t_vltime;
618			} else
619				retlt->ia6t_expire = maxexpire;
620		}
621		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
622			time_t maxexpire;
623			struct in6_addrlifetime *retlt =
624			    &ifr->ifr_ifru.ifru_lifetime;
625
626			/*
627			 * XXX: adjust expiration time assuming time_t is
628			 * signed.
629			 */
630			maxexpire = (-1) &
631			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
632			if (ia->ia6_lifetime.ia6t_pltime <
633			    maxexpire - ia->ia6_updatetime) {
634				retlt->ia6t_preferred = ia->ia6_updatetime +
635				    ia->ia6_lifetime.ia6t_pltime;
636			} else
637				retlt->ia6t_preferred = maxexpire;
638		}
639		break;
640
641	case SIOCSIFALIFETIME_IN6:
642		ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
643		/* for sanity */
644		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
645			ia->ia6_lifetime.ia6t_expire =
646				time_second + ia->ia6_lifetime.ia6t_vltime;
647		} else
648			ia->ia6_lifetime.ia6t_expire = 0;
649		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
650			ia->ia6_lifetime.ia6t_preferred =
651				time_second + ia->ia6_lifetime.ia6t_pltime;
652		} else
653			ia->ia6_lifetime.ia6t_preferred = 0;
654		break;
655
656	case SIOCAIFADDR_IN6:
657	{
658		int i, error = 0;
659		struct nd_prefixctl pr0;
660		struct nd_prefix *pr;
661
662		/*
663		 * first, make or update the interface address structure,
664		 * and link it to the list.
665		 */
666		if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0)
667			return (error);
668		if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
669		    == NULL) {
670		    	/*
671			 * this can happen when the user specify the 0 valid
672			 * lifetime.
673			 */
674			break;
675		}
676
677		/*
678		 * then, make the prefix on-link on the interface.
679		 * XXX: we'd rather create the prefix before the address, but
680		 * we need at least one address to install the corresponding
681		 * interface route, so we configure the address first.
682		 */
683
684		/*
685		 * convert mask to prefix length (prefixmask has already
686		 * been validated in in6_update_ifa().
687		 */
688		bzero(&pr0, sizeof(pr0));
689		pr0.ndpr_ifp = ifp;
690		pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
691		    NULL);
692		if (pr0.ndpr_plen == 128) {
693			break;	/* we don't need to install a host route. */
694		}
695		pr0.ndpr_prefix = ifra->ifra_addr;
696		/* apply the mask for safety. */
697		for (i = 0; i < 4; i++) {
698			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
699			    ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
700		}
701		/*
702		 * XXX: since we don't have an API to set prefix (not address)
703		 * lifetimes, we just use the same lifetimes as addresses.
704		 * The (temporarily) installed lifetimes can be overridden by
705		 * later advertised RAs (when accept_rtadv is non 0), which is
706		 * an intended behavior.
707		 */
708		pr0.ndpr_raf_onlink = 1; /* should be configurable? */
709		pr0.ndpr_raf_auto =
710		    ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
711		pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
712		pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
713
714		/* add the prefix if not yet. */
715		if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
716			/*
717			 * nd6_prelist_add will install the corresponding
718			 * interface route.
719			 */
720			if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
721				return (error);
722			if (pr == NULL) {
723				log(LOG_ERR, "nd6_prelist_add succeeded but "
724				    "no prefix\n");
725				return (EINVAL); /* XXX panic here? */
726			}
727		}
728
729		/* relate the address to the prefix */
730		if (ia->ia6_ndpr == NULL) {
731			ia->ia6_ndpr = pr;
732			pr->ndpr_refcnt++;
733
734			/*
735			 * If this is the first autoconf address from the
736			 * prefix, create a temporary address as well
737			 * (when required).
738			 */
739			if ((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
740			    ip6_use_tempaddr && pr->ndpr_refcnt == 1) {
741				int e;
742				if ((e = in6_tmpifadd(ia, 1, 0)) != 0) {
743					log(LOG_NOTICE, "in6_control: failed "
744					    "to create a temporary address, "
745					    "errno=%d\n", e);
746				}
747			}
748		}
749
750		/*
751		 * this might affect the status of autoconfigured addresses,
752		 * that is, this address might make other addresses detached.
753		 */
754		pfxlist_onlink_check();
755		if (error == 0 && ia)
756			EVENTHANDLER_INVOKE(ifaddr_event, ifp);
757		break;
758	}
759
760	case SIOCDIFADDR_IN6:
761	{
762		struct nd_prefix *pr;
763
764		/*
765		 * If the address being deleted is the only one that owns
766		 * the corresponding prefix, expire the prefix as well.
767		 * XXX: theoretically, we don't have to worry about such
768		 * relationship, since we separate the address management
769		 * and the prefix management.  We do this, however, to provide
770		 * as much backward compatibility as possible in terms of
771		 * the ioctl operation.
772		 * Note that in6_purgeaddr() will decrement ndpr_refcnt.
773		 */
774		pr = ia->ia6_ndpr;
775		in6_purgeaddr(&ia->ia_ifa);
776		if (pr && pr->ndpr_refcnt == 0)
777			prelist_remove(pr);
778		EVENTHANDLER_INVOKE(ifaddr_event, ifp);
779		break;
780	}
781
782	default:
783		if (ifp == NULL || ifp->if_ioctl == 0)
784			return (EOPNOTSUPP);
785		return ((*ifp->if_ioctl)(ifp, cmd, data));
786	}
787
788	return (0);
789}
790
791/*
792 * Update parameters of an IPv6 interface address.
793 * If necessary, a new entry is created and linked into address chains.
794 * This function is separated from in6_control().
795 * XXX: should this be performed under splnet()?
796 */
797int
798in6_update_ifa(ifp, ifra, ia, flags)
799	struct ifnet *ifp;
800	struct in6_aliasreq *ifra;
801	struct in6_ifaddr *ia;
802	int flags;
803{
804	int error = 0, hostIsNew = 0, plen = -1;
805	struct in6_ifaddr *oia;
806	struct sockaddr_in6 dst6;
807	struct in6_addrlifetime *lt;
808	struct in6_multi_mship *imm;
809	struct in6_multi *in6m_sol;
810	struct rtentry *rt;
811	int delay;
812	char ip6buf[INET6_ADDRSTRLEN];
813
814	/* Validate parameters */
815	if (ifp == NULL || ifra == NULL) /* this maybe redundant */
816		return (EINVAL);
817
818	/*
819	 * The destination address for a p2p link must have a family
820	 * of AF_UNSPEC or AF_INET6.
821	 */
822	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
823	    ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
824	    ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
825		return (EAFNOSUPPORT);
826	/*
827	 * validate ifra_prefixmask.  don't check sin6_family, netmask
828	 * does not carry fields other than sin6_len.
829	 */
830	if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
831		return (EINVAL);
832	/*
833	 * Because the IPv6 address architecture is classless, we require
834	 * users to specify a (non 0) prefix length (mask) for a new address.
835	 * We also require the prefix (when specified) mask is valid, and thus
836	 * reject a non-consecutive mask.
837	 */
838	if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
839		return (EINVAL);
840	if (ifra->ifra_prefixmask.sin6_len != 0) {
841		plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
842		    (u_char *)&ifra->ifra_prefixmask +
843		    ifra->ifra_prefixmask.sin6_len);
844		if (plen <= 0)
845			return (EINVAL);
846	} else {
847		/*
848		 * In this case, ia must not be NULL.  We just use its prefix
849		 * length.
850		 */
851		plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
852	}
853	/*
854	 * If the destination address on a p2p interface is specified,
855	 * and the address is a scoped one, validate/set the scope
856	 * zone identifier.
857	 */
858	dst6 = ifra->ifra_dstaddr;
859	if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
860	    (dst6.sin6_family == AF_INET6)) {
861		struct in6_addr in6_tmp;
862		u_int32_t zoneid;
863
864		in6_tmp = dst6.sin6_addr;
865		if (in6_setscope(&in6_tmp, ifp, &zoneid))
866			return (EINVAL); /* XXX: should be impossible */
867
868		if (dst6.sin6_scope_id != 0) {
869			if (dst6.sin6_scope_id != zoneid)
870				return (EINVAL);
871		} else		/* user omit to specify the ID. */
872			dst6.sin6_scope_id = zoneid;
873
874		/* convert into the internal form */
875		if (sa6_embedscope(&dst6, 0))
876			return (EINVAL); /* XXX: should be impossible */
877	}
878	/*
879	 * The destination address can be specified only for a p2p or a
880	 * loopback interface.  If specified, the corresponding prefix length
881	 * must be 128.
882	 */
883	if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
884		if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
885			/* XXX: noisy message */
886			nd6log((LOG_INFO, "in6_update_ifa: a destination can "
887			    "be specified for a p2p or a loopback IF only\n"));
888			return (EINVAL);
889		}
890		if (plen != 128) {
891			nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
892			    "be 128 when dstaddr is specified\n"));
893			return (EINVAL);
894		}
895	}
896	/* lifetime consistency check */
897	lt = &ifra->ifra_lifetime;
898	if (lt->ia6t_pltime > lt->ia6t_vltime)
899		return (EINVAL);
900	if (lt->ia6t_vltime == 0) {
901		/*
902		 * the following log might be noisy, but this is a typical
903		 * configuration mistake or a tool's bug.
904		 */
905		nd6log((LOG_INFO,
906		    "in6_update_ifa: valid lifetime is 0 for %s\n",
907		    ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr)));
908
909		if (ia == NULL)
910			return (0); /* there's nothing to do */
911	}
912
913	/*
914	 * If this is a new address, allocate a new ifaddr and link it
915	 * into chains.
916	 */
917	if (ia == NULL) {
918		hostIsNew = 1;
919		/*
920		 * When in6_update_ifa() is called in a process of a received
921		 * RA, it is called under an interrupt context.  So, we should
922		 * call malloc with M_NOWAIT.
923		 */
924		ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
925		    M_NOWAIT);
926		if (ia == NULL)
927			return (ENOBUFS);
928		bzero((caddr_t)ia, sizeof(*ia));
929		LIST_INIT(&ia->ia6_memberships);
930		/* Initialize the address and masks, and put time stamp */
931		IFA_LOCK_INIT(&ia->ia_ifa);
932		ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
933		ia->ia_addr.sin6_family = AF_INET6;
934		ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
935		ia->ia6_createtime = time_second;
936		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
937			/*
938			 * XXX: some functions expect that ifa_dstaddr is not
939			 * NULL for p2p interfaces.
940			 */
941			ia->ia_ifa.ifa_dstaddr =
942			    (struct sockaddr *)&ia->ia_dstaddr;
943		} else {
944			ia->ia_ifa.ifa_dstaddr = NULL;
945		}
946		ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask;
947
948		ia->ia_ifp = ifp;
949		if ((oia = in6_ifaddr) != NULL) {
950			for ( ; oia->ia_next; oia = oia->ia_next)
951				continue;
952			oia->ia_next = ia;
953		} else
954			in6_ifaddr = ia;
955
956		ia->ia_ifa.ifa_refcnt = 1;
957		TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
958	}
959
960	/* update timestamp */
961	ia->ia6_updatetime = time_second;
962
963	/* set prefix mask */
964	if (ifra->ifra_prefixmask.sin6_len) {
965		/*
966		 * We prohibit changing the prefix length of an existing
967		 * address, because
968		 * + such an operation should be rare in IPv6, and
969		 * + the operation would confuse prefix management.
970		 */
971		if (ia->ia_prefixmask.sin6_len &&
972		    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
973			nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
974			    " existing (%s) address should not be changed\n",
975			    ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr)));
976			error = EINVAL;
977			goto unlink;
978		}
979		ia->ia_prefixmask = ifra->ifra_prefixmask;
980	}
981
982	/*
983	 * If a new destination address is specified, scrub the old one and
984	 * install the new destination.  Note that the interface must be
985	 * p2p or loopback (see the check above.)
986	 */
987	if (dst6.sin6_family == AF_INET6 &&
988	    !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
989		int e;
990
991		if ((ia->ia_flags & IFA_ROUTE) != 0 &&
992		    (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) {
993			nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
994			    "a route to the old destination: %s\n",
995			    ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr)));
996			/* proceed anyway... */
997		} else
998			ia->ia_flags &= ~IFA_ROUTE;
999		ia->ia_dstaddr = dst6;
1000	}
1001
1002	/*
1003	 * Set lifetimes.  We do not refer to ia6t_expire and ia6t_preferred
1004	 * to see if the address is deprecated or invalidated, but initialize
1005	 * these members for applications.
1006	 */
1007	ia->ia6_lifetime = ifra->ifra_lifetime;
1008	if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1009		ia->ia6_lifetime.ia6t_expire =
1010		    time_second + ia->ia6_lifetime.ia6t_vltime;
1011	} else
1012		ia->ia6_lifetime.ia6t_expire = 0;
1013	if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1014		ia->ia6_lifetime.ia6t_preferred =
1015		    time_second + ia->ia6_lifetime.ia6t_pltime;
1016	} else
1017		ia->ia6_lifetime.ia6t_preferred = 0;
1018
1019	/* reset the interface and routing table appropriately. */
1020	if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
1021		goto unlink;
1022
1023	/*
1024	 * configure address flags.
1025	 */
1026	ia->ia6_flags = ifra->ifra_flags;
1027	/*
1028	 * backward compatibility - if IN6_IFF_DEPRECATED is set from the
1029	 * userland, make it deprecated.
1030	 */
1031	if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
1032		ia->ia6_lifetime.ia6t_pltime = 0;
1033		ia->ia6_lifetime.ia6t_preferred = time_second;
1034	}
1035	/*
1036	 * Make the address tentative before joining multicast addresses,
1037	 * so that corresponding MLD responses would not have a tentative
1038	 * source address.
1039	 */
1040	ia->ia6_flags &= ~IN6_IFF_DUPLICATED;	/* safety */
1041	if (hostIsNew && in6if_do_dad(ifp))
1042		ia->ia6_flags |= IN6_IFF_TENTATIVE;
1043
1044	/*
1045	 * We are done if we have simply modified an existing address.
1046	 */
1047	if (!hostIsNew)
1048		return (error);
1049
1050	/*
1051	 * Beyond this point, we should call in6_purgeaddr upon an error,
1052	 * not just go to unlink.
1053	 */
1054
1055	/* Join necessary multicast groups */
1056	in6m_sol = NULL;
1057	if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1058		struct sockaddr_in6 mltaddr, mltmask;
1059		struct in6_addr llsol;
1060
1061		/* join solicited multicast addr for new host id */
1062		bzero(&llsol, sizeof(struct in6_addr));
1063		llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1064		llsol.s6_addr32[1] = 0;
1065		llsol.s6_addr32[2] = htonl(1);
1066		llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3];
1067		llsol.s6_addr8[12] = 0xff;
1068		if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) {
1069			/* XXX: should not happen */
1070			log(LOG_ERR, "in6_update_ifa: "
1071			    "in6_setscope failed\n");
1072			goto cleanup;
1073		}
1074		delay = 0;
1075		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1076			/*
1077			 * We need a random delay for DAD on the address
1078			 * being configured.  It also means delaying
1079			 * transmission of the corresponding MLD report to
1080			 * avoid report collision.
1081			 * [draft-ietf-ipv6-rfc2462bis-02.txt]
1082			 */
1083			delay = arc4random() %
1084			    (MAX_RTR_SOLICITATION_DELAY * hz);
1085		}
1086		imm = in6_joingroup(ifp, &llsol, &error, delay);
1087		if (imm == NULL) {
1088			nd6log((LOG_WARNING,
1089			    "in6_update_ifa: addmulti failed for "
1090			    "%s on %s (errno=%d)\n",
1091			    ip6_sprintf(ip6buf, &llsol), if_name(ifp),
1092			    error));
1093			in6_purgeaddr((struct ifaddr *)ia);
1094			return (error);
1095		}
1096		LIST_INSERT_HEAD(&ia->ia6_memberships,
1097		    imm, i6mm_chain);
1098		in6m_sol = imm->i6mm_maddr;
1099
1100		bzero(&mltmask, sizeof(mltmask));
1101		mltmask.sin6_len = sizeof(struct sockaddr_in6);
1102		mltmask.sin6_family = AF_INET6;
1103		mltmask.sin6_addr = in6mask32;
1104#define	MLTMASK_LEN  4	/* mltmask's masklen (=32bit=4octet) */
1105
1106		/*
1107		 * join link-local all-nodes address
1108		 */
1109		bzero(&mltaddr, sizeof(mltaddr));
1110		mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1111		mltaddr.sin6_family = AF_INET6;
1112		mltaddr.sin6_addr = in6addr_linklocal_allnodes;
1113		if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) !=
1114		    0)
1115			goto cleanup; /* XXX: should not fail */
1116
1117		/*
1118		 * XXX: do we really need this automatic routes?
1119		 * We should probably reconsider this stuff.  Most applications
1120		 * actually do not need the routes, since they usually specify
1121		 * the outgoing interface.
1122		 */
1123		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1124		if (rt) {
1125			if (memcmp(&mltaddr.sin6_addr,
1126			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1127			    MLTMASK_LEN)) {
1128				RTFREE_LOCKED(rt);
1129				rt = NULL;
1130			}
1131		}
1132		if (!rt) {
1133			/* XXX: we need RTF_CLONING to fake nd6_rtrequest */
1134			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1135			    (struct sockaddr *)&ia->ia_addr,
1136			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1137			    (struct rtentry **)0);
1138			if (error)
1139				goto cleanup;
1140		} else
1141			RTFREE_LOCKED(rt);
1142
1143		/*
1144		 * XXX: do we really need this automatic routes?
1145		 * We should probably reconsider this stuff.  Most applications
1146		 * actually do not need the routes, since they usually specify
1147		 * the outgoing interface.
1148		 */
1149		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1150		if (rt) {
1151			/* XXX: only works in !SCOPEDROUTING case. */
1152			if (memcmp(&mltaddr.sin6_addr,
1153			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1154			    MLTMASK_LEN)) {
1155				RTFREE_LOCKED(rt);
1156				rt = NULL;
1157			}
1158		}
1159		if (!rt) {
1160			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1161			    (struct sockaddr *)&ia->ia_addr,
1162			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1163			    (struct rtentry **)0);
1164			if (error)
1165				goto cleanup;
1166		} else {
1167			RTFREE_LOCKED(rt);
1168		}
1169
1170		imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1171		if (!imm) {
1172			nd6log((LOG_WARNING,
1173			    "in6_update_ifa: addmulti failed for "
1174			    "%s on %s (errno=%d)\n",
1175			    ip6_sprintf(ip6buf, &mltaddr.sin6_addr),
1176			    if_name(ifp), error));
1177			goto cleanup;
1178		}
1179		LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1180
1181		/*
1182		 * join node information group address
1183		 */
1184#define hostnamelen	strlen(hostname)
1185		delay = 0;
1186		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1187			/*
1188			 * The spec doesn't say anything about delay for this
1189			 * group, but the same logic should apply.
1190			 */
1191			delay = arc4random() %
1192			    (MAX_RTR_SOLICITATION_DELAY * hz);
1193		}
1194		if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr)
1195		    == 0) {
1196			imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error,
1197			    delay); /* XXX jinmei */
1198			if (!imm) {
1199				nd6log((LOG_WARNING, "in6_update_ifa: "
1200				    "addmulti failed for %s on %s "
1201				    "(errno=%d)\n",
1202				    ip6_sprintf(ip6buf, &mltaddr.sin6_addr),
1203				    if_name(ifp), error));
1204				/* XXX not very fatal, go on... */
1205			} else {
1206				LIST_INSERT_HEAD(&ia->ia6_memberships,
1207				    imm, i6mm_chain);
1208			}
1209		}
1210#undef hostnamelen
1211
1212		/*
1213		 * join interface-local all-nodes address.
1214		 * (ff01::1%ifN, and ff01::%ifN/32)
1215		 */
1216		mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1217		if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL))
1218		    != 0)
1219			goto cleanup; /* XXX: should not fail */
1220		/* XXX: again, do we really need the route? */
1221		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1222		if (rt) {
1223			if (memcmp(&mltaddr.sin6_addr,
1224			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1225			    MLTMASK_LEN)) {
1226				RTFREE_LOCKED(rt);
1227				rt = NULL;
1228			}
1229		}
1230		if (!rt) {
1231			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1232			    (struct sockaddr *)&ia->ia_addr,
1233			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1234			    (struct rtentry **)0);
1235			if (error)
1236				goto cleanup;
1237		} else
1238			RTFREE_LOCKED(rt);
1239
1240		/* XXX: again, do we really need the route? */
1241		rt = rtalloc1((struct sockaddr *)&mltaddr, 0, 0UL);
1242		if (rt) {
1243			if (memcmp(&mltaddr.sin6_addr,
1244			    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1245			    MLTMASK_LEN)) {
1246				RTFREE_LOCKED(rt);
1247				rt = NULL;
1248			}
1249		}
1250		if (!rt) {
1251			error = rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr,
1252			    (struct sockaddr *)&ia->ia_addr,
1253			    (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING,
1254			    (struct rtentry **)0);
1255			if (error)
1256				goto cleanup;
1257		} else {
1258			RTFREE_LOCKED(rt);
1259		}
1260
1261		imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1262		if (!imm) {
1263			nd6log((LOG_WARNING, "in6_update_ifa: "
1264			    "addmulti failed for %s on %s "
1265			    "(errno=%d)\n",
1266			    ip6_sprintf(ip6buf, &mltaddr.sin6_addr),
1267			    if_name(ifp), error));
1268			goto cleanup;
1269		}
1270		LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1271#undef	MLTMASK_LEN
1272	}
1273
1274	/*
1275	 * Perform DAD, if needed.
1276	 * XXX It may be of use, if we can administratively
1277	 * disable DAD.
1278	 */
1279	if (hostIsNew && in6if_do_dad(ifp) &&
1280	    ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) &&
1281	    (ia->ia6_flags & IN6_IFF_TENTATIVE))
1282	{
1283		int mindelay, maxdelay;
1284
1285		delay = 0;
1286		if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1287			/*
1288			 * We need to impose a delay before sending an NS
1289			 * for DAD.  Check if we also needed a delay for the
1290			 * corresponding MLD message.  If we did, the delay
1291			 * should be larger than the MLD delay (this could be
1292			 * relaxed a bit, but this simple logic is at least
1293			 * safe).
1294			 */
1295			mindelay = 0;
1296			if (in6m_sol != NULL &&
1297			    in6m_sol->in6m_state == MLD_REPORTPENDING) {
1298				mindelay = in6m_sol->in6m_timer;
1299			}
1300			maxdelay = MAX_RTR_SOLICITATION_DELAY * hz;
1301			if (maxdelay - mindelay == 0)
1302				delay = 0;
1303			else {
1304				delay =
1305				    (arc4random() % (maxdelay - mindelay)) +
1306				    mindelay;
1307			}
1308		}
1309		nd6_dad_start((struct ifaddr *)ia, delay);
1310	}
1311
1312	return (error);
1313
1314  unlink:
1315	/*
1316	 * XXX: if a change of an existing address failed, keep the entry
1317	 * anyway.
1318	 */
1319	if (hostIsNew)
1320		in6_unlink_ifa(ia, ifp);
1321	return (error);
1322
1323  cleanup:
1324	in6_purgeaddr(&ia->ia_ifa);
1325	return error;
1326}
1327
1328void
1329in6_purgeaddr(ifa)
1330	struct ifaddr *ifa;
1331{
1332	struct ifnet *ifp = ifa->ifa_ifp;
1333	struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1334	char ip6buf[INET6_ADDRSTRLEN];
1335	struct in6_multi_mship *imm;
1336
1337	/* stop DAD processing */
1338	nd6_dad_stop(ifa);
1339
1340	/*
1341	 * delete route to the destination of the address being purged.
1342	 * The interface must be p2p or loopback in this case.
1343	 */
1344	if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
1345		int e;
1346
1347		if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1348		    != 0) {
1349			log(LOG_ERR, "in6_purgeaddr: failed to remove "
1350			    "a route to the p2p destination: %s on %s, "
1351			    "errno=%d\n",
1352			    ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr),
1353			    if_name(ifp), e);
1354			/* proceed anyway... */
1355		} else
1356			ia->ia_flags &= ~IFA_ROUTE;
1357	}
1358
1359	/* Remove ownaddr's loopback rtentry, if it exists. */
1360	in6_ifremloop(&(ia->ia_ifa));
1361
1362	/*
1363	 * leave from multicast groups we have joined for the interface
1364	 */
1365	while ((imm = ia->ia6_memberships.lh_first) != NULL) {
1366		LIST_REMOVE(imm, i6mm_chain);
1367		in6_leavegroup(imm);
1368	}
1369
1370	in6_unlink_ifa(ia, ifp);
1371}
1372
1373static void
1374in6_unlink_ifa(ia, ifp)
1375	struct in6_ifaddr *ia;
1376	struct ifnet *ifp;
1377{
1378	struct in6_ifaddr *oia;
1379	int	s = splnet();
1380
1381	TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
1382
1383	oia = ia;
1384	if (oia == (ia = in6_ifaddr))
1385		in6_ifaddr = ia->ia_next;
1386	else {
1387		while (ia->ia_next && (ia->ia_next != oia))
1388			ia = ia->ia_next;
1389		if (ia->ia_next)
1390			ia->ia_next = oia->ia_next;
1391		else {
1392			/* search failed */
1393			printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1394		}
1395	}
1396
1397	/*
1398	 * Release the reference to the base prefix.  There should be a
1399	 * positive reference.
1400	 */
1401	if (oia->ia6_ndpr == NULL) {
1402		nd6log((LOG_NOTICE,
1403		    "in6_unlink_ifa: autoconf'ed address "
1404		    "%p has no prefix\n", oia));
1405	} else {
1406		oia->ia6_ndpr->ndpr_refcnt--;
1407		oia->ia6_ndpr = NULL;
1408	}
1409
1410	/*
1411	 * Also, if the address being removed is autoconf'ed, call
1412	 * pfxlist_onlink_check() since the release might affect the status of
1413	 * other (detached) addresses.
1414	 */
1415	if ((oia->ia6_flags & IN6_IFF_AUTOCONF)) {
1416		pfxlist_onlink_check();
1417	}
1418
1419	/*
1420	 * release another refcnt for the link from in6_ifaddr.
1421	 * Note that we should decrement the refcnt at least once for all *BSD.
1422	 */
1423	IFAFREE(&oia->ia_ifa);
1424
1425	splx(s);
1426}
1427
1428void
1429in6_purgeif(ifp)
1430	struct ifnet *ifp;
1431{
1432	struct ifaddr *ifa, *nifa;
1433
1434	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
1435		nifa = TAILQ_NEXT(ifa, ifa_list);
1436		if (ifa->ifa_addr->sa_family != AF_INET6)
1437			continue;
1438		in6_purgeaddr(ifa);
1439	}
1440
1441	in6_ifdetach(ifp);
1442}
1443
1444/*
1445 * SIOC[GAD]LIFADDR.
1446 *	SIOCGLIFADDR: get first address. (?)
1447 *	SIOCGLIFADDR with IFLR_PREFIX:
1448 *		get first address that matches the specified prefix.
1449 *	SIOCALIFADDR: add the specified address.
1450 *	SIOCALIFADDR with IFLR_PREFIX:
1451 *		add the specified prefix, filling hostid part from
1452 *		the first link-local address.  prefixlen must be <= 64.
1453 *	SIOCDLIFADDR: delete the specified address.
1454 *	SIOCDLIFADDR with IFLR_PREFIX:
1455 *		delete the first address that matches the specified prefix.
1456 * return values:
1457 *	EINVAL on invalid parameters
1458 *	EADDRNOTAVAIL on prefix match failed/specified address not found
1459 *	other values may be returned from in6_ioctl()
1460 *
1461 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1462 * this is to accomodate address naming scheme other than RFC2374,
1463 * in the future.
1464 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1465 * address encoding scheme. (see figure on page 8)
1466 */
1467static int
1468in6_lifaddr_ioctl(so, cmd, data, ifp, td)
1469	struct socket *so;
1470	u_long cmd;
1471	caddr_t	data;
1472	struct ifnet *ifp;
1473	struct thread *td;
1474{
1475	struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1476	struct ifaddr *ifa;
1477	struct sockaddr *sa;
1478
1479	/* sanity checks */
1480	if (!data || !ifp) {
1481		panic("invalid argument to in6_lifaddr_ioctl");
1482		/* NOTREACHED */
1483	}
1484
1485	switch (cmd) {
1486	case SIOCGLIFADDR:
1487		/* address must be specified on GET with IFLR_PREFIX */
1488		if ((iflr->flags & IFLR_PREFIX) == 0)
1489			break;
1490		/* FALLTHROUGH */
1491	case SIOCALIFADDR:
1492	case SIOCDLIFADDR:
1493		/* address must be specified on ADD and DELETE */
1494		sa = (struct sockaddr *)&iflr->addr;
1495		if (sa->sa_family != AF_INET6)
1496			return EINVAL;
1497		if (sa->sa_len != sizeof(struct sockaddr_in6))
1498			return EINVAL;
1499		/* XXX need improvement */
1500		sa = (struct sockaddr *)&iflr->dstaddr;
1501		if (sa->sa_family && sa->sa_family != AF_INET6)
1502			return EINVAL;
1503		if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1504			return EINVAL;
1505		break;
1506	default: /* shouldn't happen */
1507#if 0
1508		panic("invalid cmd to in6_lifaddr_ioctl");
1509		/* NOTREACHED */
1510#else
1511		return EOPNOTSUPP;
1512#endif
1513	}
1514	if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1515		return EINVAL;
1516
1517	switch (cmd) {
1518	case SIOCALIFADDR:
1519	    {
1520		struct in6_aliasreq ifra;
1521		struct in6_addr *hostid = NULL;
1522		int prefixlen;
1523
1524		if ((iflr->flags & IFLR_PREFIX) != 0) {
1525			struct sockaddr_in6 *sin6;
1526
1527			/*
1528			 * hostid is to fill in the hostid part of the
1529			 * address.  hostid points to the first link-local
1530			 * address attached to the interface.
1531			 */
1532			ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1533			if (!ifa)
1534				return EADDRNOTAVAIL;
1535			hostid = IFA_IN6(ifa);
1536
1537		 	/* prefixlen must be <= 64. */
1538			if (64 < iflr->prefixlen)
1539				return EINVAL;
1540			prefixlen = iflr->prefixlen;
1541
1542			/* hostid part must be zero. */
1543			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1544			if (sin6->sin6_addr.s6_addr32[2] != 0 ||
1545			    sin6->sin6_addr.s6_addr32[3] != 0) {
1546				return EINVAL;
1547			}
1548		} else
1549			prefixlen = iflr->prefixlen;
1550
1551		/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1552		bzero(&ifra, sizeof(ifra));
1553		bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name));
1554
1555		bcopy(&iflr->addr, &ifra.ifra_addr,
1556		    ((struct sockaddr *)&iflr->addr)->sa_len);
1557		if (hostid) {
1558			/* fill in hostid part */
1559			ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1560			    hostid->s6_addr32[2];
1561			ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1562			    hostid->s6_addr32[3];
1563		}
1564
1565		if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
1566			bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1567			    ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1568			if (hostid) {
1569				ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1570				    hostid->s6_addr32[2];
1571				ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1572				    hostid->s6_addr32[3];
1573			}
1574		}
1575
1576		ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1577		in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1578
1579		ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1580		return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td);
1581	    }
1582	case SIOCGLIFADDR:
1583	case SIOCDLIFADDR:
1584	    {
1585		struct in6_ifaddr *ia;
1586		struct in6_addr mask, candidate, match;
1587		struct sockaddr_in6 *sin6;
1588		int cmp;
1589
1590		bzero(&mask, sizeof(mask));
1591		if (iflr->flags & IFLR_PREFIX) {
1592			/* lookup a prefix rather than address. */
1593			in6_prefixlen2mask(&mask, iflr->prefixlen);
1594
1595			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1596			bcopy(&sin6->sin6_addr, &match, sizeof(match));
1597			match.s6_addr32[0] &= mask.s6_addr32[0];
1598			match.s6_addr32[1] &= mask.s6_addr32[1];
1599			match.s6_addr32[2] &= mask.s6_addr32[2];
1600			match.s6_addr32[3] &= mask.s6_addr32[3];
1601
1602			/* if you set extra bits, that's wrong */
1603			if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1604				return EINVAL;
1605
1606			cmp = 1;
1607		} else {
1608			if (cmd == SIOCGLIFADDR) {
1609				/* on getting an address, take the 1st match */
1610				cmp = 0;	/* XXX */
1611			} else {
1612				/* on deleting an address, do exact match */
1613				in6_prefixlen2mask(&mask, 128);
1614				sin6 = (struct sockaddr_in6 *)&iflr->addr;
1615				bcopy(&sin6->sin6_addr, &match, sizeof(match));
1616
1617				cmp = 1;
1618			}
1619		}
1620
1621		TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1622			if (ifa->ifa_addr->sa_family != AF_INET6)
1623				continue;
1624			if (!cmp)
1625				break;
1626
1627			/*
1628			 * XXX: this is adhoc, but is necessary to allow
1629			 * a user to specify fe80::/64 (not /10) for a
1630			 * link-local address.
1631			 */
1632			bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1633			in6_clearscope(&candidate);
1634			candidate.s6_addr32[0] &= mask.s6_addr32[0];
1635			candidate.s6_addr32[1] &= mask.s6_addr32[1];
1636			candidate.s6_addr32[2] &= mask.s6_addr32[2];
1637			candidate.s6_addr32[3] &= mask.s6_addr32[3];
1638			if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1639				break;
1640		}
1641		if (!ifa)
1642			return EADDRNOTAVAIL;
1643		ia = ifa2ia6(ifa);
1644
1645		if (cmd == SIOCGLIFADDR) {
1646			int error;
1647
1648			/* fill in the if_laddrreq structure */
1649			bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1650			error = sa6_recoverscope(
1651			    (struct sockaddr_in6 *)&iflr->addr);
1652			if (error != 0)
1653				return (error);
1654
1655			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1656				bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1657				    ia->ia_dstaddr.sin6_len);
1658				error = sa6_recoverscope(
1659				    (struct sockaddr_in6 *)&iflr->dstaddr);
1660				if (error != 0)
1661					return (error);
1662			} else
1663				bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1664
1665			iflr->prefixlen =
1666			    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
1667
1668			iflr->flags = ia->ia6_flags;	/* XXX */
1669
1670			return 0;
1671		} else {
1672			struct in6_aliasreq ifra;
1673
1674			/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1675			bzero(&ifra, sizeof(ifra));
1676			bcopy(iflr->iflr_name, ifra.ifra_name,
1677			    sizeof(ifra.ifra_name));
1678
1679			bcopy(&ia->ia_addr, &ifra.ifra_addr,
1680			    ia->ia_addr.sin6_len);
1681			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1682				bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1683				    ia->ia_dstaddr.sin6_len);
1684			} else {
1685				bzero(&ifra.ifra_dstaddr,
1686				    sizeof(ifra.ifra_dstaddr));
1687			}
1688			bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1689			    ia->ia_prefixmask.sin6_len);
1690
1691			ifra.ifra_flags = ia->ia6_flags;
1692			return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1693			    ifp, td);
1694		}
1695	    }
1696	}
1697
1698	return EOPNOTSUPP;	/* just for safety */
1699}
1700
1701/*
1702 * Initialize an interface's intetnet6 address
1703 * and routing table entry.
1704 */
1705static int
1706in6_ifinit(ifp, ia, sin6, newhost)
1707	struct ifnet *ifp;
1708	struct in6_ifaddr *ia;
1709	struct sockaddr_in6 *sin6;
1710	int newhost;
1711{
1712	int	error = 0, plen, ifacount = 0;
1713	int	s = splimp();
1714	struct ifaddr *ifa;
1715
1716	/*
1717	 * Give the interface a chance to initialize
1718	 * if this is its first address,
1719	 * and to validate the address if necessary.
1720	 */
1721	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1722		if (ifa->ifa_addr->sa_family != AF_INET6)
1723			continue;
1724		ifacount++;
1725	}
1726
1727	ia->ia_addr = *sin6;
1728
1729	if (ifacount <= 1 && ifp->if_ioctl) {
1730		IFF_LOCKGIANT(ifp);
1731		error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia);
1732		IFF_UNLOCKGIANT(ifp);
1733		if (error) {
1734			splx(s);
1735			return (error);
1736		}
1737	}
1738	splx(s);
1739
1740	ia->ia_ifa.ifa_metric = ifp->if_metric;
1741
1742	/* we could do in(6)_socktrim here, but just omit it at this moment. */
1743
1744	if (newhost) {
1745		/*
1746		 * set the rtrequest function to create llinfo.  It also
1747		 * adjust outgoing interface of the route for the local
1748		 * address when called via in6_ifaddloop() below.
1749		 */
1750		ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1751	}
1752
1753	/*
1754	 * Special case:
1755	 * If a new destination address is specified for a point-to-point
1756	 * interface, install a route to the destination as an interface
1757	 * direct route.  In addition, if the link is expected to have neighbor
1758	 * cache entries, specify RTF_LLINFO so that a cache entry for the
1759	 * destination address will be created.
1760	 * created
1761	 * XXX: the logic below rejects assigning multiple addresses on a p2p
1762	 * interface that share the same destination.
1763	 */
1764	plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1765	if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 &&
1766	    ia->ia_dstaddr.sin6_family == AF_INET6) {
1767		int rtflags = RTF_UP | RTF_HOST;
1768		struct rtentry *rt = NULL, **rtp = NULL;
1769
1770		if (nd6_need_cache(ifp) != 0) {
1771			rtflags |= RTF_LLINFO;
1772			rtp = &rt;
1773		}
1774
1775		error = rtrequest(RTM_ADD, (struct sockaddr *)&ia->ia_dstaddr,
1776		    (struct sockaddr *)&ia->ia_addr,
1777		    (struct sockaddr *)&ia->ia_prefixmask,
1778		    ia->ia_flags | rtflags, rtp);
1779		if (error != 0)
1780			return (error);
1781		if (rt != NULL) {
1782			struct llinfo_nd6 *ln;
1783
1784			RT_LOCK(rt);
1785			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1786			if (ln != NULL) {
1787				/*
1788				 * Set the state to STALE because we don't
1789				 * have to perform address resolution on this
1790				 * link.
1791				 */
1792				ln->ln_state = ND6_LLINFO_STALE;
1793			}
1794			RT_REMREF(rt);
1795			RT_UNLOCK(rt);
1796		}
1797		ia->ia_flags |= IFA_ROUTE;
1798	}
1799	if (plen < 128) {
1800		/*
1801		 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
1802		 */
1803		ia->ia_ifa.ifa_flags |= RTF_CLONING;
1804	}
1805
1806	/* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
1807	if (newhost)
1808		in6_ifaddloop(&(ia->ia_ifa));
1809
1810	return (error);
1811}
1812
1813struct in6_multi_mship *
1814in6_joingroup(ifp, addr, errorp, delay)
1815	struct ifnet *ifp;
1816	struct in6_addr *addr;
1817	int *errorp;
1818	int delay;
1819{
1820	struct in6_multi_mship *imm;
1821
1822	imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT);
1823	if (!imm) {
1824		*errorp = ENOBUFS;
1825		return NULL;
1826	}
1827	imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp, delay);
1828	if (!imm->i6mm_maddr) {
1829		/* *errorp is alrady set */
1830		free(imm, M_IP6MADDR);
1831		return NULL;
1832	}
1833	return imm;
1834}
1835
1836int
1837in6_leavegroup(imm)
1838	struct in6_multi_mship *imm;
1839{
1840
1841	if (imm->i6mm_maddr)
1842		in6_delmulti(imm->i6mm_maddr);
1843	free(imm,  M_IP6MADDR);
1844	return 0;
1845}
1846
1847/*
1848 * Find an IPv6 interface link-local address specific to an interface.
1849 */
1850struct in6_ifaddr *
1851in6ifa_ifpforlinklocal(ifp, ignoreflags)
1852	struct ifnet *ifp;
1853	int ignoreflags;
1854{
1855	struct ifaddr *ifa;
1856
1857	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1858		if (ifa->ifa_addr->sa_family != AF_INET6)
1859			continue;
1860		if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
1861			if ((((struct in6_ifaddr *)ifa)->ia6_flags &
1862			     ignoreflags) != 0)
1863				continue;
1864			break;
1865		}
1866	}
1867
1868	return ((struct in6_ifaddr *)ifa);
1869}
1870
1871
1872/*
1873 * find the internet address corresponding to a given interface and address.
1874 */
1875struct in6_ifaddr *
1876in6ifa_ifpwithaddr(ifp, addr)
1877	struct ifnet *ifp;
1878	struct in6_addr *addr;
1879{
1880	struct ifaddr *ifa;
1881
1882	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
1883		if (ifa->ifa_addr->sa_family != AF_INET6)
1884			continue;
1885		if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
1886			break;
1887	}
1888
1889	return ((struct in6_ifaddr *)ifa);
1890}
1891
1892/*
1893 * Convert IP6 address to printable (loggable) representation. Caller
1894 * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long.
1895 */
1896static char digits[] = "0123456789abcdef";
1897char *
1898ip6_sprintf(char *ip6buf, const struct in6_addr *addr)
1899{
1900	int i;
1901	char *cp;
1902	const u_int16_t *a = (const u_int16_t *)addr;
1903	const u_int8_t *d;
1904	int dcolon = 0, zero = 0;
1905
1906	cp = ip6buf;
1907
1908	for (i = 0; i < 8; i++) {
1909		if (dcolon == 1) {
1910			if (*a == 0) {
1911				if (i == 7)
1912					*cp++ = ':';
1913				a++;
1914				continue;
1915			} else
1916				dcolon = 2;
1917		}
1918		if (*a == 0) {
1919			if (dcolon == 0 && *(a + 1) == 0) {
1920				if (i == 0)
1921					*cp++ = ':';
1922				*cp++ = ':';
1923				dcolon = 1;
1924			} else {
1925				*cp++ = '0';
1926				*cp++ = ':';
1927			}
1928			a++;
1929			continue;
1930		}
1931		d = (const u_char *)a;
1932		/* Try to eliminate leading zeros in printout like in :0001. */
1933		zero = 1;
1934		*cp = digits[*d >> 4];
1935		if (*cp != '0') {
1936			zero = 0;
1937			cp++;
1938		}
1939		*cp = digits[*d++ & 0xf];
1940		if (zero == 0 || (*cp != '0')) {
1941			zero = 0;
1942			cp++;
1943		}
1944		*cp = digits[*d >> 4];
1945		if (zero == 0 || (*cp != '0')) {
1946			zero = 0;
1947			cp++;
1948		}
1949		*cp++ = digits[*d & 0xf];
1950		*cp++ = ':';
1951		a++;
1952	}
1953	*--cp = '\0';
1954	return (ip6buf);
1955}
1956
1957int
1958in6_localaddr(in6)
1959	struct in6_addr *in6;
1960{
1961	struct in6_ifaddr *ia;
1962
1963	if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1964		return 1;
1965
1966	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1967		if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1968		    &ia->ia_prefixmask.sin6_addr)) {
1969			return 1;
1970		}
1971	}
1972
1973	return (0);
1974}
1975
1976int
1977in6_is_addr_deprecated(sa6)
1978	struct sockaddr_in6 *sa6;
1979{
1980	struct in6_ifaddr *ia;
1981
1982	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1983		if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
1984				       &sa6->sin6_addr) &&
1985		    (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
1986			return (1); /* true */
1987
1988		/* XXX: do we still have to go thru the rest of the list? */
1989	}
1990
1991	return (0);		/* false */
1992}
1993
1994/*
1995 * return length of part which dst and src are equal
1996 * hard coding...
1997 */
1998int
1999in6_matchlen(src, dst)
2000struct in6_addr *src, *dst;
2001{
2002	int match = 0;
2003	u_char *s = (u_char *)src, *d = (u_char *)dst;
2004	u_char *lim = s + 16, r;
2005
2006	while (s < lim)
2007		if ((r = (*d++ ^ *s++)) != 0) {
2008			while (r < 128) {
2009				match++;
2010				r <<= 1;
2011			}
2012			break;
2013		} else
2014			match += 8;
2015	return match;
2016}
2017
2018/* XXX: to be scope conscious */
2019int
2020in6_are_prefix_equal(p1, p2, len)
2021	struct in6_addr *p1, *p2;
2022	int len;
2023{
2024	int bytelen, bitlen;
2025
2026	/* sanity check */
2027	if (0 > len || len > 128) {
2028		log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
2029		    len);
2030		return (0);
2031	}
2032
2033	bytelen = len / 8;
2034	bitlen = len % 8;
2035
2036	if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
2037		return (0);
2038	if (bitlen != 0 &&
2039	    p1->s6_addr[bytelen] >> (8 - bitlen) !=
2040	    p2->s6_addr[bytelen] >> (8 - bitlen))
2041		return (0);
2042
2043	return (1);
2044}
2045
2046void
2047in6_prefixlen2mask(maskp, len)
2048	struct in6_addr *maskp;
2049	int len;
2050{
2051	u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
2052	int bytelen, bitlen, i;
2053
2054	/* sanity check */
2055	if (0 > len || len > 128) {
2056		log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
2057		    len);
2058		return;
2059	}
2060
2061	bzero(maskp, sizeof(*maskp));
2062	bytelen = len / 8;
2063	bitlen = len % 8;
2064	for (i = 0; i < bytelen; i++)
2065		maskp->s6_addr[i] = 0xff;
2066	if (bitlen)
2067		maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
2068}
2069
2070/*
2071 * return the best address out of the same scope. if no address was
2072 * found, return the first valid address from designated IF.
2073 */
2074struct in6_ifaddr *
2075in6_ifawithifp(ifp, dst)
2076	struct ifnet *ifp;
2077	struct in6_addr *dst;
2078{
2079	int dst_scope =	in6_addrscope(dst), blen = -1, tlen;
2080	struct ifaddr *ifa;
2081	struct in6_ifaddr *besta = 0;
2082	struct in6_ifaddr *dep[2];	/* last-resort: deprecated */
2083
2084	dep[0] = dep[1] = NULL;
2085
2086	/*
2087	 * We first look for addresses in the same scope.
2088	 * If there is one, return it.
2089	 * If two or more, return one which matches the dst longest.
2090	 * If none, return one of global addresses assigned other ifs.
2091	 */
2092	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2093		if (ifa->ifa_addr->sa_family != AF_INET6)
2094			continue;
2095		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2096			continue; /* XXX: is there any case to allow anycast? */
2097		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2098			continue; /* don't use this interface */
2099		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2100			continue;
2101		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2102			if (ip6_use_deprecated)
2103				dep[0] = (struct in6_ifaddr *)ifa;
2104			continue;
2105		}
2106
2107		if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2108			/*
2109			 * call in6_matchlen() as few as possible
2110			 */
2111			if (besta) {
2112				if (blen == -1)
2113					blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2114				tlen = in6_matchlen(IFA_IN6(ifa), dst);
2115				if (tlen > blen) {
2116					blen = tlen;
2117					besta = (struct in6_ifaddr *)ifa;
2118				}
2119			} else
2120				besta = (struct in6_ifaddr *)ifa;
2121		}
2122	}
2123	if (besta)
2124		return (besta);
2125
2126	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2127		if (ifa->ifa_addr->sa_family != AF_INET6)
2128			continue;
2129		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2130			continue; /* XXX: is there any case to allow anycast? */
2131		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2132			continue; /* don't use this interface */
2133		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2134			continue;
2135		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2136			if (ip6_use_deprecated)
2137				dep[1] = (struct in6_ifaddr *)ifa;
2138			continue;
2139		}
2140
2141		return (struct in6_ifaddr *)ifa;
2142	}
2143
2144	/* use the last-resort values, that are, deprecated addresses */
2145	if (dep[0])
2146		return dep[0];
2147	if (dep[1])
2148		return dep[1];
2149
2150	return NULL;
2151}
2152
2153/*
2154 * perform DAD when interface becomes IFF_UP.
2155 */
2156void
2157in6_if_up(ifp)
2158	struct ifnet *ifp;
2159{
2160	struct ifaddr *ifa;
2161	struct in6_ifaddr *ia;
2162
2163	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2164		if (ifa->ifa_addr->sa_family != AF_INET6)
2165			continue;
2166		ia = (struct in6_ifaddr *)ifa;
2167		if (ia->ia6_flags & IN6_IFF_TENTATIVE) {
2168			/*
2169			 * The TENTATIVE flag was likely set by hand
2170			 * beforehand, implicitly indicating the need for DAD.
2171			 * We may be able to skip the random delay in this
2172			 * case, but we impose delays just in case.
2173			 */
2174			nd6_dad_start(ifa,
2175			    arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz));
2176		}
2177	}
2178
2179	/*
2180	 * special cases, like 6to4, are handled in in6_ifattach
2181	 */
2182	in6_ifattach(ifp, NULL);
2183}
2184
2185int
2186in6if_do_dad(ifp)
2187	struct ifnet *ifp;
2188{
2189	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2190		return (0);
2191
2192	switch (ifp->if_type) {
2193#ifdef IFT_DUMMY
2194	case IFT_DUMMY:
2195#endif
2196	case IFT_FAITH:
2197		/*
2198		 * These interfaces do not have the IFF_LOOPBACK flag,
2199		 * but loop packets back.  We do not have to do DAD on such
2200		 * interfaces.  We should even omit it, because loop-backed
2201		 * NS would confuse the DAD procedure.
2202		 */
2203		return (0);
2204	default:
2205		/*
2206		 * Our DAD routine requires the interface up and running.
2207		 * However, some interfaces can be up before the RUNNING
2208		 * status.  Additionaly, users may try to assign addresses
2209		 * before the interface becomes up (or running).
2210		 * We simply skip DAD in such a case as a work around.
2211		 * XXX: we should rather mark "tentative" on such addresses,
2212		 * and do DAD after the interface becomes ready.
2213		 */
2214		if (!((ifp->if_flags & IFF_UP) &&
2215		    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
2216			return (0);
2217
2218		return (1);
2219	}
2220}
2221
2222/*
2223 * Calculate max IPv6 MTU through all the interfaces and store it
2224 * to in6_maxmtu.
2225 */
2226void
2227in6_setmaxmtu()
2228{
2229	unsigned long maxmtu = 0;
2230	struct ifnet *ifp;
2231
2232	IFNET_RLOCK();
2233	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
2234		/* this function can be called during ifnet initialization */
2235		if (!ifp->if_afdata[AF_INET6])
2236			continue;
2237		if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2238		    IN6_LINKMTU(ifp) > maxmtu)
2239			maxmtu = IN6_LINKMTU(ifp);
2240	}
2241	IFNET_RUNLOCK();
2242	if (maxmtu)	     /* update only when maxmtu is positive */
2243		in6_maxmtu = maxmtu;
2244}
2245
2246/*
2247 * Provide the length of interface identifiers to be used for the link attached
2248 * to the given interface.  The length should be defined in "IPv6 over
2249 * xxx-link" document.  Note that address architecture might also define
2250 * the length for a particular set of address prefixes, regardless of the
2251 * link type.  As clarified in rfc2462bis, those two definitions should be
2252 * consistent, and those really are as of August 2004.
2253 */
2254int
2255in6_if2idlen(ifp)
2256	struct ifnet *ifp;
2257{
2258	switch (ifp->if_type) {
2259	case IFT_ETHER:		/* RFC2464 */
2260#ifdef IFT_PROPVIRTUAL
2261	case IFT_PROPVIRTUAL:	/* XXX: no RFC. treat it as ether */
2262#endif
2263#ifdef IFT_L2VLAN
2264	case IFT_L2VLAN:	/* ditto */
2265#endif
2266#ifdef IFT_IEEE80211
2267	case IFT_IEEE80211:	/* ditto */
2268#endif
2269#ifdef IFT_MIP
2270	case IFT_MIP:	/* ditto */
2271#endif
2272		return (64);
2273	case IFT_FDDI:		/* RFC2467 */
2274		return (64);
2275	case IFT_ISO88025:	/* RFC2470 (IPv6 over Token Ring) */
2276		return (64);
2277	case IFT_PPP:		/* RFC2472 */
2278		return (64);
2279	case IFT_ARCNET:	/* RFC2497 */
2280		return (64);
2281	case IFT_FRELAY:	/* RFC2590 */
2282		return (64);
2283	case IFT_IEEE1394:	/* RFC3146 */
2284		return (64);
2285	case IFT_GIF:
2286		return (64);	/* draft-ietf-v6ops-mech-v2-07 */
2287	case IFT_LOOP:
2288		return (64);	/* XXX: is this really correct? */
2289	default:
2290		/*
2291		 * Unknown link type:
2292		 * It might be controversial to use the today's common constant
2293		 * of 64 for these cases unconditionally.  For full compliance,
2294		 * we should return an error in this case.  On the other hand,
2295		 * if we simply miss the standard for the link type or a new
2296		 * standard is defined for a new link type, the IFID length
2297		 * is very likely to be the common constant.  As a compromise,
2298		 * we always use the constant, but make an explicit notice
2299		 * indicating the "unknown" case.
2300		 */
2301		printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type);
2302		return (64);
2303	}
2304}
2305
2306void *
2307in6_domifattach(ifp)
2308	struct ifnet *ifp;
2309{
2310	struct in6_ifextra *ext;
2311
2312	ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK);
2313	bzero(ext, sizeof(*ext));
2314
2315	ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat),
2316	    M_IFADDR, M_WAITOK);
2317	bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
2318
2319	ext->icmp6_ifstat =
2320	    (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat),
2321	    M_IFADDR, M_WAITOK);
2322	bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
2323
2324	ext->nd_ifinfo = nd6_ifattach(ifp);
2325	ext->scope6_id = scope6_ifattach(ifp);
2326	return ext;
2327}
2328
2329void
2330in6_domifdetach(ifp, aux)
2331	struct ifnet *ifp;
2332	void *aux;
2333{
2334	struct in6_ifextra *ext = (struct in6_ifextra *)aux;
2335
2336	scope6_ifdetach(ext->scope6_id);
2337	nd6_ifdetach(ext->nd_ifinfo);
2338	free(ext->in6_ifstat, M_IFADDR);
2339	free(ext->icmp6_ifstat, M_IFADDR);
2340	free(ext, M_IFADDR);
2341}
2342
2343/*
2344 * Convert sockaddr_in6 to sockaddr_in.  Original sockaddr_in6 must be
2345 * v4 mapped addr or v4 compat addr
2346 */
2347void
2348in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2349{
2350	bzero(sin, sizeof(*sin));
2351	sin->sin_len = sizeof(struct sockaddr_in);
2352	sin->sin_family = AF_INET;
2353	sin->sin_port = sin6->sin6_port;
2354	sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
2355}
2356
2357/* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
2358void
2359in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2360{
2361	bzero(sin6, sizeof(*sin6));
2362	sin6->sin6_len = sizeof(struct sockaddr_in6);
2363	sin6->sin6_family = AF_INET6;
2364	sin6->sin6_port = sin->sin_port;
2365	sin6->sin6_addr.s6_addr32[0] = 0;
2366	sin6->sin6_addr.s6_addr32[1] = 0;
2367	sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
2368	sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
2369}
2370
2371/* Convert sockaddr_in6 into sockaddr_in. */
2372void
2373in6_sin6_2_sin_in_sock(struct sockaddr *nam)
2374{
2375	struct sockaddr_in *sin_p;
2376	struct sockaddr_in6 sin6;
2377
2378	/*
2379	 * Save original sockaddr_in6 addr and convert it
2380	 * to sockaddr_in.
2381	 */
2382	sin6 = *(struct sockaddr_in6 *)nam;
2383	sin_p = (struct sockaddr_in *)nam;
2384	in6_sin6_2_sin(sin_p, &sin6);
2385}
2386
2387/* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
2388void
2389in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
2390{
2391	struct sockaddr_in *sin_p;
2392	struct sockaddr_in6 *sin6_p;
2393
2394	MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME,
2395	       M_WAITOK);
2396	sin_p = (struct sockaddr_in *)*nam;
2397	in6_sin_2_v4mapsin6(sin_p, sin6_p);
2398	FREE(*nam, M_SONAME);
2399	*nam = (struct sockaddr *)sin6_p;
2400}
2401