Copyright (c) 1989, 1995, 1996, 1997, 1999, 2000
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation,
advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed
by the University of California, Berkeley. The name of the
University may not be used to endorse or promote products derived
from this software without specific prior written permission.

$Id: traceroute.8,v 1.19 2000/09/21 08:44:19 leres Exp $

.Dd June 20, 2019 .Dt TRACEROUTE 8 .Os .Sh NAME .Nm traceroute .Nd "print the route packets take to network host" .Sh SYNOPSIS .Nm k -words .Op Fl adDeFISnrvx .Op Fl f Ar first_ttl .Op Fl g Ar gateway .Op Fl M Ar first_ttl .Op Fl m Ar max_ttl .Op Fl P Ar proto .Op Fl p Ar port .Op Fl q Ar nprobes .Op Fl s Ar src_addr .Op Fl t Ar tos .Op Fl w Ar waittime .Op Fl A Ar as_server .Op Fl z Ar pausemsecs .Ar host .Op Ar packetlen .Ek .Sh DESCRIPTION The Internet is a large and complex aggregation of network hardware, connected together by gateways. Tracking the route one's packets follow (or finding the miscreant gateway that's discarding your packets) can be difficult. .Nm utilizes the IP protocol `time to live' field and attempts to elicit an ICMP TIME_EXCEEDED response from each gateway along the path to some host.

p The only mandatory parameter is the destination host name or IP number. The default probe datagram length is 40 bytes, but this may be increased by specifying a packet length (in bytes) after the destination host name.

p Other options are: l -tag -width Ds t Fl a Turn on AS# lookups for each hop encountered. t Fl A Ar as_server Turn on AS# lookups and use the given server instead of the default. t Fl e Firewall evasion mode. Use fixed destination ports for UDP, UDP-Lite, TCP and SCTP probes. The destination port does NOT increment with each packet sent. t Fl f Ar first_ttl Set the initial time-to-live used in the first outgoing probe packet. t Fl F Set the "don't fragment" bit. t Fl d Enable socket level debugging. t Fl D When an ICMP response to our probe datagram is received, print the differences between the transmitted packet and the packet quoted by the ICMP response. A key showing the location of fields within the transmitted packet is printed, followed by the original packet in hex, followed by the quoted packet in hex. Bytes that are unchanged in the quoted packet are shown as underscores. Note, the IP checksum and the TTL of the quoted packet are not expected to match. By default, only one probe per hop is sent with this option. t Fl g Ar gateway Specify a loose source route gateway (8 maximum). t Fl i Ar iface Specify a network interface to obtain the source IP address for outgoing probe packets. This is normally only useful on a multi-homed host. (See the .Fl s flag for another way to do this.) t Fl I Use ICMP ECHO instead of UDP datagrams. (A synonym for "-P icmp"). t Fl M Ar first_ttl Set the initial time-to-live value used in outgoing probe packets. The default is 1, i.e., start with the first hop. t Fl m Ar max_ttl Set the max time-to-live (max number of hops) used in outgoing probe packets. The default is the value of the .Va net.inet.ip.ttl .Xr sysctl 8 (the same default used for TCP connections). t Fl n Print hop addresses numerically rather than symbolically and numerically (saves a nameserver address-to-name lookup for each gateway found on the path). t Fl P Ar proto Send packets of specified IP protocol. The currently supported protocols are: UDP, UDP-Lite, TCP, SCTP, GRE and ICMP. Other protocols may also be specified (either by name or by number), though .Nm does not implement any special knowledge of their packet formats. This option is useful for determining which router along a path may be blocking packets based on IP protocol number. But see BUGS below. t Fl p Ar port Protocol specific. For UDP, UDP-Lite, TCP and SCTP, sets the base .Ar port number used in probes (default is 33434). Traceroute hopes that nothing is listening on UDP ports (or UDP-Lite ports if used by .Nm and supported by the peer) .Em port + 1 to .Em port + (max_ttl - first_ttl + 1) * nprobes at the destination host (so an ICMP PORT_UNREACHABLE message will be returned to terminate the route tracing). If something is listening on a port in the default range, this option can be used to pick an unused port range. t Fl q Ar nprobes Set the number of probes per hop (default is 3, unless .Fl D is specified, when it is 1). t Fl r Bypass the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has no route through it (e.g., after the interface was dropped by .Xr routed 8 . t Fl s Ar src_addr Use the following IP address (which usually is given as an IP number, not a hostname) as the source address in outgoing probe packets. On multi-homed hosts (those with more than one IP address), this option can be used to force the source address to be something other than the IP address of the interface the probe packet is sent on. If the IP address is not one of this machine's interface addresses, an error is returned and nothing is sent. (See the .Fl i flag for another way to do this.) t Fl S Print a summary of how many probes were not answered for each hop. t Fl t Ar tos Set the .Em type-of-service in probe packets to the following value (default zero). The value must be a decimal integer in the range 0 to 255. This option can be used to see if different types-of-service result in different paths. (If you are not running 4.4bsd, this may be academic since the normal network services like telnet and ftp don't let you control the TOS). Not all values of TOS are legal or meaningful - see the IP spec for definitions. Useful values are probably .Fl t Ar 16 (low delay) and .Fl t Ar 8 (high throughput). t Fl v Verbose output. Received ICMP packets other than .Dv TIME_EXCEEDED and .Dv UNREACHABLE Ns s are listed. t Fl w Ar waittime Set the time (in seconds) to wait for a response to a probe (default 5 sec.). t Fl x Toggle ip checksums. Normally, this prevents traceroute from calculating ip checksums. In some cases, the operating system can overwrite parts of the outgoing packet but not recalculate the checksum (so in some cases the default is to not calculate checksums and using .Fl x causes them to be calculated). Note that checksums are usually required for the last hop when using ICMP ECHO probes

q Fl I . So they are always calculated when using ICMP. t Fl z Ar pausemsecs Set the time (in milliseconds) to pause between probes (default 0). Some systems such as Solaris and routers such as Ciscos rate limit icmp messages. A good value to use with this this is 500 (e.g. 1/2 second). .El

p This program attempts to trace the route an IP packet would follow to some internet host by launching UDP probe packets with a small ttl (time to live) then listening for an ICMP "time exceeded" reply from a gateway. We start our probes with a ttl of one and increase by one until we get an ICMP "port unreachable" (which means we got to "host") or hit a max (which defaults to the amount of hops specified by the .Va net.inet.ip.ttl .Xr sysctl 8 and can be changed with the .Fl m flag). Three probes (change with .Fl q flag) are sent at each ttl setting and a line is printed showing the ttl, address of the gateway and round trip time of each probe. If the probe answers come from different gateways, the address of each responding system will be printed. If there is no response within a 5 sec. timeout interval (changed with the .Fl w flag), a "*" is printed for that probe.

p We don't want the destination host to process the UDP probe packets so the destination port is set to an unlikely value (if some clod on the destination is using that value, it can be changed with the .Fl p flag).

p A sample use and output might be: d -literal -offset 4n % traceroute traceroute to (, 64 hops max, 38 byte packet 1 ( 19 ms 19 ms 0 ms 2 lilac-dmc.Berkeley.EDU ( 39 ms 39 ms 19 ms 3 lilac-dmc.Berkeley.EDU ( 39 ms 39 ms 19 ms 4 ccngw-ner-cc.Berkeley.EDU ( 39 ms 40 ms 39 ms 5 ccn-nerif22.Berkeley.EDU ( 39 ms 39 ms 39 ms 6 ( 40 ms 59 ms 59 ms 7 ( 59 ms 59 ms 59 ms 8 ( 99 ms 99 ms 80 ms 9 ( 139 ms 239 ms 319 ms 10 ( 220 ms 199 ms 199 ms 11 ( 239 ms 239 ms 239 ms .Ed

p Note that lines 2 & 3 are the same. This is due to a buggy kernel on the 2nd hop system - lilac-dmc.Berkeley.EDU - that forwards packets with a zero ttl (a bug in the distributed version of 4.3BSD). Note that you have to guess what path the packets are taking cross-country since the NSFNet (129.140) doesn't supply address-to-name translations for its NSSes.

p A more interesting example is: d -literal -offset 4n % traceroute traceroute to (, 64 hops max 1 ( 0 ms 0 ms 0 ms 2 lilac-dmc.Berkeley.EDU ( 19 ms 19 ms 19 ms 3 lilac-dmc.Berkeley.EDU ( 39 ms 19 ms 19 ms 4 ccngw-ner-cc.Berkeley.EDU ( 19 ms 39 ms 39 ms 5 ccn-nerif22.Berkeley.EDU ( 20 ms 39 ms 39 ms 6 ( 59 ms 119 ms 39 ms 7 ( 59 ms 59 ms 39 ms 8 ( 80 ms 79 ms 99 ms 9 ( 139 ms 139 ms 159 ms 10 ( 199 ms 180 ms 300 ms 11 ( 300 ms 239 ms 239 ms 12 * * * 13 ( 259 ms 499 ms 279 ms 14 * * * 15 * * * 16 * * * 17 * * * 18 ALLSPICE.LCS.MIT.EDU ( 339 ms 279 ms 279 ms .Ed

p Note that the gateways 12, 14, 15, 16 & 17 hops away either don't send ICMP "time exceeded" messages or send them with a ttl too small to reach us. 14 - 17 are running the MIT C Gateway code that doesn't send "time exceeded"s. God only knows what's going on with 12.

p The silent gateway 12 in the above may be the result of a bug in the 4.[23]BSD network code (and its derivatives): 4.x (x <= 3) sends an unreachable message using whatever ttl remains in the original datagram. Since, for gateways, the remaining ttl is zero, the ICMP "time exceeded" is guaranteed to not make it back to us. The behavior of this bug is slightly more interesting when it appears on the destination system: d -literal -offset 4n 1 ( 0 ms 0 ms 0 ms 2 lilac-dmc.Berkeley.EDU ( 39 ms 19 ms 39 ms 3 lilac-dmc.Berkeley.EDU ( 19 ms 39 ms 19 ms 4 ccngw-ner-cc.Berkeley.EDU ( 39 ms 40 ms 19 ms 5 ccn-nerif35.Berkeley.EDU ( 39 ms 39 ms 39 ms 6 csgw.Berkeley.EDU ( 39 ms 59 ms 39 ms 7 * * * 8 * * * 9 * * * 10 * * * 11 * * * 12 * * * 13 rip.Berkeley.EDU ( 59 ms ! 39 ms ! 39 ms ! .Ed

p Notice that there are 12 "gateways" (13 is the final destination) and exactly the last half of them are "missing". What's really happening is that rip (a Sun-3 running Sun OS3.5) is using the ttl from our arriving datagram as the ttl in its ICMP reply. So, the reply will time out on the return path (with no notice sent to anyone since ICMP's aren't sent for ICMP's) until we probe with a ttl that's at least twice the path length. I.e., rip