1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2001 Atsushi Onoe
5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
6 * Copyright (c) 2012 IEEE
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33/*
34 * IEEE 802.11 protocol support.
35 */
36
37#include "opt_inet.h"
38#include "opt_wlan.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/malloc.h>
44
45#include <sys/socket.h>
46#include <sys/sockio.h>
47
48#include <net/if.h>
49#include <net/if_var.h>
50#include <net/if_media.h>
51#include <net/ethernet.h>		/* XXX for ether_sprintf */
52
53#include <net80211/ieee80211_var.h>
54#include <net80211/ieee80211_adhoc.h>
55#include <net80211/ieee80211_sta.h>
56#include <net80211/ieee80211_hostap.h>
57#include <net80211/ieee80211_wds.h>
58#ifdef IEEE80211_SUPPORT_MESH
59#include <net80211/ieee80211_mesh.h>
60#endif
61#include <net80211/ieee80211_monitor.h>
62#include <net80211/ieee80211_input.h>
63
64/* XXX tunables */
65#define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
66#define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
67
68const char *mgt_subtype_name[] = {
69	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
70	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
71	"beacon",	"atim",		"disassoc",	"auth",
72	"deauth",	"action",	"action_noack",	"reserved#15"
73};
74const char *ctl_subtype_name[] = {
75	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
76	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
77	"bar",		"ba",		"ps_poll",	"rts",
78	"cts",		"ack",		"cf_end",	"cf_end_ack"
79};
80const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
81	"IBSS",		/* IEEE80211_M_IBSS */
82	"STA",		/* IEEE80211_M_STA */
83	"WDS",		/* IEEE80211_M_WDS */
84	"AHDEMO",	/* IEEE80211_M_AHDEMO */
85	"HOSTAP",	/* IEEE80211_M_HOSTAP */
86	"MONITOR",	/* IEEE80211_M_MONITOR */
87	"MBSS"		/* IEEE80211_M_MBSS */
88};
89const char *ieee80211_state_name[IEEE80211_S_MAX] = {
90	"INIT",		/* IEEE80211_S_INIT */
91	"SCAN",		/* IEEE80211_S_SCAN */
92	"AUTH",		/* IEEE80211_S_AUTH */
93	"ASSOC",	/* IEEE80211_S_ASSOC */
94	"CAC",		/* IEEE80211_S_CAC */
95	"RUN",		/* IEEE80211_S_RUN */
96	"CSA",		/* IEEE80211_S_CSA */
97	"SLEEP",	/* IEEE80211_S_SLEEP */
98};
99const char *ieee80211_wme_acnames[] = {
100	"WME_AC_BE",
101	"WME_AC_BK",
102	"WME_AC_VI",
103	"WME_AC_VO",
104	"WME_UPSD",
105};
106
107
108/*
109 * Reason code descriptions were (mostly) obtained from
110 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
111 */
112const char *
113ieee80211_reason_to_string(uint16_t reason)
114{
115	switch (reason) {
116	case IEEE80211_REASON_UNSPECIFIED:
117		return ("unspecified");
118	case IEEE80211_REASON_AUTH_EXPIRE:
119		return ("previous authentication is expired");
120	case IEEE80211_REASON_AUTH_LEAVE:
121		return ("sending STA is leaving/has left IBSS or ESS");
122	case IEEE80211_REASON_ASSOC_EXPIRE:
123		return ("disassociated due to inactivity");
124	case IEEE80211_REASON_ASSOC_TOOMANY:
125		return ("too many associated STAs");
126	case IEEE80211_REASON_NOT_AUTHED:
127		return ("class 2 frame received from nonauthenticated STA");
128	case IEEE80211_REASON_NOT_ASSOCED:
129		return ("class 3 frame received from nonassociated STA");
130	case IEEE80211_REASON_ASSOC_LEAVE:
131		return ("sending STA is leaving/has left BSS");
132	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
133		return ("STA requesting (re)association is not authenticated");
134	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
135		return ("information in the Power Capability element is "
136			"unacceptable");
137	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
138		return ("information in the Supported Channels element is "
139			"unacceptable");
140	case IEEE80211_REASON_IE_INVALID:
141		return ("invalid element");
142	case IEEE80211_REASON_MIC_FAILURE:
143		return ("MIC failure");
144	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
145		return ("4-Way handshake timeout");
146	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
147		return ("group key update timeout");
148	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
149		return ("element in 4-Way handshake different from "
150			"(re)association request/probe response/beacon frame");
151	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
152		return ("invalid group cipher");
153	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
154		return ("invalid pairwise cipher");
155	case IEEE80211_REASON_AKMP_INVALID:
156		return ("invalid AKMP");
157	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
158		return ("unsupported version in RSN IE");
159	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
160		return ("invalid capabilities in RSN IE");
161	case IEEE80211_REASON_802_1X_AUTH_FAILED:
162		return ("IEEE 802.1X authentication failed");
163	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
164		return ("cipher suite rejected because of the security "
165			"policy");
166	case IEEE80211_REASON_UNSPECIFIED_QOS:
167		return ("unspecified (QoS-related)");
168	case IEEE80211_REASON_INSUFFICIENT_BW:
169		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
170	case IEEE80211_REASON_TOOMANY_FRAMES:
171		return ("too many frames need to be acknowledged");
172	case IEEE80211_REASON_OUTSIDE_TXOP:
173		return ("STA is transmitting outside the limits of its TXOPs");
174	case IEEE80211_REASON_LEAVING_QBSS:
175		return ("requested from peer STA (the STA is "
176			"resetting/leaving the BSS)");
177	case IEEE80211_REASON_BAD_MECHANISM:
178		return ("requested from peer STA (it does not want to use "
179			"the mechanism)");
180	case IEEE80211_REASON_SETUP_NEEDED:
181		return ("requested from peer STA (setup is required for the "
182			"used mechanism)");
183	case IEEE80211_REASON_TIMEOUT:
184		return ("requested from peer STA (timeout)");
185	case IEEE80211_REASON_PEER_LINK_CANCELED:
186		return ("SME cancels the mesh peering instance (not related "
187			"to the maximum number of peer mesh STAs)");
188	case IEEE80211_REASON_MESH_MAX_PEERS:
189		return ("maximum number of peer mesh STAs was reached");
190	case IEEE80211_REASON_MESH_CPVIOLATION:
191		return ("the received information violates the Mesh "
192			"Configuration policy configured in the mesh STA "
193			"profile");
194	case IEEE80211_REASON_MESH_CLOSE_RCVD:
195		return ("the mesh STA has received a Mesh Peering Close "
196			"message requesting to close the mesh peering");
197	case IEEE80211_REASON_MESH_MAX_RETRIES:
198		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
199			"Peering Open messages, without receiving a Mesh "
200			"Peering Confirm message");
201	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
202		return ("the confirmTimer for the mesh peering instance times "
203			"out");
204	case IEEE80211_REASON_MESH_INVALID_GTK:
205		return ("the mesh STA fails to unwrap the GTK or the values "
206			"in the wrapped contents do not match");
207	case IEEE80211_REASON_MESH_INCONS_PARAMS:
208		return ("the mesh STA receives inconsistent information about "
209			"the mesh parameters between Mesh Peering Management "
210			"frames");
211	case IEEE80211_REASON_MESH_INVALID_SECURITY:
212		return ("the mesh STA fails the authenticated mesh peering "
213			"exchange because due to failure in selecting "
214			"pairwise/group ciphersuite");
215	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
216		return ("the mesh STA does not have proxy information for "
217			"this external destination");
218	case IEEE80211_REASON_MESH_PERR_NO_FI:
219		return ("the mesh STA does not have forwarding information "
220			"for this destination");
221	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
222		return ("the mesh STA determines that the link to the next "
223			"hop of an active path in its forwarding information "
224			"is no longer usable");
225	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
226		return ("the MAC address of the STA already exists in the "
227			"mesh BSS");
228	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
229		return ("the mesh STA performs channel switch to meet "
230			"regulatory requirements");
231	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
232		return ("the mesh STA performs channel switch with "
233			"unspecified reason");
234	default:
235		return ("reserved/unknown");
236	}
237}
238
239static void beacon_miss(void *, int);
240static void beacon_swmiss(void *, int);
241static void parent_updown(void *, int);
242static void update_mcast(void *, int);
243static void update_promisc(void *, int);
244static void update_channel(void *, int);
245static void update_chw(void *, int);
246static void vap_update_wme(void *, int);
247static void restart_vaps(void *, int);
248static void ieee80211_newstate_cb(void *, int);
249
250static int
251null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
252	const struct ieee80211_bpf_params *params)
253{
254
255	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
256	m_freem(m);
257	return ENETDOWN;
258}
259
260void
261ieee80211_proto_attach(struct ieee80211com *ic)
262{
263	uint8_t hdrlen;
264
265	/* override the 802.3 setting */
266	hdrlen = ic->ic_headroom
267		+ sizeof(struct ieee80211_qosframe_addr4)
268		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
269		+ IEEE80211_WEP_EXTIVLEN;
270	/* XXX no way to recalculate on ifdetach */
271	if (ALIGN(hdrlen) > max_linkhdr) {
272		/* XXX sanity check... */
273		max_linkhdr = ALIGN(hdrlen);
274		max_hdr = max_linkhdr + max_protohdr;
275		max_datalen = MHLEN - max_hdr;
276	}
277	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
278
279	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
280	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
281	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
282	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
283	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
284	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
285	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
286
287	ic->ic_wme.wme_hipri_switch_hysteresis =
288		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
289
290	/* initialize management frame handlers */
291	ic->ic_send_mgmt = ieee80211_send_mgmt;
292	ic->ic_raw_xmit = null_raw_xmit;
293
294	ieee80211_adhoc_attach(ic);
295	ieee80211_sta_attach(ic);
296	ieee80211_wds_attach(ic);
297	ieee80211_hostap_attach(ic);
298#ifdef IEEE80211_SUPPORT_MESH
299	ieee80211_mesh_attach(ic);
300#endif
301	ieee80211_monitor_attach(ic);
302}
303
304void
305ieee80211_proto_detach(struct ieee80211com *ic)
306{
307	ieee80211_monitor_detach(ic);
308#ifdef IEEE80211_SUPPORT_MESH
309	ieee80211_mesh_detach(ic);
310#endif
311	ieee80211_hostap_detach(ic);
312	ieee80211_wds_detach(ic);
313	ieee80211_adhoc_detach(ic);
314	ieee80211_sta_detach(ic);
315}
316
317static void
318null_update_beacon(struct ieee80211vap *vap, int item)
319{
320}
321
322void
323ieee80211_proto_vattach(struct ieee80211vap *vap)
324{
325	struct ieee80211com *ic = vap->iv_ic;
326	struct ifnet *ifp = vap->iv_ifp;
327	int i;
328
329	/* override the 802.3 setting */
330	ifp->if_hdrlen = ic->ic_headroom
331                + sizeof(struct ieee80211_qosframe_addr4)
332                + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
333                + IEEE80211_WEP_EXTIVLEN;
334
335	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
336	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
337	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
338	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
339	callout_init(&vap->iv_mgtsend, 1);
340	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
341	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
342	TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
343	/*
344	 * Install default tx rate handling: no fixed rate, lowest
345	 * supported rate for mgmt and multicast frames.  Default
346	 * max retry count.  These settings can be changed by the
347	 * driver and/or user applications.
348	 */
349	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
350		if (isclr(ic->ic_modecaps, i))
351			continue;
352
353		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
354
355		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
356
357		/*
358		 * Setting the management rate to MCS 0 assumes that the
359		 * BSS Basic rate set is empty and the BSS Basic MCS set
360		 * is not.
361		 *
362		 * Since we're not checking this, default to the lowest
363		 * defined rate for this mode.
364		 *
365		 * At least one 11n AP (DLINK DIR-825) is reported to drop
366		 * some MCS management traffic (eg BA response frames.)
367		 *
368		 * See also: 9.6.0 of the 802.11n-2009 specification.
369		 */
370#ifdef	NOTYET
371		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
372			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
373			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
374		} else {
375			vap->iv_txparms[i].mgmtrate =
376			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
377			vap->iv_txparms[i].mcastrate =
378			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
379		}
380#endif
381		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
382		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
383		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
384	}
385	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
386
387	vap->iv_update_beacon = null_update_beacon;
388	vap->iv_deliver_data = ieee80211_deliver_data;
389
390	/* attach support for operating mode */
391	ic->ic_vattach[vap->iv_opmode](vap);
392}
393
394void
395ieee80211_proto_vdetach(struct ieee80211vap *vap)
396{
397#define	FREEAPPIE(ie) do { \
398	if (ie != NULL) \
399		IEEE80211_FREE(ie, M_80211_NODE_IE); \
400} while (0)
401	/*
402	 * Detach operating mode module.
403	 */
404	if (vap->iv_opdetach != NULL)
405		vap->iv_opdetach(vap);
406	/*
407	 * This should not be needed as we detach when reseting
408	 * the state but be conservative here since the
409	 * authenticator may do things like spawn kernel threads.
410	 */
411	if (vap->iv_auth->ia_detach != NULL)
412		vap->iv_auth->ia_detach(vap);
413	/*
414	 * Detach any ACL'ator.
415	 */
416	if (vap->iv_acl != NULL)
417		vap->iv_acl->iac_detach(vap);
418
419	FREEAPPIE(vap->iv_appie_beacon);
420	FREEAPPIE(vap->iv_appie_probereq);
421	FREEAPPIE(vap->iv_appie_proberesp);
422	FREEAPPIE(vap->iv_appie_assocreq);
423	FREEAPPIE(vap->iv_appie_assocresp);
424	FREEAPPIE(vap->iv_appie_wpa);
425#undef FREEAPPIE
426}
427
428/*
429 * Simple-minded authenticator module support.
430 */
431
432#define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
433/* XXX well-known names */
434static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
435	"wlan_internal",	/* IEEE80211_AUTH_NONE */
436	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
437	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
438	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
439	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
440	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
441};
442static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
443
444static const struct ieee80211_authenticator auth_internal = {
445	.ia_name		= "wlan_internal",
446	.ia_attach		= NULL,
447	.ia_detach		= NULL,
448	.ia_node_join		= NULL,
449	.ia_node_leave		= NULL,
450};
451
452/*
453 * Setup internal authenticators once; they are never unregistered.
454 */
455static void
456ieee80211_auth_setup(void)
457{
458	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
459	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
460	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
461}
462SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
463
464const struct ieee80211_authenticator *
465ieee80211_authenticator_get(int auth)
466{
467	if (auth >= IEEE80211_AUTH_MAX)
468		return NULL;
469	if (authenticators[auth] == NULL)
470		ieee80211_load_module(auth_modnames[auth]);
471	return authenticators[auth];
472}
473
474void
475ieee80211_authenticator_register(int type,
476	const struct ieee80211_authenticator *auth)
477{
478	if (type >= IEEE80211_AUTH_MAX)
479		return;
480	authenticators[type] = auth;
481}
482
483void
484ieee80211_authenticator_unregister(int type)
485{
486
487	if (type >= IEEE80211_AUTH_MAX)
488		return;
489	authenticators[type] = NULL;
490}
491
492/*
493 * Very simple-minded ACL module support.
494 */
495/* XXX just one for now */
496static	const struct ieee80211_aclator *acl = NULL;
497
498void
499ieee80211_aclator_register(const struct ieee80211_aclator *iac)
500{
501	printf("wlan: %s acl policy registered\n", iac->iac_name);
502	acl = iac;
503}
504
505void
506ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
507{
508	if (acl == iac)
509		acl = NULL;
510	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
511}
512
513const struct ieee80211_aclator *
514ieee80211_aclator_get(const char *name)
515{
516	if (acl == NULL)
517		ieee80211_load_module("wlan_acl");
518	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
519}
520
521void
522ieee80211_print_essid(const uint8_t *essid, int len)
523{
524	const uint8_t *p;
525	int i;
526
527	if (len > IEEE80211_NWID_LEN)
528		len = IEEE80211_NWID_LEN;
529	/* determine printable or not */
530	for (i = 0, p = essid; i < len; i++, p++) {
531		if (*p < ' ' || *p > 0x7e)
532			break;
533	}
534	if (i == len) {
535		printf("\"");
536		for (i = 0, p = essid; i < len; i++, p++)
537			printf("%c", *p);
538		printf("\"");
539	} else {
540		printf("0x");
541		for (i = 0, p = essid; i < len; i++, p++)
542			printf("%02x", *p);
543	}
544}
545
546void
547ieee80211_dump_pkt(struct ieee80211com *ic,
548	const uint8_t *buf, int len, int rate, int rssi)
549{
550	const struct ieee80211_frame *wh;
551	int i;
552
553	wh = (const struct ieee80211_frame *)buf;
554	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
555	case IEEE80211_FC1_DIR_NODS:
556		printf("NODS %s", ether_sprintf(wh->i_addr2));
557		printf("->%s", ether_sprintf(wh->i_addr1));
558		printf("(%s)", ether_sprintf(wh->i_addr3));
559		break;
560	case IEEE80211_FC1_DIR_TODS:
561		printf("TODS %s", ether_sprintf(wh->i_addr2));
562		printf("->%s", ether_sprintf(wh->i_addr3));
563		printf("(%s)", ether_sprintf(wh->i_addr1));
564		break;
565	case IEEE80211_FC1_DIR_FROMDS:
566		printf("FRDS %s", ether_sprintf(wh->i_addr3));
567		printf("->%s", ether_sprintf(wh->i_addr1));
568		printf("(%s)", ether_sprintf(wh->i_addr2));
569		break;
570	case IEEE80211_FC1_DIR_DSTODS:
571		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
572		printf("->%s", ether_sprintf(wh->i_addr3));
573		printf("(%s", ether_sprintf(wh->i_addr2));
574		printf("->%s)", ether_sprintf(wh->i_addr1));
575		break;
576	}
577	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
578	case IEEE80211_FC0_TYPE_DATA:
579		printf(" data");
580		break;
581	case IEEE80211_FC0_TYPE_MGT:
582		printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
583		break;
584	default:
585		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
586		break;
587	}
588	if (IEEE80211_QOS_HAS_SEQ(wh)) {
589		const struct ieee80211_qosframe *qwh =
590			(const struct ieee80211_qosframe *)buf;
591		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
592			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
593	}
594	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
595		int off;
596
597		off = ieee80211_anyhdrspace(ic, wh);
598		printf(" WEP [IV %.02x %.02x %.02x",
599			buf[off+0], buf[off+1], buf[off+2]);
600		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
601			printf(" %.02x %.02x %.02x",
602				buf[off+4], buf[off+5], buf[off+6]);
603		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
604	}
605	if (rate >= 0)
606		printf(" %dM", rate / 2);
607	if (rssi >= 0)
608		printf(" +%d", rssi);
609	printf("\n");
610	if (len > 0) {
611		for (i = 0; i < len; i++) {
612			if ((i & 1) == 0)
613				printf(" ");
614			printf("%02x", buf[i]);
615		}
616		printf("\n");
617	}
618}
619
620static __inline int
621findrix(const struct ieee80211_rateset *rs, int r)
622{
623	int i;
624
625	for (i = 0; i < rs->rs_nrates; i++)
626		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
627			return i;
628	return -1;
629}
630
631int
632ieee80211_fix_rate(struct ieee80211_node *ni,
633	struct ieee80211_rateset *nrs, int flags)
634{
635	struct ieee80211vap *vap = ni->ni_vap;
636	struct ieee80211com *ic = ni->ni_ic;
637	int i, j, rix, error;
638	int okrate, badrate, fixedrate, ucastrate;
639	const struct ieee80211_rateset *srs;
640	uint8_t r;
641
642	error = 0;
643	okrate = badrate = 0;
644	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
645	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
646		/*
647		 * Workaround awkwardness with fixed rate.  We are called
648		 * to check both the legacy rate set and the HT rate set
649		 * but we must apply any legacy fixed rate check only to the
650		 * legacy rate set and vice versa.  We cannot tell what type
651		 * of rate set we've been given (legacy or HT) but we can
652		 * distinguish the fixed rate type (MCS have 0x80 set).
653		 * So to deal with this the caller communicates whether to
654		 * check MCS or legacy rate using the flags and we use the
655		 * type of any fixed rate to avoid applying an MCS to a
656		 * legacy rate and vice versa.
657		 */
658		if (ucastrate & 0x80) {
659			if (flags & IEEE80211_F_DOFRATE)
660				flags &= ~IEEE80211_F_DOFRATE;
661		} else if ((ucastrate & 0x80) == 0) {
662			if (flags & IEEE80211_F_DOFMCS)
663				flags &= ~IEEE80211_F_DOFMCS;
664		}
665		/* NB: required to make MCS match below work */
666		ucastrate &= IEEE80211_RATE_VAL;
667	}
668	fixedrate = IEEE80211_FIXED_RATE_NONE;
669	/*
670	 * XXX we are called to process both MCS and legacy rates;
671	 * we must use the appropriate basic rate set or chaos will
672	 * ensue; for now callers that want MCS must supply
673	 * IEEE80211_F_DOBRS; at some point we'll need to split this
674	 * function so there are two variants, one for MCS and one
675	 * for legacy rates.
676	 */
677	if (flags & IEEE80211_F_DOBRS)
678		srs = (const struct ieee80211_rateset *)
679		    ieee80211_get_suphtrates(ic, ni->ni_chan);
680	else
681		srs = ieee80211_get_suprates(ic, ni->ni_chan);
682	for (i = 0; i < nrs->rs_nrates; ) {
683		if (flags & IEEE80211_F_DOSORT) {
684			/*
685			 * Sort rates.
686			 */
687			for (j = i + 1; j < nrs->rs_nrates; j++) {
688				if (IEEE80211_RV(nrs->rs_rates[i]) >
689				    IEEE80211_RV(nrs->rs_rates[j])) {
690					r = nrs->rs_rates[i];
691					nrs->rs_rates[i] = nrs->rs_rates[j];
692					nrs->rs_rates[j] = r;
693				}
694			}
695		}
696		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
697		badrate = r;
698		/*
699		 * Check for fixed rate.
700		 */
701		if (r == ucastrate)
702			fixedrate = r;
703		/*
704		 * Check against supported rates.
705		 */
706		rix = findrix(srs, r);
707		if (flags & IEEE80211_F_DONEGO) {
708			if (rix < 0) {
709				/*
710				 * A rate in the node's rate set is not
711				 * supported.  If this is a basic rate and we
712				 * are operating as a STA then this is an error.
713				 * Otherwise we just discard/ignore the rate.
714				 */
715				if ((flags & IEEE80211_F_JOIN) &&
716				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
717					error++;
718			} else if ((flags & IEEE80211_F_JOIN) == 0) {
719				/*
720				 * Overwrite with the supported rate
721				 * value so any basic rate bit is set.
722				 */
723				nrs->rs_rates[i] = srs->rs_rates[rix];
724			}
725		}
726		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
727			/*
728			 * Delete unacceptable rates.
729			 */
730			nrs->rs_nrates--;
731			for (j = i; j < nrs->rs_nrates; j++)
732				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
733			nrs->rs_rates[j] = 0;
734			continue;
735		}
736		if (rix >= 0)
737			okrate = nrs->rs_rates[i];
738		i++;
739	}
740	if (okrate == 0 || error != 0 ||
741	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
742	     fixedrate != ucastrate)) {
743		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
744		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
745		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
746		return badrate | IEEE80211_RATE_BASIC;
747	} else
748		return IEEE80211_RV(okrate);
749}
750
751/*
752 * Reset 11g-related state.
753 */
754void
755ieee80211_reset_erp(struct ieee80211com *ic)
756{
757	ic->ic_flags &= ~IEEE80211_F_USEPROT;
758	ic->ic_nonerpsta = 0;
759	ic->ic_longslotsta = 0;
760	/*
761	 * Short slot time is enabled only when operating in 11g
762	 * and not in an IBSS.  We must also honor whether or not
763	 * the driver is capable of doing it.
764	 */
765	ieee80211_set_shortslottime(ic,
766		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
767		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
768		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
769		ic->ic_opmode == IEEE80211_M_HOSTAP &&
770		(ic->ic_caps & IEEE80211_C_SHSLOT)));
771	/*
772	 * Set short preamble and ERP barker-preamble flags.
773	 */
774	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
775	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
776		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
777		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
778	} else {
779		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
780		ic->ic_flags |= IEEE80211_F_USEBARKER;
781	}
782}
783
784/*
785 * Set the short slot time state and notify the driver.
786 */
787void
788ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
789{
790	if (onoff)
791		ic->ic_flags |= IEEE80211_F_SHSLOT;
792	else
793		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
794	/* notify driver */
795	if (ic->ic_updateslot != NULL)
796		ic->ic_updateslot(ic);
797}
798
799/*
800 * Check if the specified rate set supports ERP.
801 * NB: the rate set is assumed to be sorted.
802 */
803int
804ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
805{
806	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
807	int i, j;
808
809	if (rs->rs_nrates < nitems(rates))
810		return 0;
811	for (i = 0; i < nitems(rates); i++) {
812		for (j = 0; j < rs->rs_nrates; j++) {
813			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
814			if (rates[i] == r)
815				goto next;
816			if (r > rates[i])
817				return 0;
818		}
819		return 0;
820	next:
821		;
822	}
823	return 1;
824}
825
826/*
827 * Mark the basic rates for the rate table based on the
828 * operating mode.  For real 11g we mark all the 11b rates
829 * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
830 * 11b rates.  There's also a pseudo 11a-mode used to mark only
831 * the basic OFDM rates.
832 */
833static void
834setbasicrates(struct ieee80211_rateset *rs,
835    enum ieee80211_phymode mode, int add)
836{
837	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
838	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
839	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
840					    /* NB: mixed b/g */
841	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
842	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
843	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
844	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
845	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
846	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
847	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
848					    /* NB: mixed b/g */
849	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
850					    /* NB: mixed b/g */
851	    [IEEE80211_MODE_VHT_2GHZ]	= { 4, { 2, 4, 11, 22 } },
852	    [IEEE80211_MODE_VHT_5GHZ]	= { 3, { 12, 24, 48 } },
853	};
854	int i, j;
855
856	for (i = 0; i < rs->rs_nrates; i++) {
857		if (!add)
858			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
859		for (j = 0; j < basic[mode].rs_nrates; j++)
860			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
861				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
862				break;
863			}
864	}
865}
866
867/*
868 * Set the basic rates in a rate set.
869 */
870void
871ieee80211_setbasicrates(struct ieee80211_rateset *rs,
872    enum ieee80211_phymode mode)
873{
874	setbasicrates(rs, mode, 0);
875}
876
877/*
878 * Add basic rates to a rate set.
879 */
880void
881ieee80211_addbasicrates(struct ieee80211_rateset *rs,
882    enum ieee80211_phymode mode)
883{
884	setbasicrates(rs, mode, 1);
885}
886
887/*
888 * WME protocol support.
889 *
890 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
891 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
892 * Draft 2.0 Test Plan (Appendix D).
893 *
894 * Static/Dynamic Turbo mode settings come from Atheros.
895 */
896typedef struct phyParamType {
897	uint8_t		aifsn;
898	uint8_t		logcwmin;
899	uint8_t		logcwmax;
900	uint16_t	txopLimit;
901	uint8_t 	acm;
902} paramType;
903
904static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
905	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
906	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
907	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
908	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
909	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
910	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
911	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
912	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
913	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
914	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
915	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
916	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
917	[IEEE80211_MODE_VHT_2GHZ]	= { 3, 4,  6,  0, 0 },
918	[IEEE80211_MODE_VHT_5GHZ]	= { 3, 4,  6,  0, 0 },
919};
920static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
921	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
922	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
923	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
924	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
925	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
926	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
927	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
928	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
929	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
930	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
931	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
932	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
933	[IEEE80211_MODE_VHT_2GHZ]	= { 7, 4, 10,  0, 0 },
934	[IEEE80211_MODE_VHT_5GHZ]	= { 7, 4, 10,  0, 0 },
935};
936static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
937	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
938	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
939	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
940	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
941	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
942	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
943	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
944	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
945	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
946	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
947	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
948	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
949	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 3, 4,  94, 0 },
950	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 3, 4,  94, 0 },
951};
952static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
953	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
954	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
955	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
956	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
957	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
958	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
959	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
960	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
961	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
962	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
963	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
964	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
965	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 2, 3,  47, 0 },
966	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 2, 3,  47, 0 },
967};
968
969static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
970	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
971	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
972	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
973	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
974	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
975	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
976	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
977	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
978	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
979	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
980	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
981	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
982};
983static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
984	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
985	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
986	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
987	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
988	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
989	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
990	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
991	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
992	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
993	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
994	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
995	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
996};
997static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
998	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
999	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
1000	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
1001	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
1002	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
1003	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
1004	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
1005	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
1006	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
1007	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
1008	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
1009	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
1010};
1011
1012static void
1013_setifsparams(struct wmeParams *wmep, const paramType *phy)
1014{
1015	wmep->wmep_aifsn = phy->aifsn;
1016	wmep->wmep_logcwmin = phy->logcwmin;
1017	wmep->wmep_logcwmax = phy->logcwmax;
1018	wmep->wmep_txopLimit = phy->txopLimit;
1019}
1020
1021static void
1022setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1023	struct wmeParams *wmep, const paramType *phy)
1024{
1025	wmep->wmep_acm = phy->acm;
1026	_setifsparams(wmep, phy);
1027
1028	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1029	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1030	    ieee80211_wme_acnames[ac], type,
1031	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1032	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1033}
1034
1035static void
1036ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1037{
1038	struct ieee80211com *ic = vap->iv_ic;
1039	struct ieee80211_wme_state *wme = &ic->ic_wme;
1040	const paramType *pPhyParam, *pBssPhyParam;
1041	struct wmeParams *wmep;
1042	enum ieee80211_phymode mode;
1043	int i;
1044
1045	IEEE80211_LOCK_ASSERT(ic);
1046
1047	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1048		return;
1049
1050	/*
1051	 * Clear the wme cap_info field so a qoscount from a previous
1052	 * vap doesn't confuse later code which only parses the beacon
1053	 * field and updates hardware when said field changes.
1054	 * Otherwise the hardware is programmed with defaults, not what
1055	 * the beacon actually announces.
1056	 */
1057	wme->wme_wmeChanParams.cap_info = 0;
1058
1059	/*
1060	 * Select mode; we can be called early in which case we
1061	 * always use auto mode.  We know we'll be called when
1062	 * entering the RUN state with bsschan setup properly
1063	 * so state will eventually get set correctly
1064	 */
1065	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1066		mode = ieee80211_chan2mode(ic->ic_bsschan);
1067	else
1068		mode = IEEE80211_MODE_AUTO;
1069	for (i = 0; i < WME_NUM_AC; i++) {
1070		switch (i) {
1071		case WME_AC_BK:
1072			pPhyParam = &phyParamForAC_BK[mode];
1073			pBssPhyParam = &phyParamForAC_BK[mode];
1074			break;
1075		case WME_AC_VI:
1076			pPhyParam = &phyParamForAC_VI[mode];
1077			pBssPhyParam = &bssPhyParamForAC_VI[mode];
1078			break;
1079		case WME_AC_VO:
1080			pPhyParam = &phyParamForAC_VO[mode];
1081			pBssPhyParam = &bssPhyParamForAC_VO[mode];
1082			break;
1083		case WME_AC_BE:
1084		default:
1085			pPhyParam = &phyParamForAC_BE[mode];
1086			pBssPhyParam = &bssPhyParamForAC_BE[mode];
1087			break;
1088		}
1089		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1090		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1091			setwmeparams(vap, "chan", i, wmep, pPhyParam);
1092		} else {
1093			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1094		}
1095		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1096		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1097	}
1098	/* NB: check ic_bss to avoid NULL deref on initial attach */
1099	if (vap->iv_bss != NULL) {
1100		/*
1101		 * Calculate aggressive mode switching threshold based
1102		 * on beacon interval.  This doesn't need locking since
1103		 * we're only called before entering the RUN state at
1104		 * which point we start sending beacon frames.
1105		 */
1106		wme->wme_hipri_switch_thresh =
1107			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1108		wme->wme_flags &= ~WME_F_AGGRMODE;
1109		ieee80211_wme_updateparams(vap);
1110	}
1111}
1112
1113void
1114ieee80211_wme_initparams(struct ieee80211vap *vap)
1115{
1116	struct ieee80211com *ic = vap->iv_ic;
1117
1118	IEEE80211_LOCK(ic);
1119	ieee80211_wme_initparams_locked(vap);
1120	IEEE80211_UNLOCK(ic);
1121}
1122
1123/*
1124 * Update WME parameters for ourself and the BSS.
1125 */
1126void
1127ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1128{
1129	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1130	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
1131	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
1132	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
1133	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
1134	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
1135	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
1136	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
1137	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
1138	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
1139	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
1140	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1141	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1142	    [IEEE80211_MODE_VHT_2GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1143	    [IEEE80211_MODE_VHT_5GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1144	};
1145	struct ieee80211com *ic = vap->iv_ic;
1146	struct ieee80211_wme_state *wme = &ic->ic_wme;
1147	const struct wmeParams *wmep;
1148	struct wmeParams *chanp, *bssp;
1149	enum ieee80211_phymode mode;
1150	int i;
1151	int do_aggrmode = 0;
1152
1153       	/*
1154	 * Set up the channel access parameters for the physical
1155	 * device.  First populate the configured settings.
1156	 */
1157	for (i = 0; i < WME_NUM_AC; i++) {
1158		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1159		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1160		chanp->wmep_aifsn = wmep->wmep_aifsn;
1161		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1162		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1163		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1164
1165		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1166		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1167		chanp->wmep_aifsn = wmep->wmep_aifsn;
1168		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1169		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1170		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1171	}
1172
1173	/*
1174	 * Select mode; we can be called early in which case we
1175	 * always use auto mode.  We know we'll be called when
1176	 * entering the RUN state with bsschan setup properly
1177	 * so state will eventually get set correctly
1178	 */
1179	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1180		mode = ieee80211_chan2mode(ic->ic_bsschan);
1181	else
1182		mode = IEEE80211_MODE_AUTO;
1183
1184	/*
1185	 * This implements aggressive mode as found in certain
1186	 * vendors' AP's.  When there is significant high
1187	 * priority (VI/VO) traffic in the BSS throttle back BE
1188	 * traffic by using conservative parameters.  Otherwise
1189	 * BE uses aggressive params to optimize performance of
1190	 * legacy/non-QoS traffic.
1191	 */
1192
1193	/* Hostap? Only if aggressive mode is enabled */
1194        if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1195	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1196		do_aggrmode = 1;
1197
1198	/*
1199	 * Station? Only if we're in a non-QoS BSS.
1200	 */
1201	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1202	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1203		do_aggrmode = 1;
1204
1205	/*
1206	 * IBSS? Only if we we have WME enabled.
1207	 */
1208	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1209	    (vap->iv_flags & IEEE80211_F_WME))
1210		do_aggrmode = 1;
1211
1212	/*
1213	 * If WME is disabled on this VAP, default to aggressive mode
1214	 * regardless of the configuration.
1215	 */
1216	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1217		do_aggrmode = 1;
1218
1219	/* XXX WDS? */
1220
1221	/* XXX MBSS? */
1222
1223	if (do_aggrmode) {
1224		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1225		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1226
1227		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1228		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1229		    aggrParam[mode].logcwmin;
1230		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1231		    aggrParam[mode].logcwmax;
1232		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1233		    (vap->iv_flags & IEEE80211_F_BURST) ?
1234			aggrParam[mode].txopLimit : 0;
1235		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1236		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1237		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1238		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1239		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1240	}
1241
1242
1243	/*
1244	 * Change the contention window based on the number of associated
1245	 * stations.  If the number of associated stations is 1 and
1246	 * aggressive mode is enabled, lower the contention window even
1247	 * further.
1248	 */
1249	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1250	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1251		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1252		    [IEEE80211_MODE_AUTO]	= 3,
1253		    [IEEE80211_MODE_11A]	= 3,
1254		    [IEEE80211_MODE_11B]	= 4,
1255		    [IEEE80211_MODE_11G]	= 3,
1256		    [IEEE80211_MODE_FH]		= 4,
1257		    [IEEE80211_MODE_TURBO_A]	= 3,
1258		    [IEEE80211_MODE_TURBO_G]	= 3,
1259		    [IEEE80211_MODE_STURBO_A]	= 3,
1260		    [IEEE80211_MODE_HALF]	= 3,
1261		    [IEEE80211_MODE_QUARTER]	= 3,
1262		    [IEEE80211_MODE_11NA]	= 3,
1263		    [IEEE80211_MODE_11NG]	= 3,
1264		    [IEEE80211_MODE_VHT_2GHZ]	= 3,
1265		    [IEEE80211_MODE_VHT_5GHZ]	= 3,
1266		};
1267		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1268		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1269
1270		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1271		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1272		    "update %s (chan+bss) logcwmin %u\n",
1273		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1274	}
1275
1276	/*
1277	 * Arrange for the beacon update.
1278	 *
1279	 * XXX what about MBSS, WDS?
1280	 */
1281	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1282	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1283		/*
1284		 * Arrange for a beacon update and bump the parameter
1285		 * set number so associated stations load the new values.
1286		 */
1287		wme->wme_bssChanParams.cap_info =
1288			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1289		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1290	}
1291
1292	/* schedule the deferred WME update */
1293	ieee80211_runtask(ic, &vap->iv_wme_task);
1294
1295	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1296	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1297	    vap->iv_opmode == IEEE80211_M_STA ?
1298		wme->wme_wmeChanParams.cap_info :
1299		wme->wme_bssChanParams.cap_info);
1300}
1301
1302void
1303ieee80211_wme_updateparams(struct ieee80211vap *vap)
1304{
1305	struct ieee80211com *ic = vap->iv_ic;
1306
1307	if (ic->ic_caps & IEEE80211_C_WME) {
1308		IEEE80211_LOCK(ic);
1309		ieee80211_wme_updateparams_locked(vap);
1310		IEEE80211_UNLOCK(ic);
1311	}
1312}
1313
1314/*
1315 * Fetch the WME parameters for the given VAP.
1316 *
1317 * When net80211 grows p2p, etc support, this may return different
1318 * parameters for each VAP.
1319 */
1320void
1321ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
1322{
1323
1324	memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
1325}
1326
1327/*
1328 * For NICs which only support one set of WME paramaters (ie, softmac NICs)
1329 * there may be different VAP WME parameters but only one is "active".
1330 * This returns the "NIC" WME parameters for the currently active
1331 * context.
1332 */
1333void
1334ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
1335{
1336
1337	memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
1338}
1339
1340/*
1341 * Return whether to use QoS on a given WME queue.
1342 *
1343 * This is intended to be called from the transmit path of softmac drivers
1344 * which are setting NoAck bits in transmit descriptors.
1345 *
1346 * Ideally this would be set in some transmit field before the packet is
1347 * queued to the driver but net80211 isn't quite there yet.
1348 */
1349int
1350ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
1351{
1352	/* Bounds/sanity check */
1353	if (ac < 0 || ac >= WME_NUM_AC)
1354		return (0);
1355
1356	/* Again, there's only one global context for now */
1357	return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
1358}
1359
1360static void
1361parent_updown(void *arg, int npending)
1362{
1363	struct ieee80211com *ic = arg;
1364
1365	ic->ic_parent(ic);
1366}
1367
1368static void
1369update_mcast(void *arg, int npending)
1370{
1371	struct ieee80211com *ic = arg;
1372
1373	ic->ic_update_mcast(ic);
1374}
1375
1376static void
1377update_promisc(void *arg, int npending)
1378{
1379	struct ieee80211com *ic = arg;
1380
1381	ic->ic_update_promisc(ic);
1382}
1383
1384static void
1385update_channel(void *arg, int npending)
1386{
1387	struct ieee80211com *ic = arg;
1388
1389	ic->ic_set_channel(ic);
1390	ieee80211_radiotap_chan_change(ic);
1391}
1392
1393static void
1394update_chw(void *arg, int npending)
1395{
1396	struct ieee80211com *ic = arg;
1397
1398	/*
1399	 * XXX should we defer the channel width _config_ update until now?
1400	 */
1401	ic->ic_update_chw(ic);
1402}
1403
1404/*
1405 * Deferred WME update.
1406 *
1407 * In preparation for per-VAP WME configuration, call the VAP
1408 * method if the VAP requires it.  Otherwise, just call the
1409 * older global method.  There isn't a per-VAP WME configuration
1410 * just yet so for now just use the global configuration.
1411 */
1412static void
1413vap_update_wme(void *arg, int npending)
1414{
1415	struct ieee80211vap *vap = arg;
1416	struct ieee80211com *ic = vap->iv_ic;
1417
1418	if (vap->iv_wme_update != NULL)
1419		vap->iv_wme_update(vap,
1420		    ic->ic_wme.wme_chanParams.cap_wmeParams);
1421	else
1422		ic->ic_wme.wme_update(ic);
1423}
1424
1425static void
1426restart_vaps(void *arg, int npending)
1427{
1428	struct ieee80211com *ic = arg;
1429
1430	ieee80211_suspend_all(ic);
1431	ieee80211_resume_all(ic);
1432}
1433
1434/*
1435 * Block until the parent is in a known state.  This is
1436 * used after any operations that dispatch a task (e.g.
1437 * to auto-configure the parent device up/down).
1438 */
1439void
1440ieee80211_waitfor_parent(struct ieee80211com *ic)
1441{
1442	taskqueue_block(ic->ic_tq);
1443	ieee80211_draintask(ic, &ic->ic_parent_task);
1444	ieee80211_draintask(ic, &ic->ic_mcast_task);
1445	ieee80211_draintask(ic, &ic->ic_promisc_task);
1446	ieee80211_draintask(ic, &ic->ic_chan_task);
1447	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1448	ieee80211_draintask(ic, &ic->ic_chw_task);
1449	taskqueue_unblock(ic->ic_tq);
1450}
1451
1452/*
1453 * Check to see whether the current channel needs reset.
1454 *
1455 * Some devices don't handle being given an invalid channel
1456 * in their operating mode very well (eg wpi(4) will throw a
1457 * firmware exception.)
1458 *
1459 * Return 0 if we're ok, 1 if the channel needs to be reset.
1460 *
1461 * See PR kern/202502.
1462 */
1463static int
1464ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1465{
1466	struct ieee80211com *ic = vap->iv_ic;
1467
1468	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1469	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1470	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1471	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1472		return (1);
1473	return (0);
1474}
1475
1476/*
1477 * Reset the curchan to a known good state.
1478 */
1479static void
1480ieee80211_start_reset_chan(struct ieee80211vap *vap)
1481{
1482	struct ieee80211com *ic = vap->iv_ic;
1483
1484	ic->ic_curchan = &ic->ic_channels[0];
1485}
1486
1487/*
1488 * Start a vap running.  If this is the first vap to be
1489 * set running on the underlying device then we
1490 * automatically bring the device up.
1491 */
1492void
1493ieee80211_start_locked(struct ieee80211vap *vap)
1494{
1495	struct ifnet *ifp = vap->iv_ifp;
1496	struct ieee80211com *ic = vap->iv_ic;
1497
1498	IEEE80211_LOCK_ASSERT(ic);
1499
1500	IEEE80211_DPRINTF(vap,
1501		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1502		"start running, %d vaps running\n", ic->ic_nrunning);
1503
1504	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1505		/*
1506		 * Mark us running.  Note that it's ok to do this first;
1507		 * if we need to bring the parent device up we defer that
1508		 * to avoid dropping the com lock.  We expect the device
1509		 * to respond to being marked up by calling back into us
1510		 * through ieee80211_start_all at which point we'll come
1511		 * back in here and complete the work.
1512		 */
1513		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1514		/*
1515		 * We are not running; if this we are the first vap
1516		 * to be brought up auto-up the parent if necessary.
1517		 */
1518		if (ic->ic_nrunning++ == 0) {
1519
1520			/* reset the channel to a known good channel */
1521			if (ieee80211_start_check_reset_chan(vap))
1522				ieee80211_start_reset_chan(vap);
1523
1524			IEEE80211_DPRINTF(vap,
1525			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1526			    "%s: up parent %s\n", __func__, ic->ic_name);
1527			ieee80211_runtask(ic, &ic->ic_parent_task);
1528			return;
1529		}
1530	}
1531	/*
1532	 * If the parent is up and running, then kick the
1533	 * 802.11 state machine as appropriate.
1534	 */
1535	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1536		if (vap->iv_opmode == IEEE80211_M_STA) {
1537#if 0
1538			/* XXX bypasses scan too easily; disable for now */
1539			/*
1540			 * Try to be intelligent about clocking the state
1541			 * machine.  If we're currently in RUN state then
1542			 * we should be able to apply any new state/parameters
1543			 * simply by re-associating.  Otherwise we need to
1544			 * re-scan to select an appropriate ap.
1545			 */
1546			if (vap->iv_state >= IEEE80211_S_RUN)
1547				ieee80211_new_state_locked(vap,
1548				    IEEE80211_S_ASSOC, 1);
1549			else
1550#endif
1551				ieee80211_new_state_locked(vap,
1552				    IEEE80211_S_SCAN, 0);
1553		} else {
1554			/*
1555			 * For monitor+wds mode there's nothing to do but
1556			 * start running.  Otherwise if this is the first
1557			 * vap to be brought up, start a scan which may be
1558			 * preempted if the station is locked to a particular
1559			 * channel.
1560			 */
1561			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1562			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1563			    vap->iv_opmode == IEEE80211_M_WDS)
1564				ieee80211_new_state_locked(vap,
1565				    IEEE80211_S_RUN, -1);
1566			else
1567				ieee80211_new_state_locked(vap,
1568				    IEEE80211_S_SCAN, 0);
1569		}
1570	}
1571}
1572
1573/*
1574 * Start a single vap.
1575 */
1576void
1577ieee80211_init(void *arg)
1578{
1579	struct ieee80211vap *vap = arg;
1580
1581	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1582	    "%s\n", __func__);
1583
1584	IEEE80211_LOCK(vap->iv_ic);
1585	ieee80211_start_locked(vap);
1586	IEEE80211_UNLOCK(vap->iv_ic);
1587}
1588
1589/*
1590 * Start all runnable vap's on a device.
1591 */
1592void
1593ieee80211_start_all(struct ieee80211com *ic)
1594{
1595	struct ieee80211vap *vap;
1596
1597	IEEE80211_LOCK(ic);
1598	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1599		struct ifnet *ifp = vap->iv_ifp;
1600		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1601			ieee80211_start_locked(vap);
1602	}
1603	IEEE80211_UNLOCK(ic);
1604}
1605
1606/*
1607 * Stop a vap.  We force it down using the state machine
1608 * then mark it's ifnet not running.  If this is the last
1609 * vap running on the underlying device then we close it
1610 * too to insure it will be properly initialized when the
1611 * next vap is brought up.
1612 */
1613void
1614ieee80211_stop_locked(struct ieee80211vap *vap)
1615{
1616	struct ieee80211com *ic = vap->iv_ic;
1617	struct ifnet *ifp = vap->iv_ifp;
1618
1619	IEEE80211_LOCK_ASSERT(ic);
1620
1621	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1622	    "stop running, %d vaps running\n", ic->ic_nrunning);
1623
1624	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1625	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1626		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1627		if (--ic->ic_nrunning == 0) {
1628			IEEE80211_DPRINTF(vap,
1629			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1630			    "down parent %s\n", ic->ic_name);
1631			ieee80211_runtask(ic, &ic->ic_parent_task);
1632		}
1633	}
1634}
1635
1636void
1637ieee80211_stop(struct ieee80211vap *vap)
1638{
1639	struct ieee80211com *ic = vap->iv_ic;
1640
1641	IEEE80211_LOCK(ic);
1642	ieee80211_stop_locked(vap);
1643	IEEE80211_UNLOCK(ic);
1644}
1645
1646/*
1647 * Stop all vap's running on a device.
1648 */
1649void
1650ieee80211_stop_all(struct ieee80211com *ic)
1651{
1652	struct ieee80211vap *vap;
1653
1654	IEEE80211_LOCK(ic);
1655	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1656		struct ifnet *ifp = vap->iv_ifp;
1657		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1658			ieee80211_stop_locked(vap);
1659	}
1660	IEEE80211_UNLOCK(ic);
1661
1662	ieee80211_waitfor_parent(ic);
1663}
1664
1665/*
1666 * Stop all vap's running on a device and arrange
1667 * for those that were running to be resumed.
1668 */
1669void
1670ieee80211_suspend_all(struct ieee80211com *ic)
1671{
1672	struct ieee80211vap *vap;
1673
1674	IEEE80211_LOCK(ic);
1675	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1676		struct ifnet *ifp = vap->iv_ifp;
1677		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1678			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1679			ieee80211_stop_locked(vap);
1680		}
1681	}
1682	IEEE80211_UNLOCK(ic);
1683
1684	ieee80211_waitfor_parent(ic);
1685}
1686
1687/*
1688 * Start all vap's marked for resume.
1689 */
1690void
1691ieee80211_resume_all(struct ieee80211com *ic)
1692{
1693	struct ieee80211vap *vap;
1694
1695	IEEE80211_LOCK(ic);
1696	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1697		struct ifnet *ifp = vap->iv_ifp;
1698		if (!IFNET_IS_UP_RUNNING(ifp) &&
1699		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1700			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1701			ieee80211_start_locked(vap);
1702		}
1703	}
1704	IEEE80211_UNLOCK(ic);
1705}
1706
1707/*
1708 * Restart all vap's running on a device.
1709 */
1710void
1711ieee80211_restart_all(struct ieee80211com *ic)
1712{
1713	/*
1714	 * NB: do not use ieee80211_runtask here, we will
1715	 * block & drain net80211 taskqueue.
1716	 */
1717	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
1718}
1719
1720void
1721ieee80211_beacon_miss(struct ieee80211com *ic)
1722{
1723	IEEE80211_LOCK(ic);
1724	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1725		/* Process in a taskq, the handler may reenter the driver */
1726		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1727	}
1728	IEEE80211_UNLOCK(ic);
1729}
1730
1731static void
1732beacon_miss(void *arg, int npending)
1733{
1734	struct ieee80211com *ic = arg;
1735	struct ieee80211vap *vap;
1736
1737	IEEE80211_LOCK(ic);
1738	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1739		/*
1740		 * We only pass events through for sta vap's in RUN+ state;
1741		 * may be too restrictive but for now this saves all the
1742		 * handlers duplicating these checks.
1743		 */
1744		if (vap->iv_opmode == IEEE80211_M_STA &&
1745		    vap->iv_state >= IEEE80211_S_RUN &&
1746		    vap->iv_bmiss != NULL)
1747			vap->iv_bmiss(vap);
1748	}
1749	IEEE80211_UNLOCK(ic);
1750}
1751
1752static void
1753beacon_swmiss(void *arg, int npending)
1754{
1755	struct ieee80211vap *vap = arg;
1756	struct ieee80211com *ic = vap->iv_ic;
1757
1758	IEEE80211_LOCK(ic);
1759	if (vap->iv_state >= IEEE80211_S_RUN) {
1760		/* XXX Call multiple times if npending > zero? */
1761		vap->iv_bmiss(vap);
1762	}
1763	IEEE80211_UNLOCK(ic);
1764}
1765
1766/*
1767 * Software beacon miss handling.  Check if any beacons
1768 * were received in the last period.  If not post a
1769 * beacon miss; otherwise reset the counter.
1770 */
1771void
1772ieee80211_swbmiss(void *arg)
1773{
1774	struct ieee80211vap *vap = arg;
1775	struct ieee80211com *ic = vap->iv_ic;
1776
1777	IEEE80211_LOCK_ASSERT(ic);
1778
1779	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
1780	    ("wrong state %d", vap->iv_state));
1781
1782	if (ic->ic_flags & IEEE80211_F_SCAN) {
1783		/*
1784		 * If scanning just ignore and reset state.  If we get a
1785		 * bmiss after coming out of scan because we haven't had
1786		 * time to receive a beacon then we should probe the AP
1787		 * before posting a real bmiss (unless iv_bmiss_max has
1788		 * been artifiically lowered).  A cleaner solution might
1789		 * be to disable the timer on scan start/end but to handle
1790		 * case of multiple sta vap's we'd need to disable the
1791		 * timers of all affected vap's.
1792		 */
1793		vap->iv_swbmiss_count = 0;
1794	} else if (vap->iv_swbmiss_count == 0) {
1795		if (vap->iv_bmiss != NULL)
1796			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1797	} else
1798		vap->iv_swbmiss_count = 0;
1799	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1800		ieee80211_swbmiss, vap);
1801}
1802
1803/*
1804 * Start an 802.11h channel switch.  We record the parameters,
1805 * mark the operation pending, notify each vap through the
1806 * beacon update mechanism so it can update the beacon frame
1807 * contents, and then switch vap's to CSA state to block outbound
1808 * traffic.  Devices that handle CSA directly can use the state
1809 * switch to do the right thing so long as they call
1810 * ieee80211_csa_completeswitch when it's time to complete the
1811 * channel change.  Devices that depend on the net80211 layer can
1812 * use ieee80211_beacon_update to handle the countdown and the
1813 * channel switch.
1814 */
1815void
1816ieee80211_csa_startswitch(struct ieee80211com *ic,
1817	struct ieee80211_channel *c, int mode, int count)
1818{
1819	struct ieee80211vap *vap;
1820
1821	IEEE80211_LOCK_ASSERT(ic);
1822
1823	ic->ic_csa_newchan = c;
1824	ic->ic_csa_mode = mode;
1825	ic->ic_csa_count = count;
1826	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1827	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1828		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1829		    vap->iv_opmode == IEEE80211_M_IBSS ||
1830		    vap->iv_opmode == IEEE80211_M_MBSS)
1831			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1832		/* switch to CSA state to block outbound traffic */
1833		if (vap->iv_state == IEEE80211_S_RUN)
1834			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1835	}
1836	ieee80211_notify_csa(ic, c, mode, count);
1837}
1838
1839/*
1840 * Complete the channel switch by transitioning all CSA VAPs to RUN.
1841 * This is called by both the completion and cancellation functions
1842 * so each VAP is placed back in the RUN state and can thus transmit.
1843 */
1844static void
1845csa_completeswitch(struct ieee80211com *ic)
1846{
1847	struct ieee80211vap *vap;
1848
1849	ic->ic_csa_newchan = NULL;
1850	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1851
1852	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1853		if (vap->iv_state == IEEE80211_S_CSA)
1854			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1855}
1856
1857/*
1858 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1859 * We clear state and move all vap's in CSA state to RUN state
1860 * so they can again transmit.
1861 *
1862 * Although this may not be completely correct, update the BSS channel
1863 * for each VAP to the newly configured channel. The setcurchan sets
1864 * the current operating channel for the interface (so the radio does
1865 * switch over) but the VAP BSS isn't updated, leading to incorrectly
1866 * reported information via ioctl.
1867 */
1868void
1869ieee80211_csa_completeswitch(struct ieee80211com *ic)
1870{
1871	struct ieee80211vap *vap;
1872
1873	IEEE80211_LOCK_ASSERT(ic);
1874
1875	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1876
1877	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1878	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1879		if (vap->iv_state == IEEE80211_S_CSA)
1880			vap->iv_bss->ni_chan = ic->ic_curchan;
1881
1882	csa_completeswitch(ic);
1883}
1884
1885/*
1886 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1887 * We clear state and move all vap's in CSA state to RUN state
1888 * so they can again transmit.
1889 */
1890void
1891ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1892{
1893	IEEE80211_LOCK_ASSERT(ic);
1894
1895	csa_completeswitch(ic);
1896}
1897
1898/*
1899 * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1900 * We clear state and move all vap's in CAC state to RUN state.
1901 */
1902void
1903ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1904{
1905	struct ieee80211com *ic = vap0->iv_ic;
1906	struct ieee80211vap *vap;
1907
1908	IEEE80211_LOCK(ic);
1909	/*
1910	 * Complete CAC state change for lead vap first; then
1911	 * clock all the other vap's waiting.
1912	 */
1913	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1914	    ("wrong state %d", vap0->iv_state));
1915	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1916
1917	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1918		if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
1919			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1920	IEEE80211_UNLOCK(ic);
1921}
1922
1923/*
1924 * Force all vap's other than the specified vap to the INIT state
1925 * and mark them as waiting for a scan to complete.  These vaps
1926 * will be brought up when the scan completes and the scanning vap
1927 * reaches RUN state by wakeupwaiting.
1928 */
1929static void
1930markwaiting(struct ieee80211vap *vap0)
1931{
1932	struct ieee80211com *ic = vap0->iv_ic;
1933	struct ieee80211vap *vap;
1934
1935	IEEE80211_LOCK_ASSERT(ic);
1936
1937	/*
1938	 * A vap list entry can not disappear since we are running on the
1939	 * taskqueue and a vap destroy will queue and drain another state
1940	 * change task.
1941	 */
1942	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1943		if (vap == vap0)
1944			continue;
1945		if (vap->iv_state != IEEE80211_S_INIT) {
1946			/* NB: iv_newstate may drop the lock */
1947			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1948			IEEE80211_LOCK_ASSERT(ic);
1949			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1950		}
1951	}
1952}
1953
1954/*
1955 * Wakeup all vap's waiting for a scan to complete.  This is the
1956 * companion to markwaiting (above) and is used to coordinate
1957 * multiple vaps scanning.
1958 * This is called from the state taskqueue.
1959 */
1960static void
1961wakeupwaiting(struct ieee80211vap *vap0)
1962{
1963	struct ieee80211com *ic = vap0->iv_ic;
1964	struct ieee80211vap *vap;
1965
1966	IEEE80211_LOCK_ASSERT(ic);
1967
1968	/*
1969	 * A vap list entry can not disappear since we are running on the
1970	 * taskqueue and a vap destroy will queue and drain another state
1971	 * change task.
1972	 */
1973	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1974		if (vap == vap0)
1975			continue;
1976		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1977			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1978			/* NB: sta's cannot go INIT->RUN */
1979			/* NB: iv_newstate may drop the lock */
1980			vap->iv_newstate(vap,
1981			    vap->iv_opmode == IEEE80211_M_STA ?
1982			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1983			IEEE80211_LOCK_ASSERT(ic);
1984		}
1985	}
1986}
1987
1988/*
1989 * Handle post state change work common to all operating modes.
1990 */
1991static void
1992ieee80211_newstate_cb(void *xvap, int npending)
1993{
1994	struct ieee80211vap *vap = xvap;
1995	struct ieee80211com *ic = vap->iv_ic;
1996	enum ieee80211_state nstate, ostate;
1997	int arg, rc;
1998
1999	IEEE80211_LOCK(ic);
2000	nstate = vap->iv_nstate;
2001	arg = vap->iv_nstate_arg;
2002
2003	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
2004		/*
2005		 * We have been requested to drop back to the INIT before
2006		 * proceeding to the new state.
2007		 */
2008		/* Deny any state changes while we are here. */
2009		vap->iv_nstate = IEEE80211_S_INIT;
2010		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2011		    "%s: %s -> %s arg %d\n", __func__,
2012		    ieee80211_state_name[vap->iv_state],
2013		    ieee80211_state_name[vap->iv_nstate], arg);
2014		vap->iv_newstate(vap, vap->iv_nstate, 0);
2015		IEEE80211_LOCK_ASSERT(ic);
2016		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
2017		    IEEE80211_FEXT_STATEWAIT);
2018		/* enqueue new state transition after cancel_scan() task */
2019		ieee80211_new_state_locked(vap, nstate, arg);
2020		goto done;
2021	}
2022
2023	ostate = vap->iv_state;
2024	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
2025		/*
2026		 * SCAN was forced; e.g. on beacon miss.  Force other running
2027		 * vap's to INIT state and mark them as waiting for the scan to
2028		 * complete.  This insures they don't interfere with our
2029		 * scanning.  Since we are single threaded the vaps can not
2030		 * transition again while we are executing.
2031		 *
2032		 * XXX not always right, assumes ap follows sta
2033		 */
2034		markwaiting(vap);
2035	}
2036	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2037	    "%s: %s -> %s arg %d\n", __func__,
2038	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
2039
2040	rc = vap->iv_newstate(vap, nstate, arg);
2041	IEEE80211_LOCK_ASSERT(ic);
2042	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
2043	if (rc != 0) {
2044		/* State transition failed */
2045		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
2046		KASSERT(nstate != IEEE80211_S_INIT,
2047		    ("INIT state change failed"));
2048		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2049		    "%s: %s returned error %d\n", __func__,
2050		    ieee80211_state_name[nstate], rc);
2051		goto done;
2052	}
2053
2054	/* No actual transition, skip post processing */
2055	if (ostate == nstate)
2056		goto done;
2057
2058	if (nstate == IEEE80211_S_RUN) {
2059		/*
2060		 * OACTIVE may be set on the vap if the upper layer
2061		 * tried to transmit (e.g. IPv6 NDP) before we reach
2062		 * RUN state.  Clear it and restart xmit.
2063		 *
2064		 * Note this can also happen as a result of SLEEP->RUN
2065		 * (i.e. coming out of power save mode).
2066		 */
2067		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2068
2069		/*
2070		 * XXX TODO Kick-start a VAP queue - this should be a method!
2071		 */
2072
2073		/* bring up any vaps waiting on us */
2074		wakeupwaiting(vap);
2075	} else if (nstate == IEEE80211_S_INIT) {
2076		/*
2077		 * Flush the scan cache if we did the last scan (XXX?)
2078		 * and flush any frames on send queues from this vap.
2079		 * Note the mgt q is used only for legacy drivers and
2080		 * will go away shortly.
2081		 */
2082		ieee80211_scan_flush(vap);
2083
2084		/*
2085		 * XXX TODO: ic/vap queue flush
2086		 */
2087	}
2088done:
2089	IEEE80211_UNLOCK(ic);
2090}
2091
2092/*
2093 * Public interface for initiating a state machine change.
2094 * This routine single-threads the request and coordinates
2095 * the scheduling of multiple vaps for the purpose of selecting
2096 * an operating channel.  Specifically the following scenarios
2097 * are handled:
2098 * o only one vap can be selecting a channel so on transition to
2099 *   SCAN state if another vap is already scanning then
2100 *   mark the caller for later processing and return without
2101 *   doing anything (XXX? expectations by caller of synchronous operation)
2102 * o only one vap can be doing CAC of a channel so on transition to
2103 *   CAC state if another vap is already scanning for radar then
2104 *   mark the caller for later processing and return without
2105 *   doing anything (XXX? expectations by caller of synchronous operation)
2106 * o if another vap is already running when a request is made
2107 *   to SCAN then an operating channel has been chosen; bypass
2108 *   the scan and just join the channel
2109 *
2110 * Note that the state change call is done through the iv_newstate
2111 * method pointer so any driver routine gets invoked.  The driver
2112 * will normally call back into operating mode-specific
2113 * ieee80211_newstate routines (below) unless it needs to completely
2114 * bypass the state machine (e.g. because the firmware has it's
2115 * own idea how things should work).  Bypassing the net80211 layer
2116 * is usually a mistake and indicates lack of proper integration
2117 * with the net80211 layer.
2118 */
2119int
2120ieee80211_new_state_locked(struct ieee80211vap *vap,
2121	enum ieee80211_state nstate, int arg)
2122{
2123	struct ieee80211com *ic = vap->iv_ic;
2124	struct ieee80211vap *vp;
2125	enum ieee80211_state ostate;
2126	int nrunning, nscanning;
2127
2128	IEEE80211_LOCK_ASSERT(ic);
2129
2130	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2131		if (vap->iv_nstate == IEEE80211_S_INIT ||
2132		    ((vap->iv_state == IEEE80211_S_INIT ||
2133		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2134		    vap->iv_nstate == IEEE80211_S_SCAN &&
2135		    nstate > IEEE80211_S_SCAN)) {
2136			/*
2137			 * XXX The vap is being stopped/started,
2138			 * do not allow any other state changes
2139			 * until this is completed.
2140			 */
2141			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2142			    "%s: %s -> %s (%s) transition discarded\n",
2143			    __func__,
2144			    ieee80211_state_name[vap->iv_state],
2145			    ieee80211_state_name[nstate],
2146			    ieee80211_state_name[vap->iv_nstate]);
2147			return -1;
2148		} else if (vap->iv_state != vap->iv_nstate) {
2149#if 0
2150			/* Warn if the previous state hasn't completed. */
2151			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2152			    "%s: pending %s -> %s transition lost\n", __func__,
2153			    ieee80211_state_name[vap->iv_state],
2154			    ieee80211_state_name[vap->iv_nstate]);
2155#else
2156			/* XXX temporarily enable to identify issues */
2157			if_printf(vap->iv_ifp,
2158			    "%s: pending %s -> %s transition lost\n",
2159			    __func__, ieee80211_state_name[vap->iv_state],
2160			    ieee80211_state_name[vap->iv_nstate]);
2161#endif
2162		}
2163	}
2164
2165	nrunning = nscanning = 0;
2166	/* XXX can track this state instead of calculating */
2167	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2168		if (vp != vap) {
2169			if (vp->iv_state >= IEEE80211_S_RUN)
2170				nrunning++;
2171			/* XXX doesn't handle bg scan */
2172			/* NB: CAC+AUTH+ASSOC treated like SCAN */
2173			else if (vp->iv_state > IEEE80211_S_INIT)
2174				nscanning++;
2175		}
2176	}
2177	ostate = vap->iv_state;
2178	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2179	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
2180	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
2181	    nrunning, nscanning);
2182	switch (nstate) {
2183	case IEEE80211_S_SCAN:
2184		if (ostate == IEEE80211_S_INIT) {
2185			/*
2186			 * INIT -> SCAN happens on initial bringup.
2187			 */
2188			KASSERT(!(nscanning && nrunning),
2189			    ("%d scanning and %d running", nscanning, nrunning));
2190			if (nscanning) {
2191				/*
2192				 * Someone is scanning, defer our state
2193				 * change until the work has completed.
2194				 */
2195				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2196				    "%s: defer %s -> %s\n",
2197				    __func__, ieee80211_state_name[ostate],
2198				    ieee80211_state_name[nstate]);
2199				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2200				return 0;
2201			}
2202			if (nrunning) {
2203				/*
2204				 * Someone is operating; just join the channel
2205				 * they have chosen.
2206				 */
2207				/* XXX kill arg? */
2208				/* XXX check each opmode, adhoc? */
2209				if (vap->iv_opmode == IEEE80211_M_STA)
2210					nstate = IEEE80211_S_SCAN;
2211				else
2212					nstate = IEEE80211_S_RUN;
2213#ifdef IEEE80211_DEBUG
2214				if (nstate != IEEE80211_S_SCAN) {
2215					IEEE80211_DPRINTF(vap,
2216					    IEEE80211_MSG_STATE,
2217					    "%s: override, now %s -> %s\n",
2218					    __func__,
2219					    ieee80211_state_name[ostate],
2220					    ieee80211_state_name[nstate]);
2221				}
2222#endif
2223			}
2224		}
2225		break;
2226	case IEEE80211_S_RUN:
2227		if (vap->iv_opmode == IEEE80211_M_WDS &&
2228		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2229		    nscanning) {
2230			/*
2231			 * Legacy WDS with someone else scanning; don't
2232			 * go online until that completes as we should
2233			 * follow the other vap to the channel they choose.
2234			 */
2235			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2236			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
2237			     ieee80211_state_name[ostate],
2238			     ieee80211_state_name[nstate]);
2239			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2240			return 0;
2241		}
2242		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2243		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2244		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2245		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2246			/*
2247			 * This is a DFS channel, transition to CAC state
2248			 * instead of RUN.  This allows us to initiate
2249			 * Channel Availability Check (CAC) as specified
2250			 * by 11h/DFS.
2251			 */
2252			nstate = IEEE80211_S_CAC;
2253			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2254			     "%s: override %s -> %s (DFS)\n", __func__,
2255			     ieee80211_state_name[ostate],
2256			     ieee80211_state_name[nstate]);
2257		}
2258		break;
2259	case IEEE80211_S_INIT:
2260		/* cancel any scan in progress */
2261		ieee80211_cancel_scan(vap);
2262		if (ostate == IEEE80211_S_INIT ) {
2263			/* XXX don't believe this */
2264			/* INIT -> INIT. nothing to do */
2265			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2266		}
2267		/* fall thru... */
2268	default:
2269		break;
2270	}
2271	/* defer the state change to a thread */
2272	vap->iv_nstate = nstate;
2273	vap->iv_nstate_arg = arg;
2274	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2275	ieee80211_runtask(ic, &vap->iv_nstate_task);
2276	return EINPROGRESS;
2277}
2278
2279int
2280ieee80211_new_state(struct ieee80211vap *vap,
2281	enum ieee80211_state nstate, int arg)
2282{
2283	struct ieee80211com *ic = vap->iv_ic;
2284	int rc;
2285
2286	IEEE80211_LOCK(ic);
2287	rc = ieee80211_new_state_locked(vap, nstate, arg);
2288	IEEE80211_UNLOCK(ic);
2289	return rc;
2290}
2291