1/*	$NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $	*/
2
3/*-
4 * SPDX-License-Identifier: BSD-3-Clause
5 *
6 * Copyright (c) 2009, Sun Microsystems, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions are met:
11 * - Redistributions of source code must retain the above copyright notice,
12 *   this list of conditions and the following disclaimer.
13 * - Redistributions in binary form must reproduce the above copyright notice,
14 *   this list of conditions and the following disclaimer in the documentation
15 *   and/or other materials provided with the distribution.
16 * - Neither the name of Sun Microsystems, Inc. nor the names of its
17 *   contributors may be used to endorse or promote products derived
18 *   from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1986-1991 by Sun Microsystems Inc.
35 */
36
37#if defined(LIBC_SCCS) && !defined(lint)
38#ident	"@(#)svc_dg.c	1.17	94/04/24 SMI"
39#endif
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD$");
42
43/*
44 * svc_dg.c, Server side for connectionless RPC.
45 *
46 * Does some caching in the hopes of achieving execute-at-most-once semantics.
47 */
48
49#include "namespace.h"
50#include "reentrant.h"
51#include <sys/types.h>
52#include <sys/socket.h>
53#include <rpc/rpc.h>
54#include <rpc/svc_dg.h>
55#include <assert.h>
56#include <errno.h>
57#include <unistd.h>
58#include <stdio.h>
59#include <stdlib.h>
60#include <string.h>
61#ifdef RPC_CACHE_DEBUG
62#include <netconfig.h>
63#include <netdir.h>
64#endif
65#include <err.h>
66#include "un-namespace.h"
67
68#include "rpc_com.h"
69#include "mt_misc.h"
70
71#define	su_data(xprt)	((struct svc_dg_data *)((xprt)->xp_p2))
72#define	rpc_buffer(xprt) ((xprt)->xp_p1)
73
74#ifndef MAX
75#define	MAX(a, b)	(((a) > (b)) ? (a) : (b))
76#endif
77
78static void svc_dg_ops(SVCXPRT *);
79static enum xprt_stat svc_dg_stat(SVCXPRT *);
80static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *);
81static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *);
82static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *);
83static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *);
84static void svc_dg_destroy(SVCXPRT *);
85static bool_t svc_dg_control(SVCXPRT *, const u_int, void *);
86static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *);
87static void cache_set(SVCXPRT *, size_t);
88int svc_dg_enablecache(SVCXPRT *, u_int);
89
90/*
91 * Usage:
92 *	xprt = svc_dg_create(sock, sendsize, recvsize);
93 * Does other connectionless specific initializations.
94 * Once *xprt is initialized, it is registered.
95 * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
96 * system defaults are chosen.
97 * The routines returns NULL if a problem occurred.
98 */
99static const char svc_dg_str[] = "svc_dg_create: %s";
100static const char svc_dg_err1[] = "could not get transport information";
101static const char svc_dg_err2[] = "transport does not support data transfer";
102static const char svc_dg_err3[] = "getsockname failed";
103static const char svc_dg_err4[] = "cannot set IP_RECVDSTADDR";
104static const char __no_mem_str[] = "out of memory";
105
106SVCXPRT *
107svc_dg_create(int fd, u_int sendsize, u_int recvsize)
108{
109	SVCXPRT *xprt;
110	struct svc_dg_data *su = NULL;
111	struct __rpc_sockinfo si;
112	struct sockaddr_storage ss;
113	socklen_t slen;
114
115	if (!__rpc_fd2sockinfo(fd, &si)) {
116		warnx(svc_dg_str, svc_dg_err1);
117		return (NULL);
118	}
119	/*
120	 * Find the receive and the send size
121	 */
122	sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize);
123	recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize);
124	if ((sendsize == 0) || (recvsize == 0)) {
125		warnx(svc_dg_str, svc_dg_err2);
126		return (NULL);
127	}
128
129	xprt = svc_xprt_alloc();
130	if (xprt == NULL)
131		goto freedata;
132
133	su = mem_alloc(sizeof (*su));
134	if (su == NULL)
135		goto freedata;
136	su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4;
137	if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL)
138		goto freedata;
139	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz,
140		XDR_DECODE);
141	su->su_cache = NULL;
142	xprt->xp_fd = fd;
143	xprt->xp_p2 = su;
144	xprt->xp_verf.oa_base = su->su_verfbody;
145	svc_dg_ops(xprt);
146	xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage);
147
148	slen = sizeof ss;
149	if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) {
150		warnx(svc_dg_str, svc_dg_err3);
151		goto freedata_nowarn;
152	}
153	xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
154	xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
155	xprt->xp_ltaddr.len = slen;
156	memcpy(xprt->xp_ltaddr.buf, &ss, slen);
157
158	if (ss.ss_family == AF_INET) {
159		struct sockaddr_in *sin;
160		static const int true_value = 1;
161
162		sin = (struct sockaddr_in *)(void *)&ss;
163		if (sin->sin_addr.s_addr == INADDR_ANY) {
164		    su->su_srcaddr.buf = mem_alloc(sizeof (ss));
165		    su->su_srcaddr.maxlen = sizeof (ss);
166
167		    if (_setsockopt(fd, IPPROTO_IP, IP_RECVDSTADDR,
168				    &true_value, sizeof(true_value))) {
169			    warnx(svc_dg_str,  svc_dg_err4);
170			    goto freedata_nowarn;
171		    }
172		}
173	}
174
175	xprt_register(xprt);
176	return (xprt);
177freedata:
178	(void) warnx(svc_dg_str, __no_mem_str);
179freedata_nowarn:
180	if (xprt) {
181		if (su)
182			(void) mem_free(su, sizeof (*su));
183		svc_xprt_free(xprt);
184	}
185	return (NULL);
186}
187
188/*ARGSUSED*/
189static enum xprt_stat
190svc_dg_stat(SVCXPRT *xprt)
191{
192	return (XPRT_IDLE);
193}
194
195static int
196svc_dg_recvfrom(int fd, char *buf, int buflen,
197    struct sockaddr *raddr, socklen_t *raddrlen,
198    struct sockaddr *laddr, socklen_t *laddrlen)
199{
200	struct msghdr msg;
201	struct iovec msg_iov[1];
202	struct sockaddr_in *lin = (struct sockaddr_in *)laddr;
203	int rlen;
204	bool_t have_lin = FALSE;
205	char tmp[CMSG_LEN(sizeof(*lin))];
206	struct cmsghdr *cmsg;
207
208	memset((char *)&msg, 0, sizeof(msg));
209	msg_iov[0].iov_base = buf;
210	msg_iov[0].iov_len = buflen;
211	msg.msg_iov = msg_iov;
212	msg.msg_iovlen = 1;
213	msg.msg_namelen = *raddrlen;
214	msg.msg_name = (char *)raddr;
215	if (laddr != NULL) {
216	    msg.msg_control = (caddr_t)tmp;
217	    msg.msg_controllen = CMSG_LEN(sizeof(*lin));
218	}
219	rlen = _recvmsg(fd, &msg, 0);
220	if (rlen >= 0)
221		*raddrlen = msg.msg_namelen;
222
223	if (rlen == -1 || laddr == NULL ||
224	    msg.msg_controllen < sizeof(struct cmsghdr) ||
225	    msg.msg_flags & MSG_CTRUNC)
226		return rlen;
227
228	for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;
229	     cmsg = CMSG_NXTHDR(&msg, cmsg)) {
230		if (cmsg->cmsg_level == IPPROTO_IP &&
231		    cmsg->cmsg_type == IP_RECVDSTADDR) {
232			have_lin = TRUE;
233			memcpy(&lin->sin_addr,
234			    (struct in_addr *)CMSG_DATA(cmsg),
235			    sizeof(struct in_addr));
236			break;
237		}
238	}
239
240	lin->sin_family = AF_INET;
241	lin->sin_port = 0;
242	*laddrlen = sizeof(struct sockaddr_in);
243
244	if (!have_lin)
245		lin->sin_addr.s_addr = INADDR_ANY;
246
247	return rlen;
248}
249
250static bool_t
251svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg)
252{
253	struct svc_dg_data *su = su_data(xprt);
254	XDR *xdrs = &(su->su_xdrs);
255	char *reply;
256	struct sockaddr_storage ss;
257	socklen_t alen;
258	size_t replylen;
259	ssize_t rlen;
260
261again:
262	alen = sizeof (struct sockaddr_storage);
263	rlen = svc_dg_recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz,
264	    (struct sockaddr *)(void *)&ss, &alen,
265	    (struct sockaddr *)su->su_srcaddr.buf, &su->su_srcaddr.len);
266	if (rlen == -1 && errno == EINTR)
267		goto again;
268	if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t))))
269		return (FALSE);
270	if (xprt->xp_rtaddr.len < alen) {
271		if (xprt->xp_rtaddr.len != 0)
272			mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len);
273		xprt->xp_rtaddr.buf = mem_alloc(alen);
274		xprt->xp_rtaddr.len = alen;
275	}
276	memcpy(xprt->xp_rtaddr.buf, &ss, alen);
277#ifdef PORTMAP
278	if (ss.ss_family == AF_INET) {
279		xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf;
280		xprt->xp_addrlen = sizeof (struct sockaddr_in);
281	}
282#endif				/* PORTMAP */
283	xdrs->x_op = XDR_DECODE;
284	XDR_SETPOS(xdrs, 0);
285	if (! xdr_callmsg(xdrs, msg)) {
286		return (FALSE);
287	}
288	su->su_xid = msg->rm_xid;
289	if (su->su_cache != NULL) {
290		if (cache_get(xprt, msg, &reply, &replylen)) {
291			(void)_sendto(xprt->xp_fd, reply, replylen, 0,
292			    (struct sockaddr *)(void *)&ss, alen);
293			return (FALSE);
294		}
295	}
296	return (TRUE);
297}
298
299static int
300svc_dg_sendto(int fd, char *buf, int buflen,
301    const struct sockaddr *raddr, socklen_t raddrlen,
302    const struct sockaddr *laddr, socklen_t laddrlen)
303{
304	struct msghdr msg;
305	struct iovec msg_iov[1];
306	struct sockaddr_in *laddr_in = (struct sockaddr_in *)laddr;
307	struct in_addr *lin = &laddr_in->sin_addr;
308	char tmp[CMSG_SPACE(sizeof(*lin))];
309	struct cmsghdr *cmsg;
310
311	memset((char *)&msg, 0, sizeof(msg));
312	msg_iov[0].iov_base = buf;
313	msg_iov[0].iov_len = buflen;
314	msg.msg_iov = msg_iov;
315	msg.msg_iovlen = 1;
316	msg.msg_namelen = raddrlen;
317	msg.msg_name = (char *)raddr;
318
319	if (laddr != NULL && laddr->sa_family == AF_INET &&
320	    lin->s_addr != INADDR_ANY) {
321		msg.msg_control = (caddr_t)tmp;
322		msg.msg_controllen = CMSG_LEN(sizeof(*lin));
323		cmsg = CMSG_FIRSTHDR(&msg);
324		cmsg->cmsg_len = CMSG_LEN(sizeof(*lin));
325		cmsg->cmsg_level = IPPROTO_IP;
326		cmsg->cmsg_type = IP_SENDSRCADDR;
327		memcpy(CMSG_DATA(cmsg), lin, sizeof(*lin));
328	}
329
330	return _sendmsg(fd, &msg, 0);
331}
332
333static bool_t
334svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg)
335{
336	struct svc_dg_data *su = su_data(xprt);
337	XDR *xdrs = &(su->su_xdrs);
338	bool_t stat = TRUE;
339	size_t slen;
340	xdrproc_t xdr_proc;
341	caddr_t xdr_where;
342
343	xdrs->x_op = XDR_ENCODE;
344	XDR_SETPOS(xdrs, 0);
345	msg->rm_xid = su->su_xid;
346	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
347	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
348		xdr_proc = msg->acpted_rply.ar_results.proc;
349		xdr_where = msg->acpted_rply.ar_results.where;
350		msg->acpted_rply.ar_results.proc = (xdrproc_t) xdr_void;
351		msg->acpted_rply.ar_results.where = NULL;
352
353		if (!xdr_replymsg(xdrs, msg) ||
354		    !SVCAUTH_WRAP(&SVC_AUTH(xprt), xdrs, xdr_proc, xdr_where))
355			stat = FALSE;
356	} else {
357		stat = xdr_replymsg(xdrs, msg);
358	}
359	if (stat) {
360		slen = XDR_GETPOS(xdrs);
361		if (svc_dg_sendto(xprt->xp_fd, rpc_buffer(xprt), slen,
362		    (struct sockaddr *)xprt->xp_rtaddr.buf,
363		    (socklen_t)xprt->xp_rtaddr.len,
364		    (struct sockaddr *)su->su_srcaddr.buf,
365		    (socklen_t)su->su_srcaddr.len) == (ssize_t) slen) {
366			stat = TRUE;
367			if (su->su_cache)
368				cache_set(xprt, slen);
369		}
370	}
371	return (stat);
372}
373
374static bool_t
375svc_dg_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
376{
377	struct svc_dg_data *su;
378
379	assert(xprt != NULL);
380	su = su_data(xprt);
381	return (SVCAUTH_UNWRAP(&SVC_AUTH(xprt),
382		&su->su_xdrs, xdr_args, args_ptr));
383}
384
385static bool_t
386svc_dg_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
387{
388	XDR *xdrs = &(su_data(xprt)->su_xdrs);
389
390	xdrs->x_op = XDR_FREE;
391	return (*xdr_args)(xdrs, args_ptr);
392}
393
394static void
395svc_dg_destroy(SVCXPRT *xprt)
396{
397	struct svc_dg_data *su = su_data(xprt);
398
399	xprt_unregister(xprt);
400	if (xprt->xp_fd != -1)
401		(void)_close(xprt->xp_fd);
402	XDR_DESTROY(&(su->su_xdrs));
403	(void) mem_free(rpc_buffer(xprt), su->su_iosz);
404	if (su->su_srcaddr.buf)
405		(void) mem_free(su->su_srcaddr.buf, su->su_srcaddr.maxlen);
406	(void) mem_free(su, sizeof (*su));
407	if (xprt->xp_rtaddr.buf)
408		(void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen);
409	if (xprt->xp_ltaddr.buf)
410		(void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen);
411	free(xprt->xp_tp);
412	svc_xprt_free(xprt);
413}
414
415static bool_t
416/*ARGSUSED*/
417svc_dg_control(SVCXPRT *xprt, const u_int rq, void *in)
418{
419	return (FALSE);
420}
421
422static void
423svc_dg_ops(SVCXPRT *xprt)
424{
425	static struct xp_ops ops;
426	static struct xp_ops2 ops2;
427
428/* VARIABLES PROTECTED BY ops_lock: ops */
429
430	mutex_lock(&ops_lock);
431	if (ops.xp_recv == NULL) {
432		ops.xp_recv = svc_dg_recv;
433		ops.xp_stat = svc_dg_stat;
434		ops.xp_getargs = svc_dg_getargs;
435		ops.xp_reply = svc_dg_reply;
436		ops.xp_freeargs = svc_dg_freeargs;
437		ops.xp_destroy = svc_dg_destroy;
438		ops2.xp_control = svc_dg_control;
439	}
440	xprt->xp_ops = &ops;
441	xprt->xp_ops2 = &ops2;
442	mutex_unlock(&ops_lock);
443}
444
445/*  The CACHING COMPONENT */
446
447/*
448 * Could have been a separate file, but some part of it depends upon the
449 * private structure of the client handle.
450 *
451 * Fifo cache for cl server
452 * Copies pointers to reply buffers into fifo cache
453 * Buffers are sent again if retransmissions are detected.
454 */
455
456#define	SPARSENESS 4	/* 75% sparse */
457
458#define	ALLOC(type, size)	\
459	(type *) mem_alloc((sizeof (type) * (size)))
460
461#define	MEMZERO(addr, type, size)	 \
462	(void) memset((void *) (addr), 0, sizeof (type) * (int) (size))
463
464#define	FREE(addr, type, size)	\
465	mem_free((addr), (sizeof (type) * (size)))
466
467/*
468 * An entry in the cache
469 */
470typedef struct cache_node *cache_ptr;
471struct cache_node {
472	/*
473	 * Index into cache is xid, proc, vers, prog and address
474	 */
475	u_int32_t cache_xid;
476	rpcproc_t cache_proc;
477	rpcvers_t cache_vers;
478	rpcprog_t cache_prog;
479	struct netbuf cache_addr;
480	/*
481	 * The cached reply and length
482	 */
483	char *cache_reply;
484	size_t cache_replylen;
485	/*
486	 * Next node on the list, if there is a collision
487	 */
488	cache_ptr cache_next;
489};
490
491/*
492 * The entire cache
493 */
494struct cl_cache {
495	u_int uc_size;		/* size of cache */
496	cache_ptr *uc_entries;	/* hash table of entries in cache */
497	cache_ptr *uc_fifo;	/* fifo list of entries in cache */
498	u_int uc_nextvictim;	/* points to next victim in fifo list */
499	rpcprog_t uc_prog;	/* saved program number */
500	rpcvers_t uc_vers;	/* saved version number */
501	rpcproc_t uc_proc;	/* saved procedure number */
502};
503
504
505/*
506 * the hashing function
507 */
508#define	CACHE_LOC(transp, xid)	\
509	(xid % (SPARSENESS * ((struct cl_cache *) \
510		su_data(transp)->su_cache)->uc_size))
511
512/*
513 * Enable use of the cache. Returns 1 on success, 0 on failure.
514 * Note: there is no disable.
515 */
516static const char cache_enable_str[] = "svc_enablecache: %s %s";
517static const char alloc_err[] = "could not allocate cache ";
518static const char enable_err[] = "cache already enabled";
519
520int
521svc_dg_enablecache(SVCXPRT *transp, u_int size)
522{
523	struct svc_dg_data *su = su_data(transp);
524	struct cl_cache *uc;
525
526	mutex_lock(&dupreq_lock);
527	if (su->su_cache != NULL) {
528		(void) warnx(cache_enable_str, enable_err, " ");
529		mutex_unlock(&dupreq_lock);
530		return (0);
531	}
532	uc = ALLOC(struct cl_cache, 1);
533	if (uc == NULL) {
534		warnx(cache_enable_str, alloc_err, " ");
535		mutex_unlock(&dupreq_lock);
536		return (0);
537	}
538	uc->uc_size = size;
539	uc->uc_nextvictim = 0;
540	uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS);
541	if (uc->uc_entries == NULL) {
542		warnx(cache_enable_str, alloc_err, "data");
543		FREE(uc, struct cl_cache, 1);
544		mutex_unlock(&dupreq_lock);
545		return (0);
546	}
547	MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS);
548	uc->uc_fifo = ALLOC(cache_ptr, size);
549	if (uc->uc_fifo == NULL) {
550		warnx(cache_enable_str, alloc_err, "fifo");
551		FREE(uc->uc_entries, cache_ptr, size * SPARSENESS);
552		FREE(uc, struct cl_cache, 1);
553		mutex_unlock(&dupreq_lock);
554		return (0);
555	}
556	MEMZERO(uc->uc_fifo, cache_ptr, size);
557	su->su_cache = (char *)(void *)uc;
558	mutex_unlock(&dupreq_lock);
559	return (1);
560}
561
562/*
563 * Set an entry in the cache.  It assumes that the uc entry is set from
564 * the earlier call to cache_get() for the same procedure.  This will always
565 * happen because cache_get() is calle by svc_dg_recv and cache_set() is called
566 * by svc_dg_reply().  All this hoopla because the right RPC parameters are
567 * not available at svc_dg_reply time.
568 */
569
570static const char cache_set_str[] = "cache_set: %s";
571static const char cache_set_err1[] = "victim not found";
572static const char cache_set_err2[] = "victim alloc failed";
573static const char cache_set_err3[] = "could not allocate new rpc buffer";
574
575static void
576cache_set(SVCXPRT *xprt, size_t replylen)
577{
578	cache_ptr victim;
579	cache_ptr *vicp;
580	struct svc_dg_data *su = su_data(xprt);
581	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
582	u_int loc;
583	char *newbuf;
584#ifdef RPC_CACHE_DEBUG
585	struct netconfig *nconf;
586	char *uaddr;
587#endif
588
589	mutex_lock(&dupreq_lock);
590	/*
591	 * Find space for the new entry, either by
592	 * reusing an old entry, or by mallocing a new one
593	 */
594	victim = uc->uc_fifo[uc->uc_nextvictim];
595	if (victim != NULL) {
596		loc = CACHE_LOC(xprt, victim->cache_xid);
597		for (vicp = &uc->uc_entries[loc];
598			*vicp != NULL && *vicp != victim;
599			vicp = &(*vicp)->cache_next)
600			;
601		if (*vicp == NULL) {
602			warnx(cache_set_str, cache_set_err1);
603			mutex_unlock(&dupreq_lock);
604			return;
605		}
606		*vicp = victim->cache_next;	/* remove from cache */
607		newbuf = victim->cache_reply;
608	} else {
609		victim = ALLOC(struct cache_node, 1);
610		if (victim == NULL) {
611			warnx(cache_set_str, cache_set_err2);
612			mutex_unlock(&dupreq_lock);
613			return;
614		}
615		newbuf = mem_alloc(su->su_iosz);
616		if (newbuf == NULL) {
617			warnx(cache_set_str, cache_set_err3);
618			FREE(victim, struct cache_node, 1);
619			mutex_unlock(&dupreq_lock);
620			return;
621		}
622	}
623
624	/*
625	 * Store it away
626	 */
627#ifdef RPC_CACHE_DEBUG
628	if (nconf = getnetconfigent(xprt->xp_netid)) {
629		uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
630		freenetconfigent(nconf);
631		printf(
632	"cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
633			su->su_xid, uc->uc_prog, uc->uc_vers,
634			uc->uc_proc, uaddr);
635		free(uaddr);
636	}
637#endif
638	victim->cache_replylen = replylen;
639	victim->cache_reply = rpc_buffer(xprt);
640	rpc_buffer(xprt) = newbuf;
641	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt),
642			su->su_iosz, XDR_ENCODE);
643	victim->cache_xid = su->su_xid;
644	victim->cache_proc = uc->uc_proc;
645	victim->cache_vers = uc->uc_vers;
646	victim->cache_prog = uc->uc_prog;
647	victim->cache_addr = xprt->xp_rtaddr;
648	victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len);
649	(void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf,
650	    (size_t)xprt->xp_rtaddr.len);
651	loc = CACHE_LOC(xprt, victim->cache_xid);
652	victim->cache_next = uc->uc_entries[loc];
653	uc->uc_entries[loc] = victim;
654	uc->uc_fifo[uc->uc_nextvictim++] = victim;
655	uc->uc_nextvictim %= uc->uc_size;
656	mutex_unlock(&dupreq_lock);
657}
658
659/*
660 * Try to get an entry from the cache
661 * return 1 if found, 0 if not found and set the stage for cache_set()
662 */
663static int
664cache_get(SVCXPRT *xprt, struct rpc_msg *msg, char **replyp, size_t *replylenp)
665{
666	u_int loc;
667	cache_ptr ent;
668	struct svc_dg_data *su = su_data(xprt);
669	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
670#ifdef RPC_CACHE_DEBUG
671	struct netconfig *nconf;
672	char *uaddr;
673#endif
674
675	mutex_lock(&dupreq_lock);
676	loc = CACHE_LOC(xprt, su->su_xid);
677	for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
678		if (ent->cache_xid == su->su_xid &&
679			ent->cache_proc == msg->rm_call.cb_proc &&
680			ent->cache_vers == msg->rm_call.cb_vers &&
681			ent->cache_prog == msg->rm_call.cb_prog &&
682			ent->cache_addr.len == xprt->xp_rtaddr.len &&
683			(memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf,
684				xprt->xp_rtaddr.len) == 0)) {
685#ifdef RPC_CACHE_DEBUG
686			if (nconf = getnetconfigent(xprt->xp_netid)) {
687				uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
688				freenetconfigent(nconf);
689				printf(
690	"cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
691					su->su_xid, msg->rm_call.cb_prog,
692					msg->rm_call.cb_vers,
693					msg->rm_call.cb_proc, uaddr);
694				free(uaddr);
695			}
696#endif
697			*replyp = ent->cache_reply;
698			*replylenp = ent->cache_replylen;
699			mutex_unlock(&dupreq_lock);
700			return (1);
701		}
702	}
703	/*
704	 * Failed to find entry
705	 * Remember a few things so we can do a set later
706	 */
707	uc->uc_proc = msg->rm_call.cb_proc;
708	uc->uc_vers = msg->rm_call.cb_vers;
709	uc->uc_prog = msg->rm_call.cb_prog;
710	mutex_unlock(&dupreq_lock);
711	return (0);
712}
713