xref: /illumos-gate/usr/src/cmd/mdb/common/modules/zfs/zfs.c (revision 9a8c5287)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2020 Joyent, Inc.
26  * Copyright 2024 Oxide Computer Company
27  */
28 
29 /* Portions Copyright 2010 Robert Milkowski */
30 
31 /*
32  * ZFS_MDB lets dmu.h know that we don't have dmu_ot, and we will define our
33  * own macros to access the target's dmu_ot.  Therefore it must be defined
34  * before including any ZFS headers.  Note that we don't define
35  * DMU_OT_IS_ENCRYPTED_IMPL() or DMU_OT_BYTESWAP_IMPL(), therefore using them
36  * will result in a compilation error.  If they are needed in the future, we
37  * can implement them similarly to mdb_dmu_ot_is_encrypted_impl().
38  */
39 #define	ZFS_MDB
40 #define	DMU_OT_IS_ENCRYPTED_IMPL(ot) mdb_dmu_ot_is_encrypted_impl(ot)
41 
42 #include <mdb/mdb_ctf.h>
43 #include <sys/zfs_context.h>
44 #include <sys/mdb_modapi.h>
45 #include <sys/dbuf.h>
46 #include <sys/dmu_objset.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/list.h>
52 #include <sys/vdev_impl.h>
53 #include <sys/zap_leaf.h>
54 #include <sys/zap_impl.h>
55 #include <ctype.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/sa_impl.h>
58 #include <sys/multilist.h>
59 #include <sys/btree.h>
60 
61 #ifdef _KERNEL
62 #define	ZFS_OBJ_NAME	"zfs"
63 extern int64_t mdb_gethrtime(void);
64 #else
65 #define	ZFS_OBJ_NAME	"libzpool.so.1"
66 #endif
67 
68 #define	ZFS_STRUCT	"struct " ZFS_OBJ_NAME "`"
69 
70 #ifndef _KERNEL
71 int aok;
72 #endif
73 
74 enum spa_flags {
75 	SPA_FLAG_CONFIG			= 1 << 0,
76 	SPA_FLAG_VDEVS			= 1 << 1,
77 	SPA_FLAG_ERRORS			= 1 << 2,
78 	SPA_FLAG_METASLAB_GROUPS	= 1 << 3,
79 	SPA_FLAG_METASLABS		= 1 << 4,
80 	SPA_FLAG_HISTOGRAMS		= 1 << 5
81 };
82 
83 /*
84  * If any of these flags are set, call spa_vdevs in spa_print
85  */
86 #define	SPA_FLAG_ALL_VDEV	\
87 	(SPA_FLAG_VDEVS | SPA_FLAG_ERRORS | SPA_FLAG_METASLAB_GROUPS | \
88 	SPA_FLAG_METASLABS)
89 
90 static int
getmember(uintptr_t addr,const char * type,mdb_ctf_id_t * idp,const char * member,int len,void * buf)91 getmember(uintptr_t addr, const char *type, mdb_ctf_id_t *idp,
92     const char *member, int len, void *buf)
93 {
94 	mdb_ctf_id_t id;
95 	ulong_t off;
96 	char name[64];
97 
98 	if (idp == NULL) {
99 		if (mdb_ctf_lookup_by_name(type, &id) == -1) {
100 			mdb_warn("couldn't find type %s", type);
101 			return (DCMD_ERR);
102 		}
103 		idp = &id;
104 	} else {
105 		type = name;
106 		mdb_ctf_type_name(*idp, name, sizeof (name));
107 	}
108 
109 	if (mdb_ctf_offsetof(*idp, member, &off) == -1) {
110 		mdb_warn("couldn't find member %s of type %s\n", member, type);
111 		return (DCMD_ERR);
112 	}
113 	if (off % 8 != 0) {
114 		mdb_warn("member %s of type %s is unsupported bitfield",
115 		    member, type);
116 		return (DCMD_ERR);
117 	}
118 	off /= 8;
119 
120 	if (mdb_vread(buf, len, addr + off) == -1) {
121 		mdb_warn("failed to read %s from %s at %p",
122 		    member, type, addr + off);
123 		return (DCMD_ERR);
124 	}
125 	/* mdb_warn("read %s from %s at %p+%llx\n", member, type, addr, off); */
126 
127 	return (0);
128 }
129 
130 #define	GETMEMB(addr, structname, member, dest) \
131 	getmember(addr, ZFS_STRUCT structname, NULL, #member, \
132 	sizeof (dest), &(dest))
133 
134 #define	GETMEMBID(addr, ctfid, member, dest) \
135 	getmember(addr, NULL, ctfid, #member, sizeof (dest), &(dest))
136 
137 static boolean_t
strisprint(const char * cp)138 strisprint(const char *cp)
139 {
140 	for (; *cp; cp++) {
141 		if (!isprint(*cp))
142 			return (B_FALSE);
143 	}
144 	return (B_TRUE);
145 }
146 
147 /*
148  * <addr>::sm_entries <buffer length in bytes>
149  *
150  * Treat the buffer specified by the given address as a buffer that contains
151  * space map entries. Iterate over the specified number of entries and print
152  * them in both encoded and decoded form.
153  */
154 /* ARGSUSED */
155 static int
sm_entries(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)156 sm_entries(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
157 {
158 	uint64_t bufsz = 0;
159 	boolean_t preview = B_FALSE;
160 
161 	if (!(flags & DCMD_ADDRSPEC))
162 		return (DCMD_USAGE);
163 
164 	if (argc < 1) {
165 		preview = B_TRUE;
166 		bufsz = 2;
167 	} else if (argc != 1) {
168 		return (DCMD_USAGE);
169 	} else {
170 		switch (argv[0].a_type) {
171 		case MDB_TYPE_STRING:
172 			bufsz = mdb_strtoull(argv[0].a_un.a_str);
173 			break;
174 		case MDB_TYPE_IMMEDIATE:
175 			bufsz = argv[0].a_un.a_val;
176 			break;
177 		default:
178 			return (DCMD_USAGE);
179 		}
180 	}
181 
182 	char *actions[] = { "ALLOC", "FREE", "INVALID" };
183 	for (uintptr_t bufend = addr + bufsz; addr < bufend;
184 	    addr += sizeof (uint64_t)) {
185 		uint64_t nwords;
186 		uint64_t start_addr = addr;
187 
188 		uint64_t word = 0;
189 		if (mdb_vread(&word, sizeof (word), addr) == -1) {
190 			mdb_warn("failed to read space map entry %p", addr);
191 			return (DCMD_ERR);
192 		}
193 
194 		if (SM_PREFIX_DECODE(word) == SM_DEBUG_PREFIX) {
195 			(void) mdb_printf("\t    [%6llu] %s: txg %llu, "
196 			    "pass %llu\n",
197 			    (u_longlong_t)(addr),
198 			    actions[SM_DEBUG_ACTION_DECODE(word)],
199 			    (u_longlong_t)SM_DEBUG_TXG_DECODE(word),
200 			    (u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(word));
201 			continue;
202 		}
203 
204 		char entry_type;
205 		uint64_t raw_offset, raw_run, vdev_id = SM_NO_VDEVID;
206 
207 		if (SM_PREFIX_DECODE(word) != SM2_PREFIX) {
208 			entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
209 			    'A' : 'F';
210 			raw_offset = SM_OFFSET_DECODE(word);
211 			raw_run = SM_RUN_DECODE(word);
212 			nwords = 1;
213 		} else {
214 			ASSERT3U(SM_PREFIX_DECODE(word), ==, SM2_PREFIX);
215 
216 			raw_run = SM2_RUN_DECODE(word);
217 			vdev_id = SM2_VDEV_DECODE(word);
218 
219 			/* it is a two-word entry so we read another word */
220 			addr += sizeof (uint64_t);
221 			if (addr >= bufend) {
222 				mdb_warn("buffer ends in the middle of a two "
223 				    "word entry\n", addr);
224 				return (DCMD_ERR);
225 			}
226 
227 			if (mdb_vread(&word, sizeof (word), addr) == -1) {
228 				mdb_warn("failed to read space map entry %p",
229 				    addr);
230 				return (DCMD_ERR);
231 			}
232 
233 			entry_type = (SM2_TYPE_DECODE(word) == SM_ALLOC) ?
234 			    'A' : 'F';
235 			raw_offset = SM2_OFFSET_DECODE(word);
236 			nwords = 2;
237 		}
238 
239 		(void) mdb_printf("\t    [%6llx]    %c  range:"
240 		    " %010llx-%010llx  size: %06llx vdev: %06llu words: %llu\n",
241 		    (u_longlong_t)start_addr,
242 		    entry_type, (u_longlong_t)raw_offset,
243 		    (u_longlong_t)(raw_offset + raw_run),
244 		    (u_longlong_t)raw_run,
245 		    (u_longlong_t)vdev_id, (u_longlong_t)nwords);
246 
247 		if (preview)
248 			break;
249 	}
250 	return (DCMD_OK);
251 }
252 
253 static int
mdb_dsl_dir_name(uintptr_t addr,char * buf)254 mdb_dsl_dir_name(uintptr_t addr, char *buf)
255 {
256 	static int gotid;
257 	static mdb_ctf_id_t dd_id;
258 	uintptr_t dd_parent;
259 	char dd_myname[ZFS_MAX_DATASET_NAME_LEN];
260 
261 	if (!gotid) {
262 		if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dsl_dir",
263 		    &dd_id) == -1) {
264 			mdb_warn("couldn't find struct dsl_dir");
265 			return (DCMD_ERR);
266 		}
267 		gotid = TRUE;
268 	}
269 	if (GETMEMBID(addr, &dd_id, dd_parent, dd_parent) ||
270 	    GETMEMBID(addr, &dd_id, dd_myname, dd_myname)) {
271 		return (DCMD_ERR);
272 	}
273 
274 	if (dd_parent) {
275 		if (mdb_dsl_dir_name(dd_parent, buf))
276 			return (DCMD_ERR);
277 		strcat(buf, "/");
278 	}
279 
280 	if (dd_myname[0])
281 		strcat(buf, dd_myname);
282 	else
283 		strcat(buf, "???");
284 
285 	return (0);
286 }
287 
288 static int
objset_name(uintptr_t addr,char * buf)289 objset_name(uintptr_t addr, char *buf)
290 {
291 	static int gotid;
292 	static mdb_ctf_id_t os_id, ds_id;
293 	uintptr_t os_dsl_dataset;
294 	char ds_snapname[ZFS_MAX_DATASET_NAME_LEN];
295 	uintptr_t ds_dir;
296 
297 	buf[0] = '\0';
298 
299 	if (!gotid) {
300 		if (mdb_ctf_lookup_by_name(ZFS_STRUCT "objset",
301 		    &os_id) == -1) {
302 			mdb_warn("couldn't find struct objset");
303 			return (DCMD_ERR);
304 		}
305 		if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dsl_dataset",
306 		    &ds_id) == -1) {
307 			mdb_warn("couldn't find struct dsl_dataset");
308 			return (DCMD_ERR);
309 		}
310 
311 		gotid = TRUE;
312 	}
313 
314 	if (GETMEMBID(addr, &os_id, os_dsl_dataset, os_dsl_dataset))
315 		return (DCMD_ERR);
316 
317 	if (os_dsl_dataset == 0) {
318 		strcat(buf, "mos");
319 		return (0);
320 	}
321 
322 	if (GETMEMBID(os_dsl_dataset, &ds_id, ds_snapname, ds_snapname) ||
323 	    GETMEMBID(os_dsl_dataset, &ds_id, ds_dir, ds_dir)) {
324 		return (DCMD_ERR);
325 	}
326 
327 	if (ds_dir && mdb_dsl_dir_name(ds_dir, buf))
328 		return (DCMD_ERR);
329 
330 	if (ds_snapname[0]) {
331 		strcat(buf, "@");
332 		strcat(buf, ds_snapname);
333 	}
334 	return (0);
335 }
336 
337 static int
enum_lookup(char * type,int val,const char * prefix,size_t size,char * out)338 enum_lookup(char *type, int val, const char *prefix, size_t size, char *out)
339 {
340 	const char *cp;
341 	size_t len = strlen(prefix);
342 	mdb_ctf_id_t enum_type;
343 
344 	if (mdb_ctf_lookup_by_name(type, &enum_type) != 0) {
345 		mdb_warn("Could not find enum for %s", type);
346 		return (-1);
347 	}
348 
349 	if ((cp = mdb_ctf_enum_name(enum_type, val)) != NULL) {
350 		if (strncmp(cp, prefix, len) == 0)
351 			cp += len;
352 		(void) strncpy(out, cp, size);
353 	} else {
354 		mdb_snprintf(out, size, "? (%d)", val);
355 	}
356 	return (0);
357 }
358 
359 /* ARGSUSED */
360 static int
zfs_params(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)361 zfs_params(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
362 {
363 	/*
364 	 * This table can be approximately generated by running:
365 	 * egrep "^[a-z0-9_]+ [a-z0-9_]+( =.*)?;" *.c | cut -d ' ' -f 2
366 	 */
367 	static const char *params[] = {
368 		"arc_lotsfree_percent",
369 		"arc_pages_pp_reserve",
370 		"arc_reduce_dnlc_percent",
371 		"arc_swapfs_reserve",
372 		"arc_zio_arena_free_shift",
373 		"dbuf_cache_hiwater_pct",
374 		"dbuf_cache_lowater_pct",
375 		"dbuf_cache_max_bytes",
376 		"dbuf_cache_max_shift",
377 		"ddt_zap_indirect_blockshift",
378 		"ddt_zap_leaf_blockshift",
379 		"ditto_same_vdev_distance_shift",
380 		"dmu_find_threads",
381 		"dmu_rescan_dnode_threshold",
382 		"dsl_scan_delay_completion",
383 		"fzap_default_block_shift",
384 		"l2arc_feed_again",
385 		"l2arc_feed_min_ms",
386 		"l2arc_feed_secs",
387 		"l2arc_headroom",
388 		"l2arc_headroom_boost",
389 		"l2arc_noprefetch",
390 		"l2arc_norw",
391 		"l2arc_write_boost",
392 		"l2arc_write_max",
393 		"metaslab_aliquot",
394 		"metaslab_bias_enabled",
395 		"metaslab_debug_load",
396 		"metaslab_debug_unload",
397 		"metaslab_df_alloc_threshold",
398 		"metaslab_df_free_pct",
399 		"metaslab_fragmentation_factor_enabled",
400 		"metaslab_force_ganging",
401 		"metaslab_lba_weighting_enabled",
402 		"metaslab_load_pct",
403 		"metaslab_min_alloc_size",
404 		"metaslab_ndf_clump_shift",
405 		"metaslab_preload_enabled",
406 		"metaslab_preload_limit",
407 		"metaslab_trace_enabled",
408 		"metaslab_trace_max_entries",
409 		"metaslab_unload_delay",
410 		"metaslabs_per_vdev",
411 		"reference_history",
412 		"reference_tracking_enable",
413 		"send_holes_without_birth_time",
414 		"spa_asize_inflation",
415 		"spa_load_verify_data",
416 		"spa_load_verify_maxinflight",
417 		"spa_load_verify_metadata",
418 		"spa_max_replication_override",
419 		"spa_min_slop",
420 		"spa_mode_global",
421 		"spa_slop_shift",
422 		"space_map_blksz",
423 		"vdev_mirror_shift",
424 		"zfetch_max_distance",
425 		"zfs_abd_chunk_size",
426 		"zfs_abd_scatter_enabled",
427 		"zfs_arc_average_blocksize",
428 		"zfs_arc_evict_batch_limit",
429 		"zfs_arc_grow_retry",
430 		"zfs_arc_max",
431 		"zfs_arc_meta_limit",
432 		"zfs_arc_meta_min",
433 		"zfs_arc_min",
434 		"zfs_arc_p_min_shift",
435 		"zfs_arc_shrink_shift",
436 		"zfs_async_block_max_blocks",
437 		"zfs_ccw_retry_interval",
438 		"zfs_commit_timeout_pct",
439 		"zfs_compressed_arc_enabled",
440 		"zfs_condense_indirect_commit_entry_delay_ticks",
441 		"zfs_condense_indirect_vdevs_enable",
442 		"zfs_condense_max_obsolete_bytes",
443 		"zfs_condense_min_mapping_bytes",
444 		"zfs_condense_pct",
445 		"zfs_dbgmsg_maxsize",
446 		"zfs_deadman_checktime_ms",
447 		"zfs_deadman_enabled",
448 		"zfs_deadman_synctime_ms",
449 		"zfs_dedup_prefetch",
450 		"zfs_default_bs",
451 		"zfs_default_ibs",
452 		"zfs_delay_max_ns",
453 		"zfs_delay_min_dirty_percent",
454 		"zfs_delay_resolution_ns",
455 		"zfs_delay_scale",
456 		"zfs_dirty_data_max",
457 		"zfs_dirty_data_max_max",
458 		"zfs_dirty_data_max_percent",
459 		"zfs_dirty_data_sync",
460 		"zfs_flags",
461 		"zfs_free_bpobj_enabled",
462 		"zfs_free_leak_on_eio",
463 		"zfs_free_min_time_ms",
464 		"zfs_fsync_sync_cnt",
465 		"zfs_immediate_write_sz",
466 		"zfs_indirect_condense_obsolete_pct",
467 		"zfs_lua_check_instrlimit_interval",
468 		"zfs_lua_max_instrlimit",
469 		"zfs_lua_max_memlimit",
470 		"zfs_max_recordsize",
471 		"zfs_mdcomp_disable",
472 		"zfs_metaslab_condense_block_threshold",
473 		"zfs_metaslab_fragmentation_threshold",
474 		"zfs_metaslab_segment_weight_enabled",
475 		"zfs_metaslab_switch_threshold",
476 		"zfs_mg_fragmentation_threshold",
477 		"zfs_mg_noalloc_threshold",
478 		"zfs_multilist_num_sublists",
479 		"zfs_no_scrub_io",
480 		"zfs_no_scrub_prefetch",
481 		"zfs_nocacheflush",
482 		"zfs_nopwrite_enabled",
483 		"zfs_object_remap_one_indirect_delay_ticks",
484 		"zfs_obsolete_min_time_ms",
485 		"zfs_pd_bytes_max",
486 		"zfs_per_txg_dirty_frees_percent",
487 		"zfs_prefetch_disable",
488 		"zfs_read_chunk_size",
489 		"zfs_recover",
490 		"zfs_recv_queue_length",
491 		"zfs_redundant_metadata_most_ditto_level",
492 		"zfs_remap_blkptr_enable",
493 		"zfs_remove_max_copy_bytes",
494 		"zfs_remove_max_segment",
495 		"zfs_resilver_delay",
496 		"zfs_resilver_min_time_ms",
497 		"zfs_scan_idle",
498 		"zfs_scan_min_time_ms",
499 		"zfs_scrub_delay",
500 		"zfs_scrub_limit",
501 		"zfs_send_corrupt_data",
502 		"zfs_send_queue_length",
503 		"zfs_send_set_freerecords_bit",
504 		"zfs_sync_pass_deferred_free",
505 		"zfs_sync_pass_dont_compress",
506 		"zfs_sync_pass_rewrite",
507 		"zfs_sync_taskq_batch_pct",
508 		"zfs_top_maxinflight",
509 		"zfs_txg_timeout",
510 		"zfs_vdev_aggregation_limit",
511 		"zfs_vdev_async_read_max_active",
512 		"zfs_vdev_async_read_min_active",
513 		"zfs_vdev_async_write_active_max_dirty_percent",
514 		"zfs_vdev_async_write_active_min_dirty_percent",
515 		"zfs_vdev_async_write_max_active",
516 		"zfs_vdev_async_write_min_active",
517 		"zfs_vdev_cache_bshift",
518 		"zfs_vdev_cache_max",
519 		"zfs_vdev_cache_size",
520 		"zfs_vdev_max_active",
521 		"zfs_vdev_queue_depth_pct",
522 		"zfs_vdev_read_gap_limit",
523 		"zfs_vdev_removal_max_active",
524 		"zfs_vdev_removal_min_active",
525 		"zfs_vdev_scrub_max_active",
526 		"zfs_vdev_scrub_min_active",
527 		"zfs_vdev_sync_read_max_active",
528 		"zfs_vdev_sync_read_min_active",
529 		"zfs_vdev_sync_write_max_active",
530 		"zfs_vdev_sync_write_min_active",
531 		"zfs_vdev_write_gap_limit",
532 		"zfs_write_implies_delete_child",
533 		"zfs_zil_clean_taskq_maxalloc",
534 		"zfs_zil_clean_taskq_minalloc",
535 		"zfs_zil_clean_taskq_nthr_pct",
536 		"zil_replay_disable",
537 		"zil_slog_bulk",
538 		"zio_buf_debug_limit",
539 		"zio_dva_throttle_enabled",
540 		"zio_injection_enabled",
541 		"zvol_immediate_write_sz",
542 		"zvol_maxphys",
543 		"zvol_unmap_enabled",
544 		"zvol_unmap_sync_enabled",
545 		"zfs_max_dataset_nesting",
546 	};
547 
548 	for (int i = 0; i < sizeof (params) / sizeof (params[0]); i++) {
549 		int sz;
550 		uint64_t val64;
551 		uint32_t *val32p = (uint32_t *)&val64;
552 
553 		sz = mdb_readvar(&val64, params[i]);
554 		if (sz == 4) {
555 			mdb_printf("%s = 0x%x\n", params[i], *val32p);
556 		} else if (sz == 8) {
557 			mdb_printf("%s = 0x%llx\n", params[i], val64);
558 		} else {
559 			mdb_warn("variable %s not found", params[i]);
560 		}
561 	}
562 
563 	return (DCMD_OK);
564 }
565 
566 /* ARGSUSED */
567 static int
dva(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)568 dva(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
569 {
570 	dva_t dva;
571 	if (mdb_vread(&dva, sizeof (dva_t), addr) == -1) {
572 		mdb_warn("failed to read dva_t");
573 		return (DCMD_ERR);
574 	}
575 	mdb_printf("<%llu:%llx:%llx>\n",
576 	    (u_longlong_t)DVA_GET_VDEV(&dva),
577 	    (u_longlong_t)DVA_GET_OFFSET(&dva),
578 	    (u_longlong_t)DVA_GET_ASIZE(&dva));
579 
580 	return (DCMD_OK);
581 }
582 
583 typedef struct mdb_dmu_object_type_info {
584 	boolean_t ot_encrypt;
585 } mdb_dmu_object_type_info_t;
586 
587 static boolean_t
mdb_dmu_ot_is_encrypted_impl(dmu_object_type_t ot)588 mdb_dmu_ot_is_encrypted_impl(dmu_object_type_t ot)
589 {
590 	mdb_dmu_object_type_info_t mdoti;
591 	GElf_Sym sym;
592 	size_t sz = mdb_ctf_sizeof_by_name("dmu_object_type_info_t");
593 
594 	if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "dmu_ot", &sym)) {
595 		mdb_warn("failed to find " ZFS_OBJ_NAME "`dmu_ot");
596 		return (B_FALSE);
597 	}
598 
599 	if (mdb_ctf_vread(&mdoti, "dmu_object_type_info_t",
600 	    "mdb_dmu_object_type_info_t", sym.st_value + sz * ot, 0) != 0) {
601 		return (B_FALSE);
602 	}
603 
604 	return (mdoti.ot_encrypt);
605 }
606 
607 /* ARGSUSED */
608 static int
blkptr(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)609 blkptr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
610 {
611 	char type[80], checksum[80], compress[80];
612 	blkptr_t blk, *bp = &blk;
613 	char buf[BP_SPRINTF_LEN];
614 
615 	if (mdb_vread(&blk, sizeof (blkptr_t), addr) == -1) {
616 		mdb_warn("failed to read blkptr_t");
617 		return (DCMD_ERR);
618 	}
619 
620 	if (enum_lookup("enum dmu_object_type", BP_GET_TYPE(bp), "DMU_OT_",
621 	    sizeof (type), type) == -1 ||
622 	    enum_lookup("enum zio_checksum", BP_GET_CHECKSUM(bp),
623 	    "ZIO_CHECKSUM_", sizeof (checksum), checksum) == -1 ||
624 	    enum_lookup("enum zio_compress", BP_GET_COMPRESS(bp),
625 	    "ZIO_COMPRESS_", sizeof (compress), compress) == -1) {
626 		mdb_warn("Could not find blkptr enumerated types");
627 		return (DCMD_ERR);
628 	}
629 
630 	SNPRINTF_BLKPTR(mdb_snprintf, '\n', buf, sizeof (buf), bp, type,
631 	    checksum, compress);
632 
633 	mdb_printf("%s\n", buf);
634 
635 	return (DCMD_OK);
636 }
637 
638 typedef struct mdb_dmu_buf_impl {
639 	struct {
640 		uint64_t db_object;
641 		uintptr_t db_data;
642 	} db;
643 	uintptr_t db_objset;
644 	uint64_t db_level;
645 	uint64_t db_blkid;
646 	struct {
647 		uint64_t rc_count;
648 	} db_holds;
649 } mdb_dmu_buf_impl_t;
650 
651 /* ARGSUSED */
652 static int
dbuf(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)653 dbuf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
654 {
655 	mdb_dmu_buf_impl_t db;
656 	char objectname[32];
657 	char blkidname[32];
658 	char path[ZFS_MAX_DATASET_NAME_LEN];
659 	int ptr_width = (int)(sizeof (void *)) * 2;
660 
661 	if (DCMD_HDRSPEC(flags))
662 		mdb_printf("%*s %8s %3s %9s %5s %s\n",
663 		    ptr_width, "addr", "object", "lvl", "blkid", "holds", "os");
664 
665 	if (mdb_ctf_vread(&db, ZFS_STRUCT "dmu_buf_impl", "mdb_dmu_buf_impl_t",
666 	    addr, 0) == -1)
667 		return (DCMD_ERR);
668 
669 	if (db.db.db_object == DMU_META_DNODE_OBJECT)
670 		(void) strcpy(objectname, "mdn");
671 	else
672 		(void) mdb_snprintf(objectname, sizeof (objectname), "%llx",
673 		    (u_longlong_t)db.db.db_object);
674 
675 	if (db.db_blkid == DMU_BONUS_BLKID)
676 		(void) strcpy(blkidname, "bonus");
677 	else
678 		(void) mdb_snprintf(blkidname, sizeof (blkidname), "%llx",
679 		    (u_longlong_t)db.db_blkid);
680 
681 	if (objset_name(db.db_objset, path)) {
682 		return (DCMD_ERR);
683 	}
684 
685 	mdb_printf("%*p %8s %3u %9s %5llu %s\n", ptr_width, addr,
686 	    objectname, (int)db.db_level, blkidname,
687 	    db.db_holds.rc_count, path);
688 
689 	return (DCMD_OK);
690 }
691 
692 /* ARGSUSED */
693 static int
dbuf_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)694 dbuf_stats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
695 {
696 #define	HISTOSZ 32
697 	uintptr_t dbp;
698 	dmu_buf_impl_t db;
699 	dbuf_hash_table_t ht;
700 	uint64_t bucket, ndbufs;
701 	uint64_t histo[HISTOSZ];
702 	uint64_t histo2[HISTOSZ];
703 	int i, maxidx;
704 
705 	if (mdb_readvar(&ht, "dbuf_hash_table") == -1) {
706 		mdb_warn("failed to read 'dbuf_hash_table'");
707 		return (DCMD_ERR);
708 	}
709 
710 	for (i = 0; i < HISTOSZ; i++) {
711 		histo[i] = 0;
712 		histo2[i] = 0;
713 	}
714 
715 	ndbufs = 0;
716 	for (bucket = 0; bucket < ht.hash_table_mask+1; bucket++) {
717 		int len;
718 
719 		if (mdb_vread(&dbp, sizeof (void *),
720 		    (uintptr_t)(ht.hash_table+bucket)) == -1) {
721 			mdb_warn("failed to read hash bucket %u at %p",
722 			    bucket, ht.hash_table+bucket);
723 			return (DCMD_ERR);
724 		}
725 
726 		len = 0;
727 		while (dbp != 0) {
728 			if (mdb_vread(&db, sizeof (dmu_buf_impl_t),
729 			    dbp) == -1) {
730 				mdb_warn("failed to read dbuf at %p", dbp);
731 				return (DCMD_ERR);
732 			}
733 			dbp = (uintptr_t)db.db_hash_next;
734 			for (i = MIN(len, HISTOSZ - 1); i >= 0; i--)
735 				histo2[i]++;
736 			len++;
737 			ndbufs++;
738 		}
739 
740 		if (len >= HISTOSZ)
741 			len = HISTOSZ-1;
742 		histo[len]++;
743 	}
744 
745 	mdb_printf("hash table has %llu buckets, %llu dbufs "
746 	    "(avg %llu buckets/dbuf)\n",
747 	    ht.hash_table_mask+1, ndbufs,
748 	    (ht.hash_table_mask+1)/ndbufs);
749 
750 	mdb_printf("\n");
751 	maxidx = 0;
752 	for (i = 0; i < HISTOSZ; i++)
753 		if (histo[i] > 0)
754 			maxidx = i;
755 	mdb_printf("hash chain length	number of buckets\n");
756 	for (i = 0; i <= maxidx; i++)
757 		mdb_printf("%u			%llu\n", i, histo[i]);
758 
759 	mdb_printf("\n");
760 	maxidx = 0;
761 	for (i = 0; i < HISTOSZ; i++)
762 		if (histo2[i] > 0)
763 			maxidx = i;
764 	mdb_printf("hash chain depth	number of dbufs\n");
765 	for (i = 0; i <= maxidx; i++)
766 		mdb_printf("%u or more		%llu	%llu%%\n",
767 		    i, histo2[i], histo2[i]*100/ndbufs);
768 
769 
770 	return (DCMD_OK);
771 }
772 
773 #define	CHAIN_END 0xffff
774 /*
775  * ::zap_leaf [-v]
776  *
777  * Print a zap_leaf_phys_t, assumed to be 16k
778  */
779 /* ARGSUSED */
780 static int
zap_leaf(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)781 zap_leaf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
782 {
783 	char buf[16*1024];
784 	int verbose = B_FALSE;
785 	int four = B_FALSE;
786 	dmu_buf_t l_dbuf;
787 	zap_leaf_t l;
788 	zap_leaf_phys_t *zlp = (void *)buf;
789 	int i;
790 
791 	if (mdb_getopts(argc, argv,
792 	    'v', MDB_OPT_SETBITS, TRUE, &verbose,
793 	    '4', MDB_OPT_SETBITS, TRUE, &four,
794 	    NULL) != argc)
795 		return (DCMD_USAGE);
796 
797 	l_dbuf.db_data = zlp;
798 	l.l_dbuf = &l_dbuf;
799 	l.l_bs = 14; /* assume 16k blocks */
800 	if (four)
801 		l.l_bs = 12;
802 
803 	if (!(flags & DCMD_ADDRSPEC)) {
804 		return (DCMD_USAGE);
805 	}
806 
807 	if (mdb_vread(buf, sizeof (buf), addr) == -1) {
808 		mdb_warn("failed to read zap_leaf_phys_t at %p", addr);
809 		return (DCMD_ERR);
810 	}
811 
812 	if (zlp->l_hdr.lh_block_type != ZBT_LEAF ||
813 	    zlp->l_hdr.lh_magic != ZAP_LEAF_MAGIC) {
814 		mdb_warn("This does not appear to be a zap_leaf_phys_t");
815 		return (DCMD_ERR);
816 	}
817 
818 	mdb_printf("zap_leaf_phys_t at %p:\n", addr);
819 	mdb_printf("    lh_prefix_len = %u\n", zlp->l_hdr.lh_prefix_len);
820 	mdb_printf("    lh_prefix = %llx\n", zlp->l_hdr.lh_prefix);
821 	mdb_printf("    lh_nentries = %u\n", zlp->l_hdr.lh_nentries);
822 	mdb_printf("    lh_nfree = %u\n", zlp->l_hdr.lh_nfree,
823 	    zlp->l_hdr.lh_nfree * 100 / (ZAP_LEAF_NUMCHUNKS(&l)));
824 	mdb_printf("    lh_freelist = %u\n", zlp->l_hdr.lh_freelist);
825 	mdb_printf("    lh_flags = %x (%s)\n", zlp->l_hdr.lh_flags,
826 	    zlp->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED ?
827 	    "ENTRIES_CDSORTED" : "");
828 
829 	if (verbose) {
830 		mdb_printf(" hash table:\n");
831 		for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) {
832 			if (zlp->l_hash[i] != CHAIN_END)
833 				mdb_printf("    %u: %u\n", i, zlp->l_hash[i]);
834 		}
835 	}
836 
837 	mdb_printf(" chunks:\n");
838 	for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
839 		/* LINTED: alignment */
840 		zap_leaf_chunk_t *zlc = &ZAP_LEAF_CHUNK(&l, i);
841 		switch (zlc->l_entry.le_type) {
842 		case ZAP_CHUNK_FREE:
843 			if (verbose) {
844 				mdb_printf("    %u: free; lf_next = %u\n",
845 				    i, zlc->l_free.lf_next);
846 			}
847 			break;
848 		case ZAP_CHUNK_ENTRY:
849 			mdb_printf("    %u: entry\n", i);
850 			if (verbose) {
851 				mdb_printf("        le_next = %u\n",
852 				    zlc->l_entry.le_next);
853 			}
854 			mdb_printf("        le_name_chunk = %u\n",
855 			    zlc->l_entry.le_name_chunk);
856 			mdb_printf("        le_name_numints = %u\n",
857 			    zlc->l_entry.le_name_numints);
858 			mdb_printf("        le_value_chunk = %u\n",
859 			    zlc->l_entry.le_value_chunk);
860 			mdb_printf("        le_value_intlen = %u\n",
861 			    zlc->l_entry.le_value_intlen);
862 			mdb_printf("        le_value_numints = %u\n",
863 			    zlc->l_entry.le_value_numints);
864 			mdb_printf("        le_cd = %u\n",
865 			    zlc->l_entry.le_cd);
866 			mdb_printf("        le_hash = %llx\n",
867 			    zlc->l_entry.le_hash);
868 			break;
869 		case ZAP_CHUNK_ARRAY:
870 			mdb_printf("    %u: array", i);
871 			if (strisprint((char *)zlc->l_array.la_array))
872 				mdb_printf(" \"%s\"", zlc->l_array.la_array);
873 			mdb_printf("\n");
874 			if (verbose) {
875 				int j;
876 				mdb_printf("        ");
877 				for (j = 0; j < ZAP_LEAF_ARRAY_BYTES; j++) {
878 					mdb_printf("%02x ",
879 					    zlc->l_array.la_array[j]);
880 				}
881 				mdb_printf("\n");
882 			}
883 			if (zlc->l_array.la_next != CHAIN_END) {
884 				mdb_printf("        lf_next = %u\n",
885 				    zlc->l_array.la_next);
886 			}
887 			break;
888 		default:
889 			mdb_printf("    %u: undefined type %u\n",
890 			    zlc->l_entry.le_type);
891 		}
892 	}
893 
894 	return (DCMD_OK);
895 }
896 
897 typedef struct dbufs_data {
898 	mdb_ctf_id_t id;
899 	uint64_t objset;
900 	uint64_t object;
901 	uint64_t level;
902 	uint64_t blkid;
903 	char *osname;
904 } dbufs_data_t;
905 
906 #define	DBUFS_UNSET	(0xbaddcafedeadbeefULL)
907 
908 /* ARGSUSED */
909 static int
dbufs_cb(uintptr_t addr,const void * unknown,void * arg)910 dbufs_cb(uintptr_t addr, const void *unknown, void *arg)
911 {
912 	dbufs_data_t *data = arg;
913 	uintptr_t objset;
914 	dmu_buf_t db;
915 	uint8_t level;
916 	uint64_t blkid;
917 	char osname[ZFS_MAX_DATASET_NAME_LEN];
918 
919 	if (GETMEMBID(addr, &data->id, db_objset, objset) ||
920 	    GETMEMBID(addr, &data->id, db, db) ||
921 	    GETMEMBID(addr, &data->id, db_level, level) ||
922 	    GETMEMBID(addr, &data->id, db_blkid, blkid)) {
923 		return (WALK_ERR);
924 	}
925 
926 	if ((data->objset == DBUFS_UNSET || data->objset == objset) &&
927 	    (data->osname == NULL || (objset_name(objset, osname) == 0 &&
928 	    strcmp(data->osname, osname) == 0)) &&
929 	    (data->object == DBUFS_UNSET || data->object == db.db_object) &&
930 	    (data->level == DBUFS_UNSET || data->level == level) &&
931 	    (data->blkid == DBUFS_UNSET || data->blkid == blkid)) {
932 		mdb_printf("%#lr\n", addr);
933 	}
934 	return (WALK_NEXT);
935 }
936 
937 /* ARGSUSED */
938 static int
dbufs(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)939 dbufs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
940 {
941 	dbufs_data_t data;
942 	char *object = NULL;
943 	char *blkid = NULL;
944 
945 	data.objset = data.object = data.level = data.blkid = DBUFS_UNSET;
946 	data.osname = NULL;
947 
948 	if (mdb_getopts(argc, argv,
949 	    'O', MDB_OPT_UINT64, &data.objset,
950 	    'n', MDB_OPT_STR, &data.osname,
951 	    'o', MDB_OPT_STR, &object,
952 	    'l', MDB_OPT_UINT64, &data.level,
953 	    'b', MDB_OPT_STR, &blkid,
954 	    NULL) != argc) {
955 		return (DCMD_USAGE);
956 	}
957 
958 	if (object) {
959 		if (strcmp(object, "mdn") == 0) {
960 			data.object = DMU_META_DNODE_OBJECT;
961 		} else {
962 			data.object = mdb_strtoull(object);
963 		}
964 	}
965 
966 	if (blkid) {
967 		if (strcmp(blkid, "bonus") == 0) {
968 			data.blkid = DMU_BONUS_BLKID;
969 		} else {
970 			data.blkid = mdb_strtoull(blkid);
971 		}
972 	}
973 
974 	if (mdb_ctf_lookup_by_name(ZFS_STRUCT "dmu_buf_impl", &data.id) == -1) {
975 		mdb_warn("couldn't find struct dmu_buf_impl_t");
976 		return (DCMD_ERR);
977 	}
978 
979 	if (mdb_walk("dmu_buf_impl_t", dbufs_cb, &data) != 0) {
980 		mdb_warn("can't walk dbufs");
981 		return (DCMD_ERR);
982 	}
983 
984 	return (DCMD_OK);
985 }
986 
987 typedef struct abuf_find_data {
988 	dva_t dva;
989 	mdb_ctf_id_t id;
990 } abuf_find_data_t;
991 
992 /* ARGSUSED */
993 static int
abuf_find_cb(uintptr_t addr,const void * unknown,void * arg)994 abuf_find_cb(uintptr_t addr, const void *unknown, void *arg)
995 {
996 	abuf_find_data_t *data = arg;
997 	dva_t dva;
998 
999 	if (GETMEMBID(addr, &data->id, b_dva, dva)) {
1000 		return (WALK_ERR);
1001 	}
1002 
1003 	if (dva.dva_word[0] == data->dva.dva_word[0] &&
1004 	    dva.dva_word[1] == data->dva.dva_word[1]) {
1005 		mdb_printf("%#lr\n", addr);
1006 	}
1007 	return (WALK_NEXT);
1008 }
1009 
1010 typedef struct mdb_arc_state {
1011 	uintptr_t	arcs_list[ARC_BUFC_NUMTYPES];
1012 } mdb_arc_state_t;
1013 
1014 /* ARGSUSED */
1015 static int
abuf_find(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1016 abuf_find(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1017 {
1018 	abuf_find_data_t data;
1019 	GElf_Sym sym;
1020 	int i, j;
1021 	const char *syms[] = {
1022 		"ARC_mru",
1023 		"ARC_mru_ghost",
1024 		"ARC_mfu",
1025 		"ARC_mfu_ghost",
1026 	};
1027 
1028 	if (argc != 2)
1029 		return (DCMD_USAGE);
1030 
1031 	for (i = 0; i < 2; i ++) {
1032 		switch (argv[i].a_type) {
1033 		case MDB_TYPE_STRING:
1034 			data.dva.dva_word[i] = mdb_strtoull(argv[i].a_un.a_str);
1035 			break;
1036 		case MDB_TYPE_IMMEDIATE:
1037 			data.dva.dva_word[i] = argv[i].a_un.a_val;
1038 			break;
1039 		default:
1040 			return (DCMD_USAGE);
1041 		}
1042 	}
1043 
1044 	if (mdb_ctf_lookup_by_name(ZFS_STRUCT "arc_buf_hdr", &data.id) == -1) {
1045 		mdb_warn("couldn't find struct arc_buf_hdr");
1046 		return (DCMD_ERR);
1047 	}
1048 
1049 	for (i = 0; i < sizeof (syms) / sizeof (syms[0]); i++) {
1050 		mdb_arc_state_t mas;
1051 
1052 		if (mdb_lookup_by_obj(ZFS_OBJ_NAME, syms[i], &sym)) {
1053 			mdb_warn("can't find symbol %s", syms[i]);
1054 			return (DCMD_ERR);
1055 		}
1056 
1057 		if (mdb_ctf_vread(&mas, "arc_state_t", "mdb_arc_state_t",
1058 		    sym.st_value, 0) != 0) {
1059 			mdb_warn("can't read arcs_list of %s", syms[i]);
1060 			return (DCMD_ERR);
1061 		}
1062 
1063 		for (j = 0; j < ARC_BUFC_NUMTYPES; j++) {
1064 			uintptr_t addr = mas.arcs_list[j];
1065 
1066 			if (addr == 0)
1067 				continue;
1068 
1069 			if (mdb_pwalk("multilist", abuf_find_cb, &data,
1070 			    addr) != 0) {
1071 				mdb_warn("can't walk %s", syms[i]);
1072 				return (DCMD_ERR);
1073 			}
1074 		}
1075 	}
1076 
1077 	return (DCMD_OK);
1078 }
1079 
1080 
1081 typedef struct dbgmsg_arg {
1082 	boolean_t da_verbose;
1083 	boolean_t da_verbose_hr;
1084 	boolean_t da_address;
1085 } dbgmsg_arg_t;
1086 
1087 /* ARGSUSED */
1088 static int
dbgmsg_cb(uintptr_t addr,const void * unknown,void * arg)1089 dbgmsg_cb(uintptr_t addr, const void *unknown, void *arg)
1090 {
1091 	static mdb_ctf_id_t id;
1092 	static boolean_t gotid;
1093 	static ulong_t off;
1094 
1095 	dbgmsg_arg_t *da = arg;
1096 	time_t timestamp;
1097 	hrtime_t hrtime;
1098 	char buf[1024];
1099 
1100 	if (!gotid) {
1101 		if (mdb_ctf_lookup_by_name(ZFS_STRUCT "zfs_dbgmsg", &id) ==
1102 		    -1) {
1103 			mdb_warn("couldn't find struct zfs_dbgmsg");
1104 			return (WALK_ERR);
1105 		}
1106 		gotid = TRUE;
1107 		if (mdb_ctf_offsetof(id, "zdm_msg", &off) == -1) {
1108 			mdb_warn("couldn't find zdm_msg");
1109 			return (WALK_ERR);
1110 		}
1111 		off /= 8;
1112 	}
1113 
1114 
1115 	if (GETMEMBID(addr, &id, zdm_timestamp, timestamp)) {
1116 		return (WALK_ERR);
1117 	}
1118 
1119 	if (da->da_verbose_hr) {
1120 		if (GETMEMBID(addr, &id, zdm_hrtime, hrtime)) {
1121 			return (WALK_ERR);
1122 		}
1123 	}
1124 
1125 	if (mdb_readstr(buf, sizeof (buf), addr + off) == -1) {
1126 		mdb_warn("failed to read zdm_msg at %p\n", addr + off);
1127 		return (DCMD_ERR);
1128 	}
1129 
1130 	if (da->da_address)
1131 		mdb_printf("%p ", addr);
1132 	if (da->da_verbose)
1133 		mdb_printf("%Y ", timestamp);
1134 	if (da->da_verbose_hr)
1135 		mdb_printf("%016x ", hrtime);
1136 
1137 	mdb_printf("%s\n", buf);
1138 
1139 	if (da->da_verbose || da->da_verbose_hr)
1140 		(void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL);
1141 
1142 	return (WALK_NEXT);
1143 }
1144 
1145 /* ARGSUSED */
1146 static int
dbgmsg(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1147 dbgmsg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1148 {
1149 	GElf_Sym sym;
1150 	dbgmsg_arg_t da = { 0 };
1151 
1152 	if (mdb_getopts(argc, argv,
1153 	    'v', MDB_OPT_SETBITS, B_TRUE, &da.da_verbose,
1154 	    'r', MDB_OPT_SETBITS, B_TRUE, &da.da_verbose_hr,
1155 	    'a', MDB_OPT_SETBITS, B_TRUE, &da.da_address,
1156 	    NULL) != argc)
1157 		return (DCMD_USAGE);
1158 
1159 	if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "zfs_dbgmsgs", &sym)) {
1160 		mdb_warn("can't find zfs_dbgmsgs");
1161 		return (DCMD_ERR);
1162 	}
1163 
1164 	if (mdb_pwalk("list", dbgmsg_cb, &da, sym.st_value) != 0) {
1165 		mdb_warn("can't walk zfs_dbgmsgs");
1166 		return (DCMD_ERR);
1167 	}
1168 
1169 	return (DCMD_OK);
1170 }
1171 
1172 /*ARGSUSED*/
1173 static int
arc_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1174 arc_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1175 {
1176 	kstat_named_t *stats;
1177 	GElf_Sym sym;
1178 	int nstats, i;
1179 	uint_t opt_a = FALSE;
1180 	uint_t opt_b = FALSE;
1181 	uint_t shift = 0;
1182 	const char *suffix;
1183 
1184 	static const char *bytestats[] = {
1185 		"p", "c", "c_min", "c_max", "size", "duplicate_buffers_size",
1186 		"arc_meta_used", "arc_meta_limit", "arc_meta_max",
1187 		"arc_meta_min", "hdr_size", "data_size", "metadata_size",
1188 		"other_size", "anon_size", "anon_evictable_data",
1189 		"anon_evictable_metadata", "mru_size", "mru_evictable_data",
1190 		"mru_evictable_metadata", "mru_ghost_size",
1191 		"mru_ghost_evictable_data", "mru_ghost_evictable_metadata",
1192 		"mfu_size", "mfu_evictable_data", "mfu_evictable_metadata",
1193 		"mfu_ghost_size", "mfu_ghost_evictable_data",
1194 		"mfu_ghost_evictable_metadata", "evict_l2_cached",
1195 		"evict_l2_eligible", "evict_l2_ineligible", "l2_read_bytes",
1196 		"l2_write_bytes", "l2_size", "l2_asize", "l2_hdr_size",
1197 		"compressed_size", "uncompressed_size", "overhead_size",
1198 		NULL
1199 	};
1200 
1201 	static const char *extras[] = {
1202 		"arc_no_grow", "arc_tempreserve",
1203 		NULL
1204 	};
1205 
1206 	if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "arc_stats", &sym) == -1) {
1207 		mdb_warn("failed to find 'arc_stats'");
1208 		return (DCMD_ERR);
1209 	}
1210 
1211 	stats = mdb_zalloc(sym.st_size, UM_SLEEP | UM_GC);
1212 
1213 	if (mdb_vread(stats, sym.st_size, sym.st_value) == -1) {
1214 		mdb_warn("couldn't read 'arc_stats' at %p", sym.st_value);
1215 		return (DCMD_ERR);
1216 	}
1217 
1218 	nstats = sym.st_size / sizeof (kstat_named_t);
1219 
1220 	/* NB: -a / opt_a are ignored for backwards compatability */
1221 	if (mdb_getopts(argc, argv,
1222 	    'a', MDB_OPT_SETBITS, TRUE, &opt_a,
1223 	    'b', MDB_OPT_SETBITS, TRUE, &opt_b,
1224 	    'k', MDB_OPT_SETBITS, 10, &shift,
1225 	    'm', MDB_OPT_SETBITS, 20, &shift,
1226 	    'g', MDB_OPT_SETBITS, 30, &shift,
1227 	    NULL) != argc)
1228 		return (DCMD_USAGE);
1229 
1230 	if (!opt_b && !shift)
1231 		shift = 20;
1232 
1233 	switch (shift) {
1234 	case 0:
1235 		suffix = "B";
1236 		break;
1237 	case 10:
1238 		suffix = "KB";
1239 		break;
1240 	case 20:
1241 		suffix = "MB";
1242 		break;
1243 	case 30:
1244 		suffix = "GB";
1245 		break;
1246 	default:
1247 		suffix = "XX";
1248 	}
1249 
1250 	for (i = 0; i < nstats; i++) {
1251 		int j;
1252 		boolean_t bytes = B_FALSE;
1253 
1254 		for (j = 0; bytestats[j]; j++) {
1255 			if (strcmp(stats[i].name, bytestats[j]) == 0) {
1256 				bytes = B_TRUE;
1257 				break;
1258 			}
1259 		}
1260 
1261 		if (bytes) {
1262 			mdb_printf("%-25s = %9llu %s\n", stats[i].name,
1263 			    stats[i].value.ui64 >> shift, suffix);
1264 		} else {
1265 			mdb_printf("%-25s = %9llu\n", stats[i].name,
1266 			    stats[i].value.ui64);
1267 		}
1268 	}
1269 
1270 	for (i = 0; extras[i]; i++) {
1271 		uint64_t buf;
1272 
1273 		if (mdb_lookup_by_obj(ZFS_OBJ_NAME, extras[i], &sym) == -1) {
1274 			mdb_warn("failed to find '%s'", extras[i]);
1275 			return (DCMD_ERR);
1276 		}
1277 
1278 		if (sym.st_size != sizeof (uint64_t) &&
1279 		    sym.st_size != sizeof (uint32_t)) {
1280 			mdb_warn("expected scalar for variable '%s'\n",
1281 			    extras[i]);
1282 			return (DCMD_ERR);
1283 		}
1284 
1285 		if (mdb_vread(&buf, sym.st_size, sym.st_value) == -1) {
1286 			mdb_warn("couldn't read '%s'", extras[i]);
1287 			return (DCMD_ERR);
1288 		}
1289 
1290 		mdb_printf("%-25s = ", extras[i]);
1291 
1292 		/* NB: all the 64-bit extras happen to be byte counts */
1293 		if (sym.st_size == sizeof (uint64_t))
1294 			mdb_printf("%9llu %s\n", buf >> shift, suffix);
1295 
1296 		if (sym.st_size == sizeof (uint32_t))
1297 			mdb_printf("%9d\n", *((uint32_t *)&buf));
1298 	}
1299 	return (DCMD_OK);
1300 }
1301 
1302 typedef struct mdb_spa_print {
1303 	pool_state_t spa_state;
1304 	char spa_name[ZFS_MAX_DATASET_NAME_LEN];
1305 	uintptr_t spa_normal_class;
1306 } mdb_spa_print_t;
1307 
1308 
1309 const char histo_stars[] = "****************************************";
1310 const int histo_width = sizeof (histo_stars) - 1;
1311 
1312 static void
dump_histogram(const uint64_t * histo,int size,int offset)1313 dump_histogram(const uint64_t *histo, int size, int offset)
1314 {
1315 	int i;
1316 	int minidx = size - 1;
1317 	int maxidx = 0;
1318 	uint64_t max = 0;
1319 
1320 	for (i = 0; i < size; i++) {
1321 		if (histo[i] > max)
1322 			max = histo[i];
1323 		if (histo[i] > 0 && i > maxidx)
1324 			maxidx = i;
1325 		if (histo[i] > 0 && i < minidx)
1326 			minidx = i;
1327 	}
1328 
1329 	if (max < histo_width)
1330 		max = histo_width;
1331 
1332 	for (i = minidx; i <= maxidx; i++) {
1333 		mdb_printf("%3u: %6llu %s\n",
1334 		    i + offset, (u_longlong_t)histo[i],
1335 		    &histo_stars[(max - histo[i]) * histo_width / max]);
1336 	}
1337 }
1338 
1339 typedef struct mdb_metaslab_class {
1340 	uint64_t mc_histogram[RANGE_TREE_HISTOGRAM_SIZE];
1341 } mdb_metaslab_class_t;
1342 
1343 /*
1344  * spa_class_histogram(uintptr_t class_addr)
1345  *
1346  * Prints free space histogram for a device class
1347  *
1348  * Returns DCMD_OK, or DCMD_ERR.
1349  */
1350 static int
spa_class_histogram(uintptr_t class_addr)1351 spa_class_histogram(uintptr_t class_addr)
1352 {
1353 	mdb_metaslab_class_t mc;
1354 	if (mdb_ctf_vread(&mc, "metaslab_class_t",
1355 	    "mdb_metaslab_class_t", class_addr, 0) == -1)
1356 		return (DCMD_ERR);
1357 
1358 	mdb_inc_indent(4);
1359 	dump_histogram(mc.mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1360 	mdb_dec_indent(4);
1361 	return (DCMD_OK);
1362 }
1363 
1364 /*
1365  * ::spa
1366  *
1367  *	-c	Print configuration information as well
1368  *	-v	Print vdev state
1369  *	-e	Print vdev error stats
1370  *	-m	Print vdev metaslab info
1371  *	-M	print vdev metaslab group info
1372  *	-h	Print histogram info (must be combined with -m or -M)
1373  *
1374  * Print a summarized spa_t.  When given no arguments, prints out a table of all
1375  * active pools on the system.
1376  */
1377 /* ARGSUSED */
1378 static int
spa_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1379 spa_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1380 {
1381 	const char *statetab[] = { "ACTIVE", "EXPORTED", "DESTROYED",
1382 		"SPARE", "L2CACHE", "UNINIT", "UNAVAIL", "POTENTIAL" };
1383 	const char *state;
1384 	int spa_flags = 0;
1385 
1386 	if (mdb_getopts(argc, argv,
1387 	    'c', MDB_OPT_SETBITS, SPA_FLAG_CONFIG, &spa_flags,
1388 	    'v', MDB_OPT_SETBITS, SPA_FLAG_VDEVS, &spa_flags,
1389 	    'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
1390 	    'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
1391 	    'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
1392 	    'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
1393 	    NULL) != argc)
1394 		return (DCMD_USAGE);
1395 
1396 	if (!(flags & DCMD_ADDRSPEC)) {
1397 		if (mdb_walk_dcmd("spa", "spa", argc, argv) == -1) {
1398 			mdb_warn("can't walk spa");
1399 			return (DCMD_ERR);
1400 		}
1401 
1402 		return (DCMD_OK);
1403 	}
1404 
1405 	if (flags & DCMD_PIPE_OUT) {
1406 		mdb_printf("%#lr\n", addr);
1407 		return (DCMD_OK);
1408 	}
1409 
1410 	if (DCMD_HDRSPEC(flags))
1411 		mdb_printf("%<u>%-?s %9s %-*s%</u>\n", "ADDR", "STATE",
1412 		    sizeof (uintptr_t) == 4 ? 60 : 52, "NAME");
1413 
1414 	mdb_spa_print_t spa;
1415 	if (mdb_ctf_vread(&spa, "spa_t", "mdb_spa_print_t", addr, 0) == -1)
1416 		return (DCMD_ERR);
1417 
1418 	if (spa.spa_state < 0 || spa.spa_state > POOL_STATE_UNAVAIL)
1419 		state = "UNKNOWN";
1420 	else
1421 		state = statetab[spa.spa_state];
1422 
1423 	mdb_printf("%0?p %9s %s\n", addr, state, spa.spa_name);
1424 	if (spa_flags & SPA_FLAG_HISTOGRAMS)
1425 		spa_class_histogram(spa.spa_normal_class);
1426 
1427 	if (spa_flags & SPA_FLAG_CONFIG) {
1428 		mdb_printf("\n");
1429 		mdb_inc_indent(4);
1430 		if (mdb_call_dcmd("spa_config", addr, flags, 0,
1431 		    NULL) != DCMD_OK)
1432 			return (DCMD_ERR);
1433 		mdb_dec_indent(4);
1434 	}
1435 
1436 	if (spa_flags & SPA_FLAG_ALL_VDEV) {
1437 		mdb_arg_t v;
1438 		char opts[100] = "-";
1439 		int args =
1440 		    (spa_flags | SPA_FLAG_VDEVS) == SPA_FLAG_VDEVS ? 0 : 1;
1441 
1442 		if (spa_flags & SPA_FLAG_ERRORS)
1443 			strcat(opts, "e");
1444 		if (spa_flags & SPA_FLAG_METASLABS)
1445 			strcat(opts, "m");
1446 		if (spa_flags & SPA_FLAG_METASLAB_GROUPS)
1447 			strcat(opts, "M");
1448 		if (spa_flags & SPA_FLAG_HISTOGRAMS)
1449 			strcat(opts, "h");
1450 
1451 		v.a_type = MDB_TYPE_STRING;
1452 		v.a_un.a_str = opts;
1453 
1454 		mdb_printf("\n");
1455 		mdb_inc_indent(4);
1456 		if (mdb_call_dcmd("spa_vdevs", addr, flags, args,
1457 		    &v) != DCMD_OK)
1458 			return (DCMD_ERR);
1459 		mdb_dec_indent(4);
1460 	}
1461 
1462 	return (DCMD_OK);
1463 }
1464 
1465 typedef struct mdb_spa_config_spa {
1466 	uintptr_t spa_config;
1467 } mdb_spa_config_spa_t;
1468 
1469 /*
1470  * ::spa_config
1471  *
1472  * Given a spa_t, print the configuration information stored in spa_config.
1473  * Since it's just an nvlist, format it as an indented list of name=value pairs.
1474  * We simply read the value of spa_config and pass off to ::nvlist.
1475  */
1476 /* ARGSUSED */
1477 static int
spa_print_config(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1478 spa_print_config(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1479 {
1480 	mdb_spa_config_spa_t spa;
1481 
1482 	if (argc != 0 || !(flags & DCMD_ADDRSPEC))
1483 		return (DCMD_USAGE);
1484 
1485 	if (mdb_ctf_vread(&spa, ZFS_STRUCT "spa", "mdb_spa_config_spa_t",
1486 	    addr, 0) == -1)
1487 		return (DCMD_ERR);
1488 
1489 	if (spa.spa_config == 0) {
1490 		mdb_printf("(none)\n");
1491 		return (DCMD_OK);
1492 	}
1493 
1494 	return (mdb_call_dcmd("nvlist", spa.spa_config, flags,
1495 	    0, NULL));
1496 }
1497 
1498 typedef struct mdb_range_tree {
1499 	struct {
1500 		uint64_t bt_num_elems;
1501 		uint64_t bt_num_nodes;
1502 	} rt_root;
1503 	uint64_t rt_space;
1504 	range_seg_type_t rt_type;
1505 	uint8_t		rt_shift;
1506 	uint64_t	rt_start;
1507 } mdb_range_tree_t;
1508 
1509 typedef struct mdb_metaslab_group {
1510 	uint64_t mg_fragmentation;
1511 	uint64_t mg_histogram[RANGE_TREE_HISTOGRAM_SIZE];
1512 	uintptr_t mg_vd;
1513 } mdb_metaslab_group_t;
1514 
1515 typedef struct mdb_metaslab {
1516 	uint64_t ms_id;
1517 	uint64_t ms_start;
1518 	uint64_t ms_size;
1519 	int64_t ms_deferspace;
1520 	uint64_t ms_fragmentation;
1521 	uint64_t ms_weight;
1522 	uintptr_t ms_allocating[TXG_SIZE];
1523 	uintptr_t ms_checkpointing;
1524 	uintptr_t ms_freeing;
1525 	uintptr_t ms_freed;
1526 	uintptr_t ms_allocatable;
1527 	uintptr_t ms_unflushed_frees;
1528 	uintptr_t ms_unflushed_allocs;
1529 	uintptr_t ms_sm;
1530 } mdb_metaslab_t;
1531 
1532 typedef struct mdb_space_map_phys_t {
1533 	int64_t smp_alloc;
1534 	uint64_t smp_histogram[SPACE_MAP_HISTOGRAM_SIZE];
1535 } mdb_space_map_phys_t;
1536 
1537 typedef struct mdb_space_map {
1538 	uint64_t sm_size;
1539 	uint8_t sm_shift;
1540 	uintptr_t sm_phys;
1541 } mdb_space_map_t;
1542 
1543 typedef struct mdb_vdev {
1544 	uint64_t vdev_id;
1545 	uint64_t vdev_state;
1546 	uintptr_t vdev_ops;
1547 	struct {
1548 		uint64_t vs_aux;
1549 		uint64_t vs_ops[VS_ZIO_TYPES];
1550 		uint64_t vs_bytes[VS_ZIO_TYPES];
1551 		uint64_t vs_read_errors;
1552 		uint64_t vs_write_errors;
1553 		uint64_t vs_checksum_errors;
1554 	} vdev_stat;
1555 	uintptr_t vdev_child;
1556 	uint64_t vdev_children;
1557 	uint64_t vdev_ms_count;
1558 	uintptr_t vdev_mg;
1559 	uintptr_t vdev_ms;
1560 	uintptr_t vdev_path;
1561 } mdb_vdev_t;
1562 
1563 typedef struct mdb_vdev_ops {
1564 	char vdev_op_type[16];
1565 } mdb_vdev_ops_t;
1566 
1567 static int
metaslab_stats(mdb_vdev_t * vd,int spa_flags)1568 metaslab_stats(mdb_vdev_t *vd, int spa_flags)
1569 {
1570 	mdb_inc_indent(4);
1571 	mdb_printf("%<u>%-?s %6s %20s %10s %10s %10s%</u>\n", "ADDR", "ID",
1572 	    "OFFSET", "FREE", "FRAG", "UCMU");
1573 
1574 	uintptr_t *vdev_ms = mdb_alloc(vd->vdev_ms_count * sizeof (vdev_ms),
1575 	    UM_SLEEP | UM_GC);
1576 	if (mdb_vread(vdev_ms, vd->vdev_ms_count * sizeof (uintptr_t),
1577 	    vd->vdev_ms) == -1) {
1578 		mdb_warn("failed to read vdev_ms at %p\n", vd->vdev_ms);
1579 		return (DCMD_ERR);
1580 	}
1581 
1582 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1583 		mdb_metaslab_t ms;
1584 		mdb_space_map_t sm = { 0 };
1585 		mdb_space_map_phys_t smp = { 0 };
1586 		mdb_range_tree_t rt;
1587 		uint64_t uallocs, ufrees, raw_free, raw_uchanges_mem;
1588 		char free[MDB_NICENUM_BUFLEN];
1589 		char uchanges_mem[MDB_NICENUM_BUFLEN];
1590 
1591 		if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
1592 		    vdev_ms[m], 0) == -1)
1593 			return (DCMD_ERR);
1594 
1595 		if (ms.ms_sm != 0 &&
1596 		    mdb_ctf_vread(&sm, "space_map_t", "mdb_space_map_t",
1597 		    ms.ms_sm, 0) == -1)
1598 			return (DCMD_ERR);
1599 
1600 		if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1601 		    ms.ms_unflushed_frees, 0) == -1)
1602 			return (DCMD_ERR);
1603 		ufrees = rt.rt_space;
1604 		raw_uchanges_mem = rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1605 
1606 		if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1607 		    ms.ms_unflushed_allocs, 0) == -1)
1608 			return (DCMD_ERR);
1609 		uallocs = rt.rt_space;
1610 		raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1611 		mdb_nicenum(raw_uchanges_mem, uchanges_mem);
1612 
1613 		raw_free = ms.ms_size;
1614 		if (ms.ms_sm != 0 && sm.sm_phys != 0) {
1615 			(void) mdb_ctf_vread(&smp, "space_map_phys_t",
1616 			    "mdb_space_map_phys_t", sm.sm_phys, 0);
1617 			raw_free -= smp.smp_alloc;
1618 		}
1619 		raw_free += ufrees - uallocs;
1620 		mdb_nicenum(raw_free, free);
1621 
1622 		mdb_printf("%0?p %6llu %20llx %10s ", vdev_ms[m], ms.ms_id,
1623 		    ms.ms_start, free);
1624 		if (ms.ms_fragmentation == ZFS_FRAG_INVALID)
1625 			mdb_printf("%9s ", "-");
1626 		else
1627 			mdb_printf("%9llu%% ", ms.ms_fragmentation);
1628 		mdb_printf("%10s\n", uchanges_mem);
1629 
1630 		if ((spa_flags & SPA_FLAG_HISTOGRAMS) && ms.ms_sm != 0 &&
1631 		    sm.sm_phys != 0) {
1632 			dump_histogram(smp.smp_histogram,
1633 			    SPACE_MAP_HISTOGRAM_SIZE, sm.sm_shift);
1634 		}
1635 	}
1636 	mdb_dec_indent(4);
1637 	return (DCMD_OK);
1638 }
1639 
1640 static int
metaslab_group_stats(mdb_vdev_t * vd,int spa_flags)1641 metaslab_group_stats(mdb_vdev_t *vd, int spa_flags)
1642 {
1643 	mdb_metaslab_group_t mg;
1644 	if (mdb_ctf_vread(&mg, "metaslab_group_t", "mdb_metaslab_group_t",
1645 	    vd->vdev_mg, 0) == -1) {
1646 		mdb_warn("failed to read vdev_mg at %p\n", vd->vdev_mg);
1647 		return (DCMD_ERR);
1648 	}
1649 
1650 	mdb_inc_indent(4);
1651 	mdb_printf("%<u>%-?s %7s %9s%</u>\n", "ADDR", "FRAG", "UCMU");
1652 
1653 	if (mg.mg_fragmentation == ZFS_FRAG_INVALID)
1654 		mdb_printf("%0?p %6s\n", vd->vdev_mg, "-");
1655 	else
1656 		mdb_printf("%0?p %6llu%%", vd->vdev_mg, mg.mg_fragmentation);
1657 
1658 
1659 	uintptr_t *vdev_ms = mdb_alloc(vd->vdev_ms_count * sizeof (vdev_ms),
1660 	    UM_SLEEP | UM_GC);
1661 	if (mdb_vread(vdev_ms, vd->vdev_ms_count * sizeof (uintptr_t),
1662 	    vd->vdev_ms) == -1) {
1663 		mdb_warn("failed to read vdev_ms at %p\n", vd->vdev_ms);
1664 		return (DCMD_ERR);
1665 	}
1666 
1667 	uint64_t raw_uchanges_mem = 0;
1668 	char uchanges_mem[MDB_NICENUM_BUFLEN];
1669 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1670 		mdb_metaslab_t ms;
1671 		mdb_range_tree_t rt;
1672 
1673 		if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
1674 		    vdev_ms[m], 0) == -1)
1675 			return (DCMD_ERR);
1676 
1677 		if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1678 		    ms.ms_unflushed_frees, 0) == -1)
1679 			return (DCMD_ERR);
1680 		raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1681 
1682 		if (mdb_ctf_vread(&rt, "range_tree_t", "mdb_range_tree_t",
1683 		    ms.ms_unflushed_allocs, 0) == -1)
1684 			return (DCMD_ERR);
1685 		raw_uchanges_mem += rt.rt_root.bt_num_nodes * BTREE_LEAF_SIZE;
1686 	}
1687 	mdb_nicenum(raw_uchanges_mem, uchanges_mem);
1688 	mdb_printf("%10s\n", uchanges_mem);
1689 
1690 	if (spa_flags & SPA_FLAG_HISTOGRAMS)
1691 		dump_histogram(mg.mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1692 	mdb_dec_indent(4);
1693 	return (DCMD_OK);
1694 }
1695 
1696 /*
1697  * ::vdev
1698  *
1699  * Print out a summarized vdev_t, in the following form:
1700  *
1701  * ADDR             STATE	AUX            DESC
1702  * fffffffbcde23df0 HEALTHY	-              /dev/dsk/c0t0d0
1703  *
1704  * If '-r' is specified, recursively visit all children.
1705  *
1706  * With '-e', the statistics associated with the vdev are printed as well.
1707  */
1708 static int
do_print_vdev(uintptr_t addr,int flags,int depth,boolean_t recursive,int spa_flags)1709 do_print_vdev(uintptr_t addr, int flags, int depth, boolean_t recursive,
1710     int spa_flags)
1711 {
1712 	mdb_vdev_t vd;
1713 	if (mdb_ctf_vread(&vd, "vdev_t", "mdb_vdev_t",
1714 	    (uintptr_t)addr, 0) == -1)
1715 		return (DCMD_ERR);
1716 
1717 	if (flags & DCMD_PIPE_OUT) {
1718 		mdb_printf("%#lr\n", addr);
1719 	} else {
1720 		char desc[MAXNAMELEN];
1721 		if (vd.vdev_path != 0) {
1722 			if (mdb_readstr(desc, sizeof (desc),
1723 			    (uintptr_t)vd.vdev_path) == -1) {
1724 				mdb_warn("failed to read vdev_path at %p\n",
1725 				    vd.vdev_path);
1726 				return (DCMD_ERR);
1727 			}
1728 		} else if (vd.vdev_ops != 0) {
1729 			vdev_ops_t ops;
1730 			if (mdb_vread(&ops, sizeof (ops),
1731 			    (uintptr_t)vd.vdev_ops) == -1) {
1732 				mdb_warn("failed to read vdev_ops at %p\n",
1733 				    vd.vdev_ops);
1734 				return (DCMD_ERR);
1735 			}
1736 			(void) strcpy(desc, ops.vdev_op_type);
1737 		} else {
1738 			(void) strcpy(desc, "<unknown>");
1739 		}
1740 
1741 		if (depth == 0 && DCMD_HDRSPEC(flags))
1742 			mdb_printf("%<u>%-?s %-9s %-12s %-*s%</u>\n",
1743 			    "ADDR", "STATE", "AUX",
1744 			    sizeof (uintptr_t) == 4 ? 43 : 35,
1745 			    "DESCRIPTION");
1746 
1747 		mdb_printf("%0?p ", addr);
1748 
1749 		const char *state, *aux;
1750 		switch (vd.vdev_state) {
1751 		case VDEV_STATE_CLOSED:
1752 			state = "CLOSED";
1753 			break;
1754 		case VDEV_STATE_OFFLINE:
1755 			state = "OFFLINE";
1756 			break;
1757 		case VDEV_STATE_CANT_OPEN:
1758 			state = "CANT_OPEN";
1759 			break;
1760 		case VDEV_STATE_DEGRADED:
1761 			state = "DEGRADED";
1762 			break;
1763 		case VDEV_STATE_HEALTHY:
1764 			state = "HEALTHY";
1765 			break;
1766 		case VDEV_STATE_REMOVED:
1767 			state = "REMOVED";
1768 			break;
1769 		case VDEV_STATE_FAULTED:
1770 			state = "FAULTED";
1771 			break;
1772 		default:
1773 			state = "UNKNOWN";
1774 			break;
1775 		}
1776 
1777 		switch (vd.vdev_stat.vs_aux) {
1778 		case VDEV_AUX_NONE:
1779 			aux = "-";
1780 			break;
1781 		case VDEV_AUX_OPEN_FAILED:
1782 			aux = "OPEN_FAILED";
1783 			break;
1784 		case VDEV_AUX_CORRUPT_DATA:
1785 			aux = "CORRUPT_DATA";
1786 			break;
1787 		case VDEV_AUX_NO_REPLICAS:
1788 			aux = "NO_REPLICAS";
1789 			break;
1790 		case VDEV_AUX_BAD_GUID_SUM:
1791 			aux = "BAD_GUID_SUM";
1792 			break;
1793 		case VDEV_AUX_TOO_SMALL:
1794 			aux = "TOO_SMALL";
1795 			break;
1796 		case VDEV_AUX_BAD_LABEL:
1797 			aux = "BAD_LABEL";
1798 			break;
1799 		case VDEV_AUX_VERSION_NEWER:
1800 			aux = "VERS_NEWER";
1801 			break;
1802 		case VDEV_AUX_VERSION_OLDER:
1803 			aux = "VERS_OLDER";
1804 			break;
1805 		case VDEV_AUX_UNSUP_FEAT:
1806 			aux = "UNSUP_FEAT";
1807 			break;
1808 		case VDEV_AUX_SPARED:
1809 			aux = "SPARED";
1810 			break;
1811 		case VDEV_AUX_ERR_EXCEEDED:
1812 			aux = "ERR_EXCEEDED";
1813 			break;
1814 		case VDEV_AUX_IO_FAILURE:
1815 			aux = "IO_FAILURE";
1816 			break;
1817 		case VDEV_AUX_BAD_LOG:
1818 			aux = "BAD_LOG";
1819 			break;
1820 		case VDEV_AUX_EXTERNAL:
1821 			aux = "EXTERNAL";
1822 			break;
1823 		case VDEV_AUX_SPLIT_POOL:
1824 			aux = "SPLIT_POOL";
1825 			break;
1826 		case VDEV_AUX_CHILDREN_OFFLINE:
1827 			aux = "CHILDREN_OFFLINE";
1828 			break;
1829 		default:
1830 			aux = "UNKNOWN";
1831 			break;
1832 		}
1833 
1834 		mdb_printf("%-9s %-12s %*s%s\n", state, aux, depth, "", desc);
1835 
1836 		if (spa_flags & SPA_FLAG_ERRORS) {
1837 			int i;
1838 
1839 			mdb_inc_indent(4);
1840 			mdb_printf("\n");
1841 			mdb_printf("%<u>       %12s %12s %12s %12s "
1842 			    "%12s%</u>\n", "READ", "WRITE", "FREE", "CLAIM",
1843 			    "IOCTL");
1844 			mdb_printf("OPS     ");
1845 			for (i = 1; i < VS_ZIO_TYPES; i++)
1846 				mdb_printf("%11#llx%s",
1847 				    vd.vdev_stat.vs_ops[i],
1848 				    i == VS_ZIO_TYPES - 1 ? "" : "  ");
1849 			mdb_printf("\n");
1850 			mdb_printf("BYTES   ");
1851 			for (i = 1; i < VS_ZIO_TYPES; i++)
1852 				mdb_printf("%11#llx%s",
1853 				    vd.vdev_stat.vs_bytes[i],
1854 				    i == VS_ZIO_TYPES - 1 ? "" : "  ");
1855 
1856 
1857 			mdb_printf("\n");
1858 			mdb_printf("EREAD    %10#llx\n",
1859 			    vd.vdev_stat.vs_read_errors);
1860 			mdb_printf("EWRITE   %10#llx\n",
1861 			    vd.vdev_stat.vs_write_errors);
1862 			mdb_printf("ECKSUM   %10#llx\n",
1863 			    vd.vdev_stat.vs_checksum_errors);
1864 			mdb_dec_indent(4);
1865 			mdb_printf("\n");
1866 		}
1867 
1868 		if ((spa_flags & SPA_FLAG_METASLAB_GROUPS) &&
1869 		    vd.vdev_mg != 0) {
1870 			metaslab_group_stats(&vd, spa_flags);
1871 		}
1872 		if ((spa_flags & SPA_FLAG_METASLABS) && vd.vdev_ms != 0) {
1873 			metaslab_stats(&vd, spa_flags);
1874 		}
1875 	}
1876 
1877 	uint64_t children = vd.vdev_children;
1878 	if (children == 0 || !recursive)
1879 		return (DCMD_OK);
1880 
1881 	uintptr_t *child = mdb_alloc(children * sizeof (child),
1882 	    UM_SLEEP | UM_GC);
1883 	if (mdb_vread(child, children * sizeof (void *), vd.vdev_child) == -1) {
1884 		mdb_warn("failed to read vdev children at %p", vd.vdev_child);
1885 		return (DCMD_ERR);
1886 	}
1887 
1888 	for (uint64_t c = 0; c < children; c++) {
1889 		if (do_print_vdev(child[c], flags, depth + 2, recursive,
1890 		    spa_flags)) {
1891 			return (DCMD_ERR);
1892 		}
1893 	}
1894 
1895 	return (DCMD_OK);
1896 }
1897 
1898 static int
vdev_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1899 vdev_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1900 {
1901 	uint64_t depth = 0;
1902 	boolean_t recursive = B_FALSE;
1903 	int spa_flags = 0;
1904 
1905 	if (mdb_getopts(argc, argv,
1906 	    'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
1907 	    'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
1908 	    'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
1909 	    'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
1910 	    'r', MDB_OPT_SETBITS, TRUE, &recursive,
1911 	    'd', MDB_OPT_UINT64, &depth, NULL) != argc)
1912 		return (DCMD_USAGE);
1913 
1914 	if (!(flags & DCMD_ADDRSPEC)) {
1915 		mdb_warn("no vdev_t address given\n");
1916 		return (DCMD_ERR);
1917 	}
1918 
1919 	return (do_print_vdev(addr, flags, (int)depth, recursive, spa_flags));
1920 }
1921 
1922 typedef struct mdb_metaslab_alloc_trace {
1923 	uintptr_t mat_mg;
1924 	uintptr_t mat_msp;
1925 	uint64_t mat_size;
1926 	uint64_t mat_weight;
1927 	uint64_t mat_offset;
1928 	uint32_t mat_dva_id;
1929 	int mat_allocator;
1930 } mdb_metaslab_alloc_trace_t;
1931 
1932 static void
metaslab_print_weight(uint64_t weight)1933 metaslab_print_weight(uint64_t weight)
1934 {
1935 	char buf[100];
1936 
1937 	if (WEIGHT_IS_SPACEBASED(weight)) {
1938 		mdb_nicenum(
1939 		    weight & ~(METASLAB_ACTIVE_MASK | METASLAB_WEIGHT_TYPE),
1940 		    buf);
1941 	} else {
1942 		char size[MDB_NICENUM_BUFLEN];
1943 		mdb_nicenum(1ULL << WEIGHT_GET_INDEX(weight), size);
1944 		(void) mdb_snprintf(buf, sizeof (buf), "%llu x %s",
1945 		    WEIGHT_GET_COUNT(weight), size);
1946 	}
1947 	mdb_printf("%11s ", buf);
1948 }
1949 
1950 /* ARGSUSED */
1951 static int
metaslab_weight(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1952 metaslab_weight(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1953 {
1954 	uint64_t weight = 0;
1955 	char active;
1956 
1957 	if (argc == 0 && (flags & DCMD_ADDRSPEC)) {
1958 		if (mdb_vread(&weight, sizeof (uint64_t), addr) == -1) {
1959 			mdb_warn("failed to read weight at %p\n", addr);
1960 			return (DCMD_ERR);
1961 		}
1962 	} else if (argc == 1 && !(flags & DCMD_ADDRSPEC)) {
1963 		weight = (argv[0].a_type == MDB_TYPE_IMMEDIATE) ?
1964 		    argv[0].a_un.a_val : mdb_strtoull(argv[0].a_un.a_str);
1965 	} else {
1966 		return (DCMD_USAGE);
1967 	}
1968 
1969 	if (DCMD_HDRSPEC(flags)) {
1970 		mdb_printf("%<u>%-6s %9s %9s%</u>\n",
1971 		    "ACTIVE", "ALGORITHM", "WEIGHT");
1972 	}
1973 
1974 	if (weight & METASLAB_WEIGHT_PRIMARY)
1975 		active = 'P';
1976 	else if (weight & METASLAB_WEIGHT_SECONDARY)
1977 		active = 'S';
1978 	else
1979 		active = '-';
1980 	mdb_printf("%6c %8s ", active,
1981 	    WEIGHT_IS_SPACEBASED(weight) ? "SPACE" : "SEGMENT");
1982 	metaslab_print_weight(weight);
1983 	mdb_printf("\n");
1984 
1985 	return (DCMD_OK);
1986 }
1987 
1988 /* ARGSUSED */
1989 static int
metaslab_trace(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1990 metaslab_trace(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1991 {
1992 	mdb_metaslab_alloc_trace_t mat;
1993 	mdb_metaslab_group_t mg = { 0 };
1994 	char result_type[100];
1995 
1996 	if (mdb_ctf_vread(&mat, "metaslab_alloc_trace_t",
1997 	    "mdb_metaslab_alloc_trace_t", addr, 0) == -1) {
1998 		return (DCMD_ERR);
1999 	}
2000 
2001 	if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags)) {
2002 		mdb_printf("%<u>%6s %6s %8s %11s %11s %18s %18s%</u>\n",
2003 		    "MSID", "DVA", "ASIZE", "ALLOCATOR", "WEIGHT", "RESULT",
2004 		    "VDEV");
2005 	}
2006 
2007 	if (mat.mat_msp != 0) {
2008 		mdb_metaslab_t ms;
2009 
2010 		if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
2011 		    mat.mat_msp, 0) == -1) {
2012 			return (DCMD_ERR);
2013 		}
2014 		mdb_printf("%6llu ", ms.ms_id);
2015 	} else {
2016 		mdb_printf("%6s ", "-");
2017 	}
2018 
2019 	mdb_printf("%6d %8llx %11llx ", mat.mat_dva_id, mat.mat_size,
2020 	    mat.mat_allocator);
2021 
2022 	metaslab_print_weight(mat.mat_weight);
2023 
2024 	if ((int64_t)mat.mat_offset < 0) {
2025 		if (enum_lookup("enum trace_alloc_type", mat.mat_offset,
2026 		    "TRACE_", sizeof (result_type), result_type) == -1) {
2027 			mdb_warn("Could not find enum for trace_alloc_type");
2028 			return (DCMD_ERR);
2029 		}
2030 		mdb_printf("%18s ", result_type);
2031 	} else {
2032 		mdb_printf("%<b>%18llx%</b> ", mat.mat_offset);
2033 	}
2034 
2035 	if (mat.mat_mg != 0 &&
2036 	    mdb_ctf_vread(&mg, "metaslab_group_t", "mdb_metaslab_group_t",
2037 	    mat.mat_mg, 0) == -1) {
2038 		return (DCMD_ERR);
2039 	}
2040 
2041 	if (mg.mg_vd != 0) {
2042 		mdb_vdev_t vdev;
2043 		char desc[MAXNAMELEN];
2044 
2045 		if (mdb_ctf_vread(&vdev, "vdev_t", "mdb_vdev_t",
2046 		    mg.mg_vd, 0) == -1) {
2047 			return (DCMD_ERR);
2048 		}
2049 
2050 		if (vdev.vdev_path != 0) {
2051 			char path[MAXNAMELEN];
2052 
2053 			if (mdb_readstr(path, sizeof (path),
2054 			    vdev.vdev_path) == -1) {
2055 				mdb_warn("failed to read vdev_path at %p\n",
2056 				    vdev.vdev_path);
2057 				return (DCMD_ERR);
2058 			}
2059 			char *slash;
2060 			if ((slash = strrchr(path, '/')) != NULL) {
2061 				strcpy(desc, slash + 1);
2062 			} else {
2063 				strcpy(desc, path);
2064 			}
2065 		} else if (vdev.vdev_ops != 0) {
2066 			mdb_vdev_ops_t ops;
2067 			if (mdb_ctf_vread(&ops, "vdev_ops_t", "mdb_vdev_ops_t",
2068 			    vdev.vdev_ops, 0) == -1) {
2069 				mdb_warn("failed to read vdev_ops at %p\n",
2070 				    vdev.vdev_ops);
2071 				return (DCMD_ERR);
2072 			}
2073 			(void) mdb_snprintf(desc, sizeof (desc),
2074 			    "%s-%llu", ops.vdev_op_type, vdev.vdev_id);
2075 		} else {
2076 			(void) strcpy(desc, "<unknown>");
2077 		}
2078 		mdb_printf("%18s\n", desc);
2079 	}
2080 
2081 	return (DCMD_OK);
2082 }
2083 
2084 typedef struct metaslab_walk_data {
2085 	uint64_t mw_numvdevs;
2086 	uintptr_t *mw_vdevs;
2087 	int mw_curvdev;
2088 	uint64_t mw_nummss;
2089 	uintptr_t *mw_mss;
2090 	int mw_curms;
2091 } metaslab_walk_data_t;
2092 
2093 static int
metaslab_walk_step(mdb_walk_state_t * wsp)2094 metaslab_walk_step(mdb_walk_state_t *wsp)
2095 {
2096 	metaslab_walk_data_t *mw = wsp->walk_data;
2097 	metaslab_t ms;
2098 	uintptr_t msp;
2099 
2100 	if (mw->mw_curvdev >= mw->mw_numvdevs)
2101 		return (WALK_DONE);
2102 
2103 	if (mw->mw_mss == NULL) {
2104 		uintptr_t mssp;
2105 		uintptr_t vdevp;
2106 
2107 		ASSERT(mw->mw_curms == 0);
2108 		ASSERT(mw->mw_nummss == 0);
2109 
2110 		vdevp = mw->mw_vdevs[mw->mw_curvdev];
2111 		if (GETMEMB(vdevp, "vdev", vdev_ms, mssp) ||
2112 		    GETMEMB(vdevp, "vdev", vdev_ms_count, mw->mw_nummss)) {
2113 			return (WALK_ERR);
2114 		}
2115 
2116 		mw->mw_mss = mdb_alloc(mw->mw_nummss * sizeof (void*),
2117 		    UM_SLEEP | UM_GC);
2118 		if (mdb_vread(mw->mw_mss, mw->mw_nummss * sizeof (void*),
2119 		    mssp) == -1) {
2120 			mdb_warn("failed to read vdev_ms at %p", mssp);
2121 			return (WALK_ERR);
2122 		}
2123 	}
2124 
2125 	if (mw->mw_curms >= mw->mw_nummss) {
2126 		mw->mw_mss = NULL;
2127 		mw->mw_curms = 0;
2128 		mw->mw_nummss = 0;
2129 		mw->mw_curvdev++;
2130 		return (WALK_NEXT);
2131 	}
2132 
2133 	msp = mw->mw_mss[mw->mw_curms];
2134 	if (mdb_vread(&ms, sizeof (metaslab_t), msp) == -1) {
2135 		mdb_warn("failed to read metaslab_t at %p", msp);
2136 		return (WALK_ERR);
2137 	}
2138 
2139 	mw->mw_curms++;
2140 
2141 	return (wsp->walk_callback(msp, &ms, wsp->walk_cbdata));
2142 }
2143 
2144 static int
metaslab_walk_init(mdb_walk_state_t * wsp)2145 metaslab_walk_init(mdb_walk_state_t *wsp)
2146 {
2147 	metaslab_walk_data_t *mw;
2148 	uintptr_t root_vdevp;
2149 	uintptr_t childp;
2150 
2151 	if (wsp->walk_addr == 0) {
2152 		mdb_warn("must supply address of spa_t\n");
2153 		return (WALK_ERR);
2154 	}
2155 
2156 	mw = mdb_zalloc(sizeof (metaslab_walk_data_t), UM_SLEEP | UM_GC);
2157 
2158 	if (GETMEMB(wsp->walk_addr, "spa", spa_root_vdev, root_vdevp) ||
2159 	    GETMEMB(root_vdevp, "vdev", vdev_children, mw->mw_numvdevs) ||
2160 	    GETMEMB(root_vdevp, "vdev", vdev_child, childp)) {
2161 		return (DCMD_ERR);
2162 	}
2163 
2164 	mw->mw_vdevs = mdb_alloc(mw->mw_numvdevs * sizeof (void *),
2165 	    UM_SLEEP | UM_GC);
2166 	if (mdb_vread(mw->mw_vdevs, mw->mw_numvdevs * sizeof (void *),
2167 	    childp) == -1) {
2168 		mdb_warn("failed to read root vdev children at %p", childp);
2169 		return (DCMD_ERR);
2170 	}
2171 
2172 	wsp->walk_data = mw;
2173 
2174 	return (WALK_NEXT);
2175 }
2176 
2177 typedef struct mdb_spa {
2178 	uintptr_t spa_dsl_pool;
2179 	uintptr_t spa_root_vdev;
2180 } mdb_spa_t;
2181 
2182 typedef struct mdb_dsl_pool {
2183 	uintptr_t dp_root_dir;
2184 } mdb_dsl_pool_t;
2185 
2186 typedef struct mdb_dsl_dir {
2187 	uintptr_t dd_dbuf;
2188 	int64_t dd_space_towrite[TXG_SIZE];
2189 } mdb_dsl_dir_t;
2190 
2191 typedef struct mdb_dsl_dir_phys {
2192 	uint64_t dd_used_bytes;
2193 	uint64_t dd_compressed_bytes;
2194 	uint64_t dd_uncompressed_bytes;
2195 } mdb_dsl_dir_phys_t;
2196 
2197 typedef struct space_data {
2198 	uint64_t ms_allocating[TXG_SIZE];
2199 	uint64_t ms_checkpointing;
2200 	uint64_t ms_freeing;
2201 	uint64_t ms_freed;
2202 	uint64_t ms_unflushed_frees;
2203 	uint64_t ms_unflushed_allocs;
2204 	uint64_t ms_allocatable;
2205 	int64_t ms_deferspace;
2206 	uint64_t avail;
2207 } space_data_t;
2208 
2209 /* ARGSUSED */
2210 static int
space_cb(uintptr_t addr,const void * unknown,void * arg)2211 space_cb(uintptr_t addr, const void *unknown, void *arg)
2212 {
2213 	space_data_t *sd = arg;
2214 	mdb_metaslab_t ms;
2215 	mdb_range_tree_t rt;
2216 	mdb_space_map_t sm = { 0 };
2217 	mdb_space_map_phys_t smp = { 0 };
2218 	uint64_t uallocs, ufrees;
2219 	int i;
2220 
2221 	if (mdb_ctf_vread(&ms, "metaslab_t", "mdb_metaslab_t",
2222 	    addr, 0) == -1)
2223 		return (WALK_ERR);
2224 
2225 	for (i = 0; i < TXG_SIZE; i++) {
2226 		if (mdb_ctf_vread(&rt, "range_tree_t",
2227 		    "mdb_range_tree_t", ms.ms_allocating[i], 0) == -1)
2228 			return (WALK_ERR);
2229 		sd->ms_allocating[i] += rt.rt_space;
2230 	}
2231 
2232 	if (mdb_ctf_vread(&rt, "range_tree_t",
2233 	    "mdb_range_tree_t", ms.ms_checkpointing, 0) == -1)
2234 		return (WALK_ERR);
2235 	sd->ms_checkpointing += rt.rt_space;
2236 
2237 	if (mdb_ctf_vread(&rt, "range_tree_t",
2238 	    "mdb_range_tree_t", ms.ms_freeing, 0) == -1)
2239 		return (WALK_ERR);
2240 	sd->ms_freeing += rt.rt_space;
2241 
2242 	if (mdb_ctf_vread(&rt, "range_tree_t",
2243 	    "mdb_range_tree_t", ms.ms_freed, 0) == -1)
2244 		return (WALK_ERR);
2245 	sd->ms_freed += rt.rt_space;
2246 
2247 	if (mdb_ctf_vread(&rt, "range_tree_t",
2248 	    "mdb_range_tree_t", ms.ms_allocatable, 0) == -1)
2249 		return (WALK_ERR);
2250 	sd->ms_allocatable += rt.rt_space;
2251 
2252 	if (mdb_ctf_vread(&rt, "range_tree_t",
2253 	    "mdb_range_tree_t", ms.ms_unflushed_frees, 0) == -1)
2254 		return (WALK_ERR);
2255 	sd->ms_unflushed_frees += rt.rt_space;
2256 	ufrees = rt.rt_space;
2257 
2258 	if (mdb_ctf_vread(&rt, "range_tree_t",
2259 	    "mdb_range_tree_t", ms.ms_unflushed_allocs, 0) == -1)
2260 		return (WALK_ERR);
2261 	sd->ms_unflushed_allocs += rt.rt_space;
2262 	uallocs = rt.rt_space;
2263 
2264 	if (ms.ms_sm != 0 &&
2265 	    mdb_ctf_vread(&sm, "space_map_t",
2266 	    "mdb_space_map_t", ms.ms_sm, 0) == -1)
2267 		return (WALK_ERR);
2268 
2269 	if (sm.sm_phys != 0) {
2270 		(void) mdb_ctf_vread(&smp, "space_map_phys_t",
2271 		    "mdb_space_map_phys_t", sm.sm_phys, 0);
2272 	}
2273 
2274 	sd->ms_deferspace += ms.ms_deferspace;
2275 	sd->avail += sm.sm_size - smp.smp_alloc + ufrees - uallocs;
2276 
2277 	return (WALK_NEXT);
2278 }
2279 
2280 /*
2281  * ::spa_space [-b]
2282  *
2283  * Given a spa_t, print out it's on-disk space usage and in-core
2284  * estimates of future usage.  If -b is given, print space in bytes.
2285  * Otherwise print in megabytes.
2286  */
2287 /* ARGSUSED */
2288 static int
spa_space(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2289 spa_space(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2290 {
2291 	mdb_spa_t spa;
2292 	mdb_dsl_pool_t dp;
2293 	mdb_dsl_dir_t dd;
2294 	mdb_dmu_buf_impl_t db;
2295 	mdb_dsl_dir_phys_t dsp;
2296 	space_data_t sd;
2297 	int shift = 20;
2298 	char *suffix = "M";
2299 	int bytes = B_FALSE;
2300 
2301 	if (mdb_getopts(argc, argv, 'b', MDB_OPT_SETBITS, TRUE, &bytes, NULL) !=
2302 	    argc)
2303 		return (DCMD_USAGE);
2304 	if (!(flags & DCMD_ADDRSPEC))
2305 		return (DCMD_USAGE);
2306 
2307 	if (bytes) {
2308 		shift = 0;
2309 		suffix = "";
2310 	}
2311 
2312 	if (mdb_ctf_vread(&spa, ZFS_STRUCT "spa", "mdb_spa_t",
2313 	    addr, 0) == -1 ||
2314 	    mdb_ctf_vread(&dp, ZFS_STRUCT "dsl_pool", "mdb_dsl_pool_t",
2315 	    spa.spa_dsl_pool, 0) == -1 ||
2316 	    mdb_ctf_vread(&dd, ZFS_STRUCT "dsl_dir", "mdb_dsl_dir_t",
2317 	    dp.dp_root_dir, 0) == -1 ||
2318 	    mdb_ctf_vread(&db, ZFS_STRUCT "dmu_buf_impl", "mdb_dmu_buf_impl_t",
2319 	    dd.dd_dbuf, 0) == -1 ||
2320 	    mdb_ctf_vread(&dsp, ZFS_STRUCT "dsl_dir_phys",
2321 	    "mdb_dsl_dir_phys_t", db.db.db_data, 0) == -1) {
2322 		return (DCMD_ERR);
2323 	}
2324 
2325 	mdb_printf("dd_space_towrite = %llu%s %llu%s %llu%s %llu%s\n",
2326 	    dd.dd_space_towrite[0] >> shift, suffix,
2327 	    dd.dd_space_towrite[1] >> shift, suffix,
2328 	    dd.dd_space_towrite[2] >> shift, suffix,
2329 	    dd.dd_space_towrite[3] >> shift, suffix);
2330 
2331 	mdb_printf("dd_phys.dd_used_bytes = %llu%s\n",
2332 	    dsp.dd_used_bytes >> shift, suffix);
2333 	mdb_printf("dd_phys.dd_compressed_bytes = %llu%s\n",
2334 	    dsp.dd_compressed_bytes >> shift, suffix);
2335 	mdb_printf("dd_phys.dd_uncompressed_bytes = %llu%s\n",
2336 	    dsp.dd_uncompressed_bytes >> shift, suffix);
2337 
2338 	bzero(&sd, sizeof (sd));
2339 	if (mdb_pwalk("metaslab", space_cb, &sd, addr) != 0) {
2340 		mdb_warn("can't walk metaslabs");
2341 		return (DCMD_ERR);
2342 	}
2343 
2344 	mdb_printf("ms_allocmap = %llu%s %llu%s %llu%s %llu%s\n",
2345 	    sd.ms_allocating[0] >> shift, suffix,
2346 	    sd.ms_allocating[1] >> shift, suffix,
2347 	    sd.ms_allocating[2] >> shift, suffix,
2348 	    sd.ms_allocating[3] >> shift, suffix);
2349 	mdb_printf("ms_checkpointing = %llu%s\n",
2350 	    sd.ms_checkpointing >> shift, suffix);
2351 	mdb_printf("ms_freeing = %llu%s\n",
2352 	    sd.ms_freeing >> shift, suffix);
2353 	mdb_printf("ms_freed = %llu%s\n",
2354 	    sd.ms_freed >> shift, suffix);
2355 	mdb_printf("ms_unflushed_frees = %llu%s\n",
2356 	    sd.ms_unflushed_frees >> shift, suffix);
2357 	mdb_printf("ms_unflushed_allocs = %llu%s\n",
2358 	    sd.ms_unflushed_allocs >> shift, suffix);
2359 	mdb_printf("ms_allocatable = %llu%s\n",
2360 	    sd.ms_allocatable >> shift, suffix);
2361 	mdb_printf("ms_deferspace = %llu%s\n",
2362 	    sd.ms_deferspace >> shift, suffix);
2363 	mdb_printf("current avail = %llu%s\n",
2364 	    sd.avail >> shift, suffix);
2365 
2366 	return (DCMD_OK);
2367 }
2368 
2369 typedef struct mdb_spa_aux_vdev {
2370 	int sav_count;
2371 	uintptr_t sav_vdevs;
2372 } mdb_spa_aux_vdev_t;
2373 
2374 typedef struct mdb_spa_vdevs {
2375 	uintptr_t spa_root_vdev;
2376 	mdb_spa_aux_vdev_t spa_l2cache;
2377 	mdb_spa_aux_vdev_t spa_spares;
2378 } mdb_spa_vdevs_t;
2379 
2380 static int
spa_print_aux(mdb_spa_aux_vdev_t * sav,uint_t flags,mdb_arg_t * v,const char * name)2381 spa_print_aux(mdb_spa_aux_vdev_t *sav, uint_t flags, mdb_arg_t *v,
2382     const char *name)
2383 {
2384 	uintptr_t *aux;
2385 	size_t len;
2386 	int ret, i;
2387 
2388 	/*
2389 	 * Iterate over aux vdevs and print those out as well.  This is a
2390 	 * little annoying because we don't have a root vdev to pass to ::vdev.
2391 	 * Instead, we print a single line and then call it for each child
2392 	 * vdev.
2393 	 */
2394 	if (sav->sav_count != 0) {
2395 		v[1].a_type = MDB_TYPE_STRING;
2396 		v[1].a_un.a_str = "-d";
2397 		v[2].a_type = MDB_TYPE_IMMEDIATE;
2398 		v[2].a_un.a_val = 2;
2399 
2400 		len = sav->sav_count * sizeof (uintptr_t);
2401 		aux = mdb_alloc(len, UM_SLEEP);
2402 		if (mdb_vread(aux, len, sav->sav_vdevs) == -1) {
2403 			mdb_free(aux, len);
2404 			mdb_warn("failed to read l2cache vdevs at %p",
2405 			    sav->sav_vdevs);
2406 			return (DCMD_ERR);
2407 		}
2408 
2409 		mdb_printf("%-?s %-9s %-12s %s\n", "-", "-", "-", name);
2410 
2411 		for (i = 0; i < sav->sav_count; i++) {
2412 			ret = mdb_call_dcmd("vdev", aux[i], flags, 3, v);
2413 			if (ret != DCMD_OK) {
2414 				mdb_free(aux, len);
2415 				return (ret);
2416 			}
2417 		}
2418 
2419 		mdb_free(aux, len);
2420 	}
2421 
2422 	return (0);
2423 }
2424 
2425 /*
2426  * ::spa_vdevs
2427  *
2428  *	-e	Include error stats
2429  *	-m	Include metaslab information
2430  *	-M	Include metaslab group information
2431  *	-h	Include histogram information (requires -m or -M)
2432  *
2433  * Print out a summarized list of vdevs for the given spa_t.
2434  * This is accomplished by invoking "::vdev -re" on the root vdev, as well as
2435  * iterating over the cache devices.
2436  */
2437 /* ARGSUSED */
2438 static int
spa_vdevs(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2439 spa_vdevs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2440 {
2441 	mdb_arg_t v[3];
2442 	int ret;
2443 	char opts[100] = "-r";
2444 	int spa_flags = 0;
2445 
2446 	if (mdb_getopts(argc, argv,
2447 	    'e', MDB_OPT_SETBITS, SPA_FLAG_ERRORS, &spa_flags,
2448 	    'm', MDB_OPT_SETBITS, SPA_FLAG_METASLABS, &spa_flags,
2449 	    'M', MDB_OPT_SETBITS, SPA_FLAG_METASLAB_GROUPS, &spa_flags,
2450 	    'h', MDB_OPT_SETBITS, SPA_FLAG_HISTOGRAMS, &spa_flags,
2451 	    NULL) != argc)
2452 		return (DCMD_USAGE);
2453 
2454 	if (!(flags & DCMD_ADDRSPEC))
2455 		return (DCMD_USAGE);
2456 
2457 	mdb_spa_vdevs_t spa;
2458 	if (mdb_ctf_vread(&spa, "spa_t", "mdb_spa_vdevs_t", addr, 0) == -1)
2459 		return (DCMD_ERR);
2460 
2461 	/*
2462 	 * Unitialized spa_t structures can have a NULL root vdev.
2463 	 */
2464 	if (spa.spa_root_vdev == 0) {
2465 		mdb_printf("no associated vdevs\n");
2466 		return (DCMD_OK);
2467 	}
2468 
2469 	if (spa_flags & SPA_FLAG_ERRORS)
2470 		strcat(opts, "e");
2471 	if (spa_flags & SPA_FLAG_METASLABS)
2472 		strcat(opts, "m");
2473 	if (spa_flags & SPA_FLAG_METASLAB_GROUPS)
2474 		strcat(opts, "M");
2475 	if (spa_flags & SPA_FLAG_HISTOGRAMS)
2476 		strcat(opts, "h");
2477 
2478 	v[0].a_type = MDB_TYPE_STRING;
2479 	v[0].a_un.a_str = opts;
2480 
2481 	ret = mdb_call_dcmd("vdev", (uintptr_t)spa.spa_root_vdev,
2482 	    flags, 1, v);
2483 	if (ret != DCMD_OK)
2484 		return (ret);
2485 
2486 	if (spa_print_aux(&spa.spa_l2cache, flags, v, "cache") != 0 ||
2487 	    spa_print_aux(&spa.spa_spares, flags, v, "spares") != 0)
2488 		return (DCMD_ERR);
2489 
2490 	return (DCMD_OK);
2491 }
2492 
2493 /*
2494  * ::zio
2495  *
2496  * Print a summary of zio_t and all its children.  This is intended to display a
2497  * zio tree, and hence we only pick the most important pieces of information for
2498  * the main summary.  More detailed information can always be found by doing a
2499  * '::print zio' on the underlying zio_t.  The columns we display are:
2500  *
2501  *	ADDRESS  TYPE  STAGE  WAITER  TIME_ELAPSED
2502  *
2503  * The 'address' column is indented by one space for each depth level as we
2504  * descend down the tree.
2505  */
2506 
2507 #define	ZIO_MAXINDENT	7
2508 #define	ZIO_MAXWIDTH	(sizeof (uintptr_t) * 2 + ZIO_MAXINDENT)
2509 #define	ZIO_WALK_SELF	0
2510 #define	ZIO_WALK_CHILD	1
2511 #define	ZIO_WALK_PARENT	2
2512 
2513 typedef struct zio_print_args {
2514 	int	zpa_current_depth;
2515 	int	zpa_min_depth;
2516 	int	zpa_max_depth;
2517 	int	zpa_type;
2518 	uint_t	zpa_flags;
2519 } zio_print_args_t;
2520 
2521 typedef struct mdb_zio {
2522 	enum zio_type io_type;
2523 	enum zio_stage io_stage;
2524 	uintptr_t io_waiter;
2525 	uintptr_t io_spa;
2526 	struct {
2527 		struct {
2528 			uintptr_t list_next;
2529 		} list_head;
2530 	} io_parent_list;
2531 	int io_error;
2532 } mdb_zio_t;
2533 
2534 typedef struct mdb_zio_timestamp {
2535 	hrtime_t io_timestamp;
2536 } mdb_zio_timestamp_t;
2537 
2538 static int zio_child_cb(uintptr_t addr, const void *unknown, void *arg);
2539 
2540 static int
zio_print_cb(uintptr_t addr,zio_print_args_t * zpa)2541 zio_print_cb(uintptr_t addr, zio_print_args_t *zpa)
2542 {
2543 	mdb_ctf_id_t type_enum, stage_enum;
2544 	int indent = zpa->zpa_current_depth;
2545 	const char *type, *stage;
2546 	uintptr_t laddr;
2547 	mdb_zio_t zio;
2548 	mdb_zio_timestamp_t zio_timestamp = { 0 };
2549 
2550 	if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t", addr, 0) == -1)
2551 		return (WALK_ERR);
2552 	(void) mdb_ctf_vread(&zio_timestamp, ZFS_STRUCT "zio",
2553 	    "mdb_zio_timestamp_t", addr, MDB_CTF_VREAD_QUIET);
2554 
2555 	if (indent > ZIO_MAXINDENT)
2556 		indent = ZIO_MAXINDENT;
2557 
2558 	if (mdb_ctf_lookup_by_name("enum zio_type", &type_enum) == -1 ||
2559 	    mdb_ctf_lookup_by_name("enum zio_stage", &stage_enum) == -1) {
2560 		mdb_warn("failed to lookup zio enums");
2561 		return (WALK_ERR);
2562 	}
2563 
2564 	if ((type = mdb_ctf_enum_name(type_enum, zio.io_type)) != NULL)
2565 		type += sizeof ("ZIO_TYPE_") - 1;
2566 	else
2567 		type = "?";
2568 
2569 	if (zio.io_error == 0) {
2570 		stage = mdb_ctf_enum_name(stage_enum, zio.io_stage);
2571 		if (stage != NULL)
2572 			stage += sizeof ("ZIO_STAGE_") - 1;
2573 		else
2574 			stage = "?";
2575 	} else {
2576 		stage = "FAILED";
2577 	}
2578 
2579 	if (zpa->zpa_current_depth >= zpa->zpa_min_depth) {
2580 		if (zpa->zpa_flags & DCMD_PIPE_OUT) {
2581 			mdb_printf("%?p\n", addr);
2582 		} else {
2583 			mdb_printf("%*s%-*p %-5s %-16s ", indent, "",
2584 			    ZIO_MAXWIDTH - indent, addr, type, stage);
2585 			if (zio.io_waiter != 0)
2586 				mdb_printf("%-16lx ", zio.io_waiter);
2587 			else
2588 				mdb_printf("%-16s ", "-");
2589 #ifdef _KERNEL
2590 			if (zio_timestamp.io_timestamp != 0) {
2591 				mdb_printf("%llums", (mdb_gethrtime() -
2592 				    zio_timestamp.io_timestamp) /
2593 				    1000000);
2594 			} else {
2595 				mdb_printf("%-12s ", "-");
2596 			}
2597 #else
2598 			mdb_printf("%-12s ", "-");
2599 #endif
2600 			mdb_printf("\n");
2601 		}
2602 	}
2603 
2604 	if (zpa->zpa_current_depth >= zpa->zpa_max_depth)
2605 		return (WALK_NEXT);
2606 
2607 	if (zpa->zpa_type == ZIO_WALK_PARENT)
2608 		laddr = addr + mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio",
2609 		    "io_parent_list");
2610 	else
2611 		laddr = addr + mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio",
2612 		    "io_child_list");
2613 
2614 	zpa->zpa_current_depth++;
2615 	if (mdb_pwalk("list", zio_child_cb, zpa, laddr) != 0) {
2616 		mdb_warn("failed to walk zio_t children at %p\n", laddr);
2617 		return (WALK_ERR);
2618 	}
2619 	zpa->zpa_current_depth--;
2620 
2621 	return (WALK_NEXT);
2622 }
2623 
2624 /* ARGSUSED */
2625 static int
zio_child_cb(uintptr_t addr,const void * unknown,void * arg)2626 zio_child_cb(uintptr_t addr, const void *unknown, void *arg)
2627 {
2628 	zio_link_t zl;
2629 	uintptr_t ziop;
2630 	zio_print_args_t *zpa = arg;
2631 
2632 	if (mdb_vread(&zl, sizeof (zl), addr) == -1) {
2633 		mdb_warn("failed to read zio_link_t at %p", addr);
2634 		return (WALK_ERR);
2635 	}
2636 
2637 	if (zpa->zpa_type == ZIO_WALK_PARENT)
2638 		ziop = (uintptr_t)zl.zl_parent;
2639 	else
2640 		ziop = (uintptr_t)zl.zl_child;
2641 
2642 	return (zio_print_cb(ziop, zpa));
2643 }
2644 
2645 /* ARGSUSED */
2646 static int
zio_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2647 zio_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2648 {
2649 	zio_print_args_t zpa = { 0 };
2650 
2651 	if (!(flags & DCMD_ADDRSPEC))
2652 		return (DCMD_USAGE);
2653 
2654 	if (mdb_getopts(argc, argv,
2655 	    'r', MDB_OPT_SETBITS, INT_MAX, &zpa.zpa_max_depth,
2656 	    'c', MDB_OPT_SETBITS, ZIO_WALK_CHILD, &zpa.zpa_type,
2657 	    'p', MDB_OPT_SETBITS, ZIO_WALK_PARENT, &zpa.zpa_type,
2658 	    NULL) != argc)
2659 		return (DCMD_USAGE);
2660 
2661 	zpa.zpa_flags = flags;
2662 	if (zpa.zpa_max_depth != 0) {
2663 		if (zpa.zpa_type == ZIO_WALK_SELF)
2664 			zpa.zpa_type = ZIO_WALK_CHILD;
2665 	} else if (zpa.zpa_type != ZIO_WALK_SELF) {
2666 		zpa.zpa_min_depth = 1;
2667 		zpa.zpa_max_depth = 1;
2668 	}
2669 
2670 	if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags)) {
2671 		mdb_printf("%<u>%-*s %-5s %-16s %-16s %-12s%</u>\n",
2672 		    ZIO_MAXWIDTH, "ADDRESS", "TYPE", "STAGE", "WAITER",
2673 		    "TIME_ELAPSED");
2674 	}
2675 
2676 	if (zio_print_cb(addr, &zpa) != WALK_NEXT)
2677 		return (DCMD_ERR);
2678 
2679 	return (DCMD_OK);
2680 }
2681 
2682 /*
2683  * [addr]::zio_state
2684  *
2685  * Print a summary of all zio_t structures on the system, or for a particular
2686  * pool.  This is equivalent to '::walk zio_root | ::zio'.
2687  */
2688 /*ARGSUSED*/
2689 static int
zio_state(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2690 zio_state(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2691 {
2692 	/*
2693 	 * MDB will remember the last address of the pipeline, so if we don't
2694 	 * zero this we'll end up trying to walk zio structures for a
2695 	 * non-existent spa_t.
2696 	 */
2697 	if (!(flags & DCMD_ADDRSPEC))
2698 		addr = 0;
2699 
2700 	return (mdb_pwalk_dcmd("zio_root", "zio", argc, argv, addr));
2701 }
2702 
2703 
2704 typedef struct mdb_zfs_btree_hdr {
2705 	uintptr_t		bth_parent;
2706 	boolean_t		bth_core;
2707 	/*
2708 	 * For both leaf and core nodes, represents the number of elements in
2709 	 * the node. For core nodes, they will have bth_count + 1 children.
2710 	 */
2711 	uint32_t		bth_count;
2712 } mdb_zfs_btree_hdr_t;
2713 
2714 typedef struct mdb_zfs_btree_core {
2715 	mdb_zfs_btree_hdr_t	btc_hdr;
2716 	uintptr_t		btc_children[BTREE_CORE_ELEMS + 1];
2717 	uint8_t			btc_elems[];
2718 } mdb_zfs_btree_core_t;
2719 
2720 typedef struct mdb_zfs_btree_leaf {
2721 	mdb_zfs_btree_hdr_t	btl_hdr;
2722 	uint8_t			btl_elems[];
2723 } mdb_zfs_btree_leaf_t;
2724 
2725 typedef struct mdb_zfs_btree {
2726 	uintptr_t		bt_root;
2727 	size_t			bt_elem_size;
2728 } mdb_zfs_btree_t;
2729 
2730 typedef struct btree_walk_data {
2731 	mdb_zfs_btree_t		bwd_btree;
2732 	mdb_zfs_btree_hdr_t	*bwd_node;
2733 	uint64_t		bwd_offset; // In units of bt_node_size
2734 } btree_walk_data_t;
2735 
2736 static uintptr_t
btree_leftmost_child(uintptr_t addr,mdb_zfs_btree_hdr_t * buf)2737 btree_leftmost_child(uintptr_t addr, mdb_zfs_btree_hdr_t *buf)
2738 {
2739 	size_t size = offsetof(zfs_btree_core_t, btc_children) +
2740 	    sizeof (uintptr_t);
2741 	for (;;) {
2742 		if (mdb_vread(buf, size, addr) == -1) {
2743 			mdb_warn("failed to read at %p\n", addr);
2744 			return ((uintptr_t)0ULL);
2745 		}
2746 		if (!buf->bth_core)
2747 			return (addr);
2748 		mdb_zfs_btree_core_t *node = (mdb_zfs_btree_core_t *)buf;
2749 		addr = node->btc_children[0];
2750 	}
2751 }
2752 
2753 static int
btree_walk_step(mdb_walk_state_t * wsp)2754 btree_walk_step(mdb_walk_state_t *wsp)
2755 {
2756 	btree_walk_data_t *bwd = wsp->walk_data;
2757 	size_t elem_size = bwd->bwd_btree.bt_elem_size;
2758 	if (wsp->walk_addr == 0ULL)
2759 		return (WALK_DONE);
2760 
2761 	if (!bwd->bwd_node->bth_core) {
2762 		/*
2763 		 * For the first element in a leaf node, read in the full
2764 		 * leaf, since we only had part of it read in before.
2765 		 */
2766 		if (bwd->bwd_offset == 0) {
2767 			if (mdb_vread(bwd->bwd_node, BTREE_LEAF_SIZE,
2768 			    wsp->walk_addr) == -1) {
2769 				mdb_warn("failed to read at %p\n",
2770 				    wsp->walk_addr);
2771 				return (WALK_ERR);
2772 			}
2773 		}
2774 
2775 		int status = wsp->walk_callback((uintptr_t)(wsp->walk_addr +
2776 		    offsetof(mdb_zfs_btree_leaf_t, btl_elems) +
2777 		    bwd->bwd_offset * elem_size), bwd->bwd_node,
2778 		    wsp->walk_cbdata);
2779 		if (status != WALK_NEXT)
2780 			return (status);
2781 		bwd->bwd_offset++;
2782 
2783 		/* Find the next element, if we're at the end of the leaf. */
2784 		while (bwd->bwd_offset == bwd->bwd_node->bth_count) {
2785 			uintptr_t par = bwd->bwd_node->bth_parent;
2786 			uintptr_t cur = wsp->walk_addr;
2787 			wsp->walk_addr = par;
2788 			if (par == 0ULL)
2789 				return (WALK_NEXT);
2790 
2791 			size_t size = sizeof (zfs_btree_core_t) +
2792 			    BTREE_CORE_ELEMS * elem_size;
2793 			if (mdb_vread(bwd->bwd_node, size, wsp->walk_addr) ==
2794 			    -1) {
2795 				mdb_warn("failed to read at %p\n",
2796 				    wsp->walk_addr);
2797 				return (WALK_ERR);
2798 			}
2799 			mdb_zfs_btree_core_t *node =
2800 			    (mdb_zfs_btree_core_t *)bwd->bwd_node;
2801 			int i;
2802 			for (i = 0; i <= bwd->bwd_node->bth_count; i++) {
2803 				if (node->btc_children[i] == cur)
2804 					break;
2805 			}
2806 			if (i > bwd->bwd_node->bth_count) {
2807 				mdb_warn("btree parent/child mismatch at "
2808 				    "%#lx\n", cur);
2809 				return (WALK_ERR);
2810 			}
2811 			bwd->bwd_offset = i;
2812 		}
2813 		return (WALK_NEXT);
2814 	}
2815 
2816 	if (!bwd->bwd_node->bth_core) {
2817 		mdb_warn("Invalid btree node at %#lx\n", wsp->walk_addr);
2818 		return (WALK_ERR);
2819 	}
2820 	mdb_zfs_btree_core_t *node = (mdb_zfs_btree_core_t *)bwd->bwd_node;
2821 	int status = wsp->walk_callback((uintptr_t)(wsp->walk_addr +
2822 	    offsetof(mdb_zfs_btree_core_t, btc_elems) + bwd->bwd_offset *
2823 	    elem_size), bwd->bwd_node, wsp->walk_cbdata);
2824 	if (status != WALK_NEXT)
2825 		return (status);
2826 
2827 	uintptr_t new_child = node->btc_children[bwd->bwd_offset + 1];
2828 	wsp->walk_addr = btree_leftmost_child(new_child, bwd->bwd_node);
2829 	if (wsp->walk_addr == 0ULL)
2830 		return (WALK_ERR);
2831 
2832 	bwd->bwd_offset = 0;
2833 	return (WALK_NEXT);
2834 }
2835 
2836 static int
btree_walk_init(mdb_walk_state_t * wsp)2837 btree_walk_init(mdb_walk_state_t *wsp)
2838 {
2839 	btree_walk_data_t *bwd;
2840 
2841 	if (wsp->walk_addr == 0ULL) {
2842 		mdb_warn("must supply address of zfs_btree_t\n");
2843 		return (WALK_ERR);
2844 	}
2845 
2846 	bwd = mdb_zalloc(sizeof (btree_walk_data_t), UM_SLEEP);
2847 	if (mdb_ctf_vread(&bwd->bwd_btree, "zfs_btree_t", "mdb_zfs_btree_t",
2848 	    wsp->walk_addr, 0) == -1) {
2849 		mdb_free(bwd, sizeof (*bwd));
2850 		return (WALK_ERR);
2851 	}
2852 
2853 	if (bwd->bwd_btree.bt_elem_size == 0) {
2854 		mdb_warn("invalid or uninitialized btree at %#lx\n",
2855 		    wsp->walk_addr);
2856 		mdb_free(bwd, sizeof (*bwd));
2857 		return (WALK_ERR);
2858 	}
2859 
2860 	size_t size = MAX(BTREE_LEAF_SIZE, sizeof (zfs_btree_core_t) +
2861 	    BTREE_CORE_ELEMS * bwd->bwd_btree.bt_elem_size);
2862 	bwd->bwd_node = mdb_zalloc(size, UM_SLEEP);
2863 
2864 	uintptr_t node = (uintptr_t)bwd->bwd_btree.bt_root;
2865 	if (node == 0ULL) {
2866 		wsp->walk_addr = 0ULL;
2867 		wsp->walk_data = bwd;
2868 		return (WALK_NEXT);
2869 	}
2870 	node = btree_leftmost_child(node, bwd->bwd_node);
2871 	if (node == 0ULL) {
2872 		mdb_free(bwd->bwd_node, size);
2873 		mdb_free(bwd, sizeof (*bwd));
2874 		return (WALK_ERR);
2875 	}
2876 	bwd->bwd_offset = 0;
2877 
2878 	wsp->walk_addr = node;
2879 	wsp->walk_data = bwd;
2880 	return (WALK_NEXT);
2881 }
2882 
2883 static void
btree_walk_fini(mdb_walk_state_t * wsp)2884 btree_walk_fini(mdb_walk_state_t *wsp)
2885 {
2886 	btree_walk_data_t *bwd = (btree_walk_data_t *)wsp->walk_data;
2887 
2888 	if (bwd == NULL)
2889 		return;
2890 
2891 	size_t size = MAX(BTREE_LEAF_SIZE, sizeof (zfs_btree_core_t) +
2892 	    BTREE_CORE_ELEMS * bwd->bwd_btree.bt_elem_size);
2893 	if (bwd->bwd_node != NULL)
2894 		mdb_free(bwd->bwd_node, size);
2895 
2896 	mdb_free(bwd, sizeof (*bwd));
2897 }
2898 
2899 typedef struct mdb_multilist {
2900 	uint64_t ml_num_sublists;
2901 	uintptr_t ml_sublists;
2902 } mdb_multilist_t;
2903 
2904 static int
multilist_walk_step(mdb_walk_state_t * wsp)2905 multilist_walk_step(mdb_walk_state_t *wsp)
2906 {
2907 	return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2908 	    wsp->walk_cbdata));
2909 }
2910 
2911 static int
multilist_walk_init(mdb_walk_state_t * wsp)2912 multilist_walk_init(mdb_walk_state_t *wsp)
2913 {
2914 	mdb_multilist_t ml;
2915 	ssize_t sublist_sz;
2916 	int list_offset;
2917 	size_t i;
2918 
2919 	if (wsp->walk_addr == 0) {
2920 		mdb_warn("must supply address of multilist_t\n");
2921 		return (WALK_ERR);
2922 	}
2923 
2924 	if (mdb_ctf_vread(&ml, "multilist_t", "mdb_multilist_t",
2925 	    wsp->walk_addr, 0) == -1) {
2926 		return (WALK_ERR);
2927 	}
2928 
2929 	if (ml.ml_num_sublists == 0 || ml.ml_sublists == 0) {
2930 		mdb_warn("invalid or uninitialized multilist at %#lx\n",
2931 		    wsp->walk_addr);
2932 		return (WALK_ERR);
2933 	}
2934 
2935 	/* mdb_ctf_sizeof_by_name() will print an error for us */
2936 	sublist_sz = mdb_ctf_sizeof_by_name("multilist_sublist_t");
2937 	if (sublist_sz == -1)
2938 		return (WALK_ERR);
2939 
2940 	/* mdb_ctf_offsetof_by_name will print an error for us */
2941 	list_offset = mdb_ctf_offsetof_by_name("multilist_sublist_t",
2942 	    "mls_list");
2943 	if (list_offset == -1)
2944 		return (WALK_ERR);
2945 
2946 	for (i = 0; i < ml.ml_num_sublists; i++) {
2947 		wsp->walk_addr = ml.ml_sublists + i * sublist_sz + list_offset;
2948 
2949 		if (mdb_layered_walk("list", wsp) == -1) {
2950 			mdb_warn("can't walk multilist sublist");
2951 			return (WALK_ERR);
2952 		}
2953 	}
2954 
2955 	return (WALK_NEXT);
2956 }
2957 
2958 typedef struct mdb_txg_list {
2959 	size_t		tl_offset;
2960 	uintptr_t	tl_head[TXG_SIZE];
2961 } mdb_txg_list_t;
2962 
2963 typedef struct txg_list_walk_data {
2964 	uintptr_t lw_head[TXG_SIZE];
2965 	int	lw_txgoff;
2966 	int	lw_maxoff;
2967 	size_t	lw_offset;
2968 	void	*lw_obj;
2969 } txg_list_walk_data_t;
2970 
2971 static int
txg_list_walk_init_common(mdb_walk_state_t * wsp,int txg,int maxoff)2972 txg_list_walk_init_common(mdb_walk_state_t *wsp, int txg, int maxoff)
2973 {
2974 	txg_list_walk_data_t *lwd;
2975 	mdb_txg_list_t list;
2976 	int i;
2977 
2978 	lwd = mdb_alloc(sizeof (txg_list_walk_data_t), UM_SLEEP | UM_GC);
2979 	if (mdb_ctf_vread(&list, "txg_list_t", "mdb_txg_list_t", wsp->walk_addr,
2980 	    0) == -1) {
2981 		mdb_warn("failed to read txg_list_t at %#lx", wsp->walk_addr);
2982 		return (WALK_ERR);
2983 	}
2984 
2985 	for (i = 0; i < TXG_SIZE; i++)
2986 		lwd->lw_head[i] = list.tl_head[i];
2987 	lwd->lw_offset = list.tl_offset;
2988 	lwd->lw_obj = mdb_alloc(lwd->lw_offset + sizeof (txg_node_t),
2989 	    UM_SLEEP | UM_GC);
2990 	lwd->lw_txgoff = txg;
2991 	lwd->lw_maxoff = maxoff;
2992 
2993 	wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
2994 	wsp->walk_data = lwd;
2995 
2996 	return (WALK_NEXT);
2997 }
2998 
2999 static int
txg_list_walk_init(mdb_walk_state_t * wsp)3000 txg_list_walk_init(mdb_walk_state_t *wsp)
3001 {
3002 	return (txg_list_walk_init_common(wsp, 0, TXG_SIZE-1));
3003 }
3004 
3005 static int
txg_list0_walk_init(mdb_walk_state_t * wsp)3006 txg_list0_walk_init(mdb_walk_state_t *wsp)
3007 {
3008 	return (txg_list_walk_init_common(wsp, 0, 0));
3009 }
3010 
3011 static int
txg_list1_walk_init(mdb_walk_state_t * wsp)3012 txg_list1_walk_init(mdb_walk_state_t *wsp)
3013 {
3014 	return (txg_list_walk_init_common(wsp, 1, 1));
3015 }
3016 
3017 static int
txg_list2_walk_init(mdb_walk_state_t * wsp)3018 txg_list2_walk_init(mdb_walk_state_t *wsp)
3019 {
3020 	return (txg_list_walk_init_common(wsp, 2, 2));
3021 }
3022 
3023 static int
txg_list3_walk_init(mdb_walk_state_t * wsp)3024 txg_list3_walk_init(mdb_walk_state_t *wsp)
3025 {
3026 	return (txg_list_walk_init_common(wsp, 3, 3));
3027 }
3028 
3029 static int
txg_list_walk_step(mdb_walk_state_t * wsp)3030 txg_list_walk_step(mdb_walk_state_t *wsp)
3031 {
3032 	txg_list_walk_data_t *lwd = wsp->walk_data;
3033 	uintptr_t addr;
3034 	txg_node_t *node;
3035 	int status;
3036 
3037 	while (wsp->walk_addr == 0 && lwd->lw_txgoff < lwd->lw_maxoff) {
3038 		lwd->lw_txgoff++;
3039 		wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff];
3040 	}
3041 
3042 	if (wsp->walk_addr == 0)
3043 		return (WALK_DONE);
3044 
3045 	addr = wsp->walk_addr - lwd->lw_offset;
3046 
3047 	if (mdb_vread(lwd->lw_obj,
3048 	    lwd->lw_offset + sizeof (txg_node_t), addr) == -1) {
3049 		mdb_warn("failed to read list element at %#lx", addr);
3050 		return (WALK_ERR);
3051 	}
3052 
3053 	status = wsp->walk_callback(addr, lwd->lw_obj, wsp->walk_cbdata);
3054 	node = (txg_node_t *)((uintptr_t)lwd->lw_obj + lwd->lw_offset);
3055 	wsp->walk_addr = (uintptr_t)node->tn_next[lwd->lw_txgoff];
3056 
3057 	return (status);
3058 }
3059 
3060 /*
3061  * ::walk spa
3062  *
3063  * Walk all named spa_t structures in the namespace.  This is nothing more than
3064  * a layered avl walk.
3065  */
3066 static int
spa_walk_init(mdb_walk_state_t * wsp)3067 spa_walk_init(mdb_walk_state_t *wsp)
3068 {
3069 	GElf_Sym sym;
3070 
3071 	if (wsp->walk_addr != 0) {
3072 		mdb_warn("spa walk only supports global walks\n");
3073 		return (WALK_ERR);
3074 	}
3075 
3076 	if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "spa_namespace_avl", &sym) == -1) {
3077 		mdb_warn("failed to find symbol 'spa_namespace_avl'");
3078 		return (WALK_ERR);
3079 	}
3080 
3081 	wsp->walk_addr = (uintptr_t)sym.st_value;
3082 
3083 	if (mdb_layered_walk("avl", wsp) == -1) {
3084 		mdb_warn("failed to walk 'avl'\n");
3085 		return (WALK_ERR);
3086 	}
3087 
3088 	return (WALK_NEXT);
3089 }
3090 
3091 static int
spa_walk_step(mdb_walk_state_t * wsp)3092 spa_walk_step(mdb_walk_state_t *wsp)
3093 {
3094 	return (wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata));
3095 }
3096 
3097 /*
3098  * [addr]::walk zio
3099  *
3100  * Walk all active zio_t structures on the system.  This is simply a layered
3101  * walk on top of ::walk zio_cache, with the optional ability to limit the
3102  * structures to a particular pool.
3103  */
3104 static int
zio_walk_init(mdb_walk_state_t * wsp)3105 zio_walk_init(mdb_walk_state_t *wsp)
3106 {
3107 	wsp->walk_data = (void *)wsp->walk_addr;
3108 
3109 	if (mdb_layered_walk("zio_cache", wsp) == -1) {
3110 		mdb_warn("failed to walk 'zio_cache'\n");
3111 		return (WALK_ERR);
3112 	}
3113 
3114 	return (WALK_NEXT);
3115 }
3116 
3117 static int
zio_walk_step(mdb_walk_state_t * wsp)3118 zio_walk_step(mdb_walk_state_t *wsp)
3119 {
3120 	mdb_zio_t zio;
3121 	uintptr_t spa = (uintptr_t)wsp->walk_data;
3122 
3123 	if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t",
3124 	    wsp->walk_addr, 0) == -1)
3125 		return (WALK_ERR);
3126 
3127 	if (spa != 0 && spa != zio.io_spa)
3128 		return (WALK_NEXT);
3129 
3130 	return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
3131 }
3132 
3133 /*
3134  * [addr]::walk zio_root
3135  *
3136  * Walk only root zio_t structures, optionally for a particular spa_t.
3137  */
3138 static int
zio_walk_root_step(mdb_walk_state_t * wsp)3139 zio_walk_root_step(mdb_walk_state_t *wsp)
3140 {
3141 	mdb_zio_t zio;
3142 	uintptr_t spa = (uintptr_t)wsp->walk_data;
3143 
3144 	if (mdb_ctf_vread(&zio, ZFS_STRUCT "zio", "mdb_zio_t",
3145 	    wsp->walk_addr, 0) == -1)
3146 		return (WALK_ERR);
3147 
3148 	if (spa != 0 && spa != zio.io_spa)
3149 		return (WALK_NEXT);
3150 
3151 	/* If the parent list is not empty, ignore */
3152 	if (zio.io_parent_list.list_head.list_next !=
3153 	    wsp->walk_addr +
3154 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "zio", "io_parent_list") +
3155 	    mdb_ctf_offsetof_by_name("struct list", "list_head"))
3156 		return (WALK_NEXT);
3157 
3158 	return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata));
3159 }
3160 
3161 /*
3162  * ::zfs_blkstats
3163  *
3164  *	-v	print verbose per-level information
3165  *
3166  */
3167 static int
zfs_blkstats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3168 zfs_blkstats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3169 {
3170 	boolean_t verbose = B_FALSE;
3171 	zfs_all_blkstats_t stats;
3172 	dmu_object_type_t t;
3173 	zfs_blkstat_t *tzb;
3174 	uint64_t ditto;
3175 
3176 	if (mdb_getopts(argc, argv,
3177 	    'v', MDB_OPT_SETBITS, TRUE, &verbose,
3178 	    NULL) != argc)
3179 		return (DCMD_USAGE);
3180 
3181 	if (!(flags & DCMD_ADDRSPEC))
3182 		return (DCMD_USAGE);
3183 
3184 	if (GETMEMB(addr, "spa", spa_dsl_pool, addr) ||
3185 	    GETMEMB(addr, "dsl_pool", dp_blkstats, addr) ||
3186 	    mdb_vread(&stats, sizeof (zfs_all_blkstats_t), addr) == -1) {
3187 		mdb_warn("failed to read data at %p;", addr);
3188 		mdb_printf("maybe no stats? run \"zpool scrub\" first.");
3189 		return (DCMD_ERR);
3190 	}
3191 
3192 	tzb = &stats.zab_type[DN_MAX_LEVELS][DMU_OT_TOTAL];
3193 	if (tzb->zb_gangs != 0) {
3194 		mdb_printf("Ganged blocks: %llu\n",
3195 		    (longlong_t)tzb->zb_gangs);
3196 	}
3197 
3198 	ditto = tzb->zb_ditto_2_of_2_samevdev + tzb->zb_ditto_2_of_3_samevdev +
3199 	    tzb->zb_ditto_3_of_3_samevdev;
3200 	if (ditto != 0) {
3201 		mdb_printf("Dittoed blocks on same vdev: %llu\n",
3202 		    (longlong_t)ditto);
3203 	}
3204 
3205 	mdb_printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
3206 	    "\t  avg\t comp\t%%Total\tType\n");
3207 
3208 	for (t = 0; t <= DMU_OT_TOTAL; t++) {
3209 		char csize[MDB_NICENUM_BUFLEN], lsize[MDB_NICENUM_BUFLEN];
3210 		char psize[MDB_NICENUM_BUFLEN], asize[MDB_NICENUM_BUFLEN];
3211 		char avg[MDB_NICENUM_BUFLEN];
3212 		char comp[MDB_NICENUM_BUFLEN], pct[MDB_NICENUM_BUFLEN];
3213 		char typename[64];
3214 		int l;
3215 
3216 
3217 		if (t == DMU_OT_DEFERRED)
3218 			strcpy(typename, "deferred free");
3219 		else if (t == DMU_OT_OTHER)
3220 			strcpy(typename, "other");
3221 		else if (t == DMU_OT_TOTAL)
3222 			strcpy(typename, "Total");
3223 		else if (enum_lookup("enum dmu_object_type",
3224 		    t, "DMU_OT_", sizeof (typename), typename) == -1) {
3225 			mdb_warn("failed to read type name");
3226 			return (DCMD_ERR);
3227 		}
3228 
3229 		if (stats.zab_type[DN_MAX_LEVELS][t].zb_asize == 0)
3230 			continue;
3231 
3232 		for (l = -1; l < DN_MAX_LEVELS; l++) {
3233 			int level = (l == -1 ? DN_MAX_LEVELS : l);
3234 			zfs_blkstat_t *zb = &stats.zab_type[level][t];
3235 
3236 			if (zb->zb_asize == 0)
3237 				continue;
3238 
3239 			/*
3240 			 * Don't print each level unless requested.
3241 			 */
3242 			if (!verbose && level != DN_MAX_LEVELS)
3243 				continue;
3244 
3245 			/*
3246 			 * If all the space is level 0, don't print the
3247 			 * level 0 separately.
3248 			 */
3249 			if (level == 0 && zb->zb_asize ==
3250 			    stats.zab_type[DN_MAX_LEVELS][t].zb_asize)
3251 				continue;
3252 
3253 			mdb_nicenum(zb->zb_count, csize);
3254 			mdb_nicenum(zb->zb_lsize, lsize);
3255 			mdb_nicenum(zb->zb_psize, psize);
3256 			mdb_nicenum(zb->zb_asize, asize);
3257 			mdb_nicenum(zb->zb_asize / zb->zb_count, avg);
3258 			(void) mdb_snprintfrac(comp, MDB_NICENUM_BUFLEN,
3259 			    zb->zb_lsize, zb->zb_psize, 2);
3260 			(void) mdb_snprintfrac(pct, MDB_NICENUM_BUFLEN,
3261 			    100 * zb->zb_asize, tzb->zb_asize, 2);
3262 
3263 			mdb_printf("%6s\t%5s\t%5s\t%5s\t%5s"
3264 			    "\t%5s\t%6s\t",
3265 			    csize, lsize, psize, asize, avg, comp, pct);
3266 
3267 			if (level == DN_MAX_LEVELS)
3268 				mdb_printf("%s\n", typename);
3269 			else
3270 				mdb_printf("  L%d %s\n",
3271 				    level, typename);
3272 		}
3273 	}
3274 
3275 	return (DCMD_OK);
3276 }
3277 
3278 typedef struct mdb_reference {
3279 	uintptr_t ref_holder;
3280 	uintptr_t ref_removed;
3281 	uint64_t ref_number;
3282 } mdb_reference_t;
3283 
3284 /* ARGSUSED */
3285 static int
reference_cb(uintptr_t addr,const void * ignored,void * arg)3286 reference_cb(uintptr_t addr, const void *ignored, void *arg)
3287 {
3288 	mdb_reference_t ref;
3289 	boolean_t holder_is_str = B_FALSE;
3290 	char holder_str[128];
3291 	boolean_t removed = (boolean_t)arg;
3292 
3293 	if (mdb_ctf_vread(&ref, "reference_t", "mdb_reference_t", addr,
3294 	    0) == -1)
3295 		return (DCMD_ERR);
3296 
3297 	if (mdb_readstr(holder_str, sizeof (holder_str),
3298 	    ref.ref_holder) != -1)
3299 		holder_is_str = strisprint(holder_str);
3300 
3301 	if (removed)
3302 		mdb_printf("removed ");
3303 	mdb_printf("reference ");
3304 	if (ref.ref_number != 1)
3305 		mdb_printf("with count=%llu ", ref.ref_number);
3306 	mdb_printf("with tag %lx", ref.ref_holder);
3307 	if (holder_is_str)
3308 		mdb_printf(" \"%s\"", holder_str);
3309 	mdb_printf(", held at:\n");
3310 
3311 	(void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL);
3312 
3313 	if (removed) {
3314 		mdb_printf("removed at:\n");
3315 		(void) mdb_call_dcmd("whatis", ref.ref_removed,
3316 		    DCMD_ADDRSPEC, 0, NULL);
3317 	}
3318 
3319 	mdb_printf("\n");
3320 
3321 	return (WALK_NEXT);
3322 }
3323 
3324 typedef struct mdb_zfs_refcount {
3325 	uint64_t rc_count;
3326 } mdb_zfs_refcount_t;
3327 
3328 typedef struct mdb_zfs_refcount_removed {
3329 	uint_t rc_removed_count;
3330 } mdb_zfs_refcount_removed_t;
3331 
3332 typedef struct mdb_zfs_refcount_tracked {
3333 	boolean_t rc_tracked;
3334 } mdb_zfs_refcount_tracked_t;
3335 
3336 /* ARGSUSED */
3337 static int
zfs_refcount(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3338 zfs_refcount(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3339 {
3340 	mdb_zfs_refcount_t rc;
3341 	mdb_zfs_refcount_removed_t rcr;
3342 	mdb_zfs_refcount_tracked_t rct;
3343 	int off;
3344 	boolean_t released = B_FALSE;
3345 
3346 	if (!(flags & DCMD_ADDRSPEC))
3347 		return (DCMD_USAGE);
3348 
3349 	if (mdb_getopts(argc, argv,
3350 	    'r', MDB_OPT_SETBITS, B_TRUE, &released,
3351 	    NULL) != argc)
3352 		return (DCMD_USAGE);
3353 
3354 	if (mdb_ctf_vread(&rc, "zfs_refcount_t", "mdb_zfs_refcount_t", addr,
3355 	    0) == -1)
3356 		return (DCMD_ERR);
3357 
3358 	if (mdb_ctf_vread(&rcr, "zfs_refcount_t", "mdb_zfs_refcount_removed_t",
3359 	    addr, MDB_CTF_VREAD_QUIET) == -1) {
3360 		mdb_printf("zfs_refcount_t at %p has %llu holds (untracked)\n",
3361 		    addr, (longlong_t)rc.rc_count);
3362 		return (DCMD_OK);
3363 	}
3364 
3365 	if (mdb_ctf_vread(&rct, "zfs_refcount_t", "mdb_zfs_refcount_tracked_t",
3366 	    addr, MDB_CTF_VREAD_QUIET) == -1) {
3367 		/* If this is an old target, it might be tracked. */
3368 		rct.rc_tracked = B_TRUE;
3369 	}
3370 
3371 	mdb_printf("zfs_refcount_t at %p has %llu current holds, "
3372 	    "%llu recently released holds\n",
3373 	    addr, (longlong_t)rc.rc_count, (longlong_t)rcr.rc_removed_count);
3374 
3375 	if (rct.rc_tracked && rc.rc_count > 0)
3376 		mdb_printf("current holds:\n");
3377 	off = mdb_ctf_offsetof_by_name("zfs_refcount_t", "rc_tree");
3378 	if (off == -1)
3379 		return (DCMD_ERR);
3380 	mdb_pwalk("avl", reference_cb, (void *)B_FALSE, addr + off);
3381 
3382 	if (released && rcr.rc_removed_count > 0) {
3383 		mdb_printf("released holds:\n");
3384 
3385 		off = mdb_ctf_offsetof_by_name("zfs_refcount_t", "rc_removed");
3386 		if (off == -1)
3387 			return (DCMD_ERR);
3388 		mdb_pwalk("list", reference_cb, (void *)B_TRUE, addr + off);
3389 	}
3390 
3391 	return (DCMD_OK);
3392 }
3393 
3394 /* ARGSUSED */
3395 static int
sa_attr_table(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3396 sa_attr_table(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3397 {
3398 	sa_attr_table_t *table;
3399 	sa_os_t sa_os;
3400 	char *name;
3401 	int i;
3402 
3403 	if (mdb_vread(&sa_os, sizeof (sa_os_t), addr) == -1) {
3404 		mdb_warn("failed to read sa_os at %p", addr);
3405 		return (DCMD_ERR);
3406 	}
3407 
3408 	table = mdb_alloc(sizeof (sa_attr_table_t) * sa_os.sa_num_attrs,
3409 	    UM_SLEEP | UM_GC);
3410 	name = mdb_alloc(MAXPATHLEN, UM_SLEEP | UM_GC);
3411 
3412 	if (mdb_vread(table, sizeof (sa_attr_table_t) * sa_os.sa_num_attrs,
3413 	    (uintptr_t)sa_os.sa_attr_table) == -1) {
3414 		mdb_warn("failed to read sa_os at %p", addr);
3415 		return (DCMD_ERR);
3416 	}
3417 
3418 	mdb_printf("%<u>%-10s %-10s %-10s %-10s %s%</u>\n",
3419 	    "ATTR ID", "REGISTERED", "LENGTH", "BSWAP", "NAME");
3420 	for (i = 0; i != sa_os.sa_num_attrs; i++) {
3421 		mdb_readstr(name, MAXPATHLEN, (uintptr_t)table[i].sa_name);
3422 		mdb_printf("%5x   %8x %8x %8x          %-s\n",
3423 		    (int)table[i].sa_attr, (int)table[i].sa_registered,
3424 		    (int)table[i].sa_length, table[i].sa_byteswap, name);
3425 	}
3426 
3427 	return (DCMD_OK);
3428 }
3429 
3430 static int
sa_get_off_table(uintptr_t addr,uint32_t ** off_tab,int attr_count)3431 sa_get_off_table(uintptr_t addr, uint32_t **off_tab, int attr_count)
3432 {
3433 	uintptr_t idx_table;
3434 
3435 	if (GETMEMB(addr, "sa_idx_tab", sa_idx_tab, idx_table)) {
3436 		mdb_printf("can't find offset table in sa_idx_tab\n");
3437 		return (-1);
3438 	}
3439 
3440 	*off_tab = mdb_alloc(attr_count * sizeof (uint32_t),
3441 	    UM_SLEEP | UM_GC);
3442 
3443 	if (mdb_vread(*off_tab,
3444 	    attr_count * sizeof (uint32_t), idx_table) == -1) {
3445 		mdb_warn("failed to attribute offset table %p", idx_table);
3446 		return (-1);
3447 	}
3448 
3449 	return (DCMD_OK);
3450 }
3451 
3452 /*ARGSUSED*/
3453 static int
sa_attr_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3454 sa_attr_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3455 {
3456 	uint32_t *offset_tab;
3457 	int attr_count;
3458 	uint64_t attr_id;
3459 	uintptr_t attr_addr;
3460 	uintptr_t bonus_tab, spill_tab;
3461 	uintptr_t db_bonus, db_spill;
3462 	uintptr_t os, os_sa;
3463 	uintptr_t db_data;
3464 
3465 	if (argc != 1)
3466 		return (DCMD_USAGE);
3467 
3468 	if (argv[0].a_type == MDB_TYPE_STRING)
3469 		attr_id = mdb_strtoull(argv[0].a_un.a_str);
3470 	else
3471 		return (DCMD_USAGE);
3472 
3473 	if (GETMEMB(addr, "sa_handle", sa_bonus_tab, bonus_tab) ||
3474 	    GETMEMB(addr, "sa_handle", sa_spill_tab, spill_tab) ||
3475 	    GETMEMB(addr, "sa_handle", sa_os, os) ||
3476 	    GETMEMB(addr, "sa_handle", sa_bonus, db_bonus) ||
3477 	    GETMEMB(addr, "sa_handle", sa_spill, db_spill)) {
3478 		mdb_printf("Can't find necessary information in sa_handle "
3479 		    "in sa_handle\n");
3480 		return (DCMD_ERR);
3481 	}
3482 
3483 	if (GETMEMB(os, "objset", os_sa, os_sa)) {
3484 		mdb_printf("Can't find os_sa in objset\n");
3485 		return (DCMD_ERR);
3486 	}
3487 
3488 	if (GETMEMB(os_sa, "sa_os", sa_num_attrs, attr_count)) {
3489 		mdb_printf("Can't find sa_num_attrs\n");
3490 		return (DCMD_ERR);
3491 	}
3492 
3493 	if (attr_id > attr_count) {
3494 		mdb_printf("attribute id number is out of range\n");
3495 		return (DCMD_ERR);
3496 	}
3497 
3498 	if (bonus_tab) {
3499 		if (sa_get_off_table(bonus_tab, &offset_tab,
3500 		    attr_count) == -1) {
3501 			return (DCMD_ERR);
3502 		}
3503 
3504 		if (GETMEMB(db_bonus, "dmu_buf", db_data, db_data)) {
3505 			mdb_printf("can't find db_data in bonus dbuf\n");
3506 			return (DCMD_ERR);
3507 		}
3508 	}
3509 
3510 	if (bonus_tab && !TOC_ATTR_PRESENT(offset_tab[attr_id]) &&
3511 	    spill_tab == 0) {
3512 		mdb_printf("Attribute does not exist\n");
3513 		return (DCMD_ERR);
3514 	} else if (!TOC_ATTR_PRESENT(offset_tab[attr_id]) && spill_tab) {
3515 		if (sa_get_off_table(spill_tab, &offset_tab,
3516 		    attr_count) == -1) {
3517 			return (DCMD_ERR);
3518 		}
3519 		if (GETMEMB(db_spill, "dmu_buf", db_data, db_data)) {
3520 			mdb_printf("can't find db_data in spill dbuf\n");
3521 			return (DCMD_ERR);
3522 		}
3523 		if (!TOC_ATTR_PRESENT(offset_tab[attr_id])) {
3524 			mdb_printf("Attribute does not exist\n");
3525 			return (DCMD_ERR);
3526 		}
3527 	}
3528 	attr_addr = db_data + TOC_OFF(offset_tab[attr_id]);
3529 	mdb_printf("%p\n", attr_addr);
3530 	return (DCMD_OK);
3531 }
3532 
3533 /* ARGSUSED */
3534 static int
zfs_ace_print_common(uintptr_t addr,uint_t flags,uint64_t id,uint32_t access_mask,uint16_t ace_flags,uint16_t ace_type,int verbose)3535 zfs_ace_print_common(uintptr_t addr, uint_t flags,
3536     uint64_t id, uint32_t access_mask, uint16_t ace_flags,
3537     uint16_t ace_type, int verbose)
3538 {
3539 	if (DCMD_HDRSPEC(flags) && !verbose)
3540 		mdb_printf("%<u>%-?s %-8s %-8s %-8s %s%</u>\n",
3541 		    "ADDR", "FLAGS", "MASK", "TYPE", "ID");
3542 
3543 	if (!verbose) {
3544 		mdb_printf("%0?p %-8x %-8x %-8x %-llx\n", addr,
3545 		    ace_flags, access_mask, ace_type, id);
3546 		return (DCMD_OK);
3547 	}
3548 
3549 	switch (ace_flags & ACE_TYPE_FLAGS) {
3550 	case ACE_OWNER:
3551 		mdb_printf("owner@:");
3552 		break;
3553 	case (ACE_IDENTIFIER_GROUP | ACE_GROUP):
3554 		mdb_printf("group@:");
3555 		break;
3556 	case ACE_EVERYONE:
3557 		mdb_printf("everyone@:");
3558 		break;
3559 	case ACE_IDENTIFIER_GROUP:
3560 		mdb_printf("group:%llx:", (u_longlong_t)id);
3561 		break;
3562 	case 0: /* User entry */
3563 		mdb_printf("user:%llx:", (u_longlong_t)id);
3564 		break;
3565 	}
3566 
3567 	/* print out permission mask */
3568 	if (access_mask & ACE_READ_DATA)
3569 		mdb_printf("r");
3570 	else
3571 		mdb_printf("-");
3572 	if (access_mask & ACE_WRITE_DATA)
3573 		mdb_printf("w");
3574 	else
3575 		mdb_printf("-");
3576 	if (access_mask & ACE_EXECUTE)
3577 		mdb_printf("x");
3578 	else
3579 		mdb_printf("-");
3580 	if (access_mask & ACE_APPEND_DATA)
3581 		mdb_printf("p");
3582 	else
3583 		mdb_printf("-");
3584 	if (access_mask & ACE_DELETE)
3585 		mdb_printf("d");
3586 	else
3587 		mdb_printf("-");
3588 	if (access_mask & ACE_DELETE_CHILD)
3589 		mdb_printf("D");
3590 	else
3591 		mdb_printf("-");
3592 	if (access_mask & ACE_READ_ATTRIBUTES)
3593 		mdb_printf("a");
3594 	else
3595 		mdb_printf("-");
3596 	if (access_mask & ACE_WRITE_ATTRIBUTES)
3597 		mdb_printf("A");
3598 	else
3599 		mdb_printf("-");
3600 	if (access_mask & ACE_READ_NAMED_ATTRS)
3601 		mdb_printf("R");
3602 	else
3603 		mdb_printf("-");
3604 	if (access_mask & ACE_WRITE_NAMED_ATTRS)
3605 		mdb_printf("W");
3606 	else
3607 		mdb_printf("-");
3608 	if (access_mask & ACE_READ_ACL)
3609 		mdb_printf("c");
3610 	else
3611 		mdb_printf("-");
3612 	if (access_mask & ACE_WRITE_ACL)
3613 		mdb_printf("C");
3614 	else
3615 		mdb_printf("-");
3616 	if (access_mask & ACE_WRITE_OWNER)
3617 		mdb_printf("o");
3618 	else
3619 		mdb_printf("-");
3620 	if (access_mask & ACE_SYNCHRONIZE)
3621 		mdb_printf("s");
3622 	else
3623 		mdb_printf("-");
3624 
3625 	mdb_printf(":");
3626 
3627 	/* Print out inheritance flags */
3628 	if (ace_flags & ACE_FILE_INHERIT_ACE)
3629 		mdb_printf("f");
3630 	else
3631 		mdb_printf("-");
3632 	if (ace_flags & ACE_DIRECTORY_INHERIT_ACE)
3633 		mdb_printf("d");
3634 	else
3635 		mdb_printf("-");
3636 	if (ace_flags & ACE_INHERIT_ONLY_ACE)
3637 		mdb_printf("i");
3638 	else
3639 		mdb_printf("-");
3640 	if (ace_flags & ACE_NO_PROPAGATE_INHERIT_ACE)
3641 		mdb_printf("n");
3642 	else
3643 		mdb_printf("-");
3644 	if (ace_flags & ACE_SUCCESSFUL_ACCESS_ACE_FLAG)
3645 		mdb_printf("S");
3646 	else
3647 		mdb_printf("-");
3648 	if (ace_flags & ACE_FAILED_ACCESS_ACE_FLAG)
3649 		mdb_printf("F");
3650 	else
3651 		mdb_printf("-");
3652 	if (ace_flags & ACE_INHERITED_ACE)
3653 		mdb_printf("I");
3654 	else
3655 		mdb_printf("-");
3656 
3657 	switch (ace_type) {
3658 	case ACE_ACCESS_ALLOWED_ACE_TYPE:
3659 		mdb_printf(":allow\n");
3660 		break;
3661 	case ACE_ACCESS_DENIED_ACE_TYPE:
3662 		mdb_printf(":deny\n");
3663 		break;
3664 	case ACE_SYSTEM_AUDIT_ACE_TYPE:
3665 		mdb_printf(":audit\n");
3666 		break;
3667 	case ACE_SYSTEM_ALARM_ACE_TYPE:
3668 		mdb_printf(":alarm\n");
3669 		break;
3670 	default:
3671 		mdb_printf(":?\n");
3672 	}
3673 	return (DCMD_OK);
3674 }
3675 
3676 /* ARGSUSED */
3677 static int
zfs_ace_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3678 zfs_ace_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3679 {
3680 	zfs_ace_t zace;
3681 	int verbose = FALSE;
3682 	uint64_t id;
3683 
3684 	if (!(flags & DCMD_ADDRSPEC))
3685 		return (DCMD_USAGE);
3686 
3687 	if (mdb_getopts(argc, argv,
3688 	    'v', MDB_OPT_SETBITS, TRUE, &verbose, TRUE, NULL) != argc)
3689 		return (DCMD_USAGE);
3690 
3691 	if (mdb_vread(&zace, sizeof (zfs_ace_t), addr) == -1) {
3692 		mdb_warn("failed to read zfs_ace_t");
3693 		return (DCMD_ERR);
3694 	}
3695 
3696 	if ((zace.z_hdr.z_flags & ACE_TYPE_FLAGS) == 0 ||
3697 	    (zace.z_hdr.z_flags & ACE_TYPE_FLAGS) == ACE_IDENTIFIER_GROUP)
3698 		id = zace.z_fuid;
3699 	else
3700 		id = -1;
3701 
3702 	return (zfs_ace_print_common(addr, flags, id, zace.z_hdr.z_access_mask,
3703 	    zace.z_hdr.z_flags, zace.z_hdr.z_type, verbose));
3704 }
3705 
3706 /* ARGSUSED */
3707 static int
zfs_ace0_print(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3708 zfs_ace0_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3709 {
3710 	ace_t ace;
3711 	uint64_t id;
3712 	int verbose = FALSE;
3713 
3714 	if (!(flags & DCMD_ADDRSPEC))
3715 		return (DCMD_USAGE);
3716 
3717 	if (mdb_getopts(argc, argv,
3718 	    'v', MDB_OPT_SETBITS, TRUE, &verbose, TRUE, NULL) != argc)
3719 		return (DCMD_USAGE);
3720 
3721 	if (mdb_vread(&ace, sizeof (ace_t), addr) == -1) {
3722 		mdb_warn("failed to read ace_t");
3723 		return (DCMD_ERR);
3724 	}
3725 
3726 	if ((ace.a_flags & ACE_TYPE_FLAGS) == 0 ||
3727 	    (ace.a_flags & ACE_TYPE_FLAGS) == ACE_IDENTIFIER_GROUP)
3728 		id = ace.a_who;
3729 	else
3730 		id = -1;
3731 
3732 	return (zfs_ace_print_common(addr, flags, id, ace.a_access_mask,
3733 	    ace.a_flags, ace.a_type, verbose));
3734 }
3735 
3736 typedef struct acl_dump_args {
3737 	int a_argc;
3738 	const mdb_arg_t *a_argv;
3739 	uint16_t a_version;
3740 	int a_flags;
3741 } acl_dump_args_t;
3742 
3743 /* ARGSUSED */
3744 static int
acl_aces_cb(uintptr_t addr,const void * unknown,void * arg)3745 acl_aces_cb(uintptr_t addr, const void *unknown, void *arg)
3746 {
3747 	acl_dump_args_t *acl_args = (acl_dump_args_t *)arg;
3748 
3749 	if (acl_args->a_version == 1) {
3750 		if (mdb_call_dcmd("zfs_ace", addr,
3751 		    DCMD_ADDRSPEC|acl_args->a_flags, acl_args->a_argc,
3752 		    acl_args->a_argv) != DCMD_OK) {
3753 			return (WALK_ERR);
3754 		}
3755 	} else {
3756 		if (mdb_call_dcmd("zfs_ace0", addr,
3757 		    DCMD_ADDRSPEC|acl_args->a_flags, acl_args->a_argc,
3758 		    acl_args->a_argv) != DCMD_OK) {
3759 			return (WALK_ERR);
3760 		}
3761 	}
3762 	acl_args->a_flags = DCMD_LOOP;
3763 	return (WALK_NEXT);
3764 }
3765 
3766 /* ARGSUSED */
3767 static int
acl_cb(uintptr_t addr,const void * unknown,void * arg)3768 acl_cb(uintptr_t addr, const void *unknown, void *arg)
3769 {
3770 	acl_dump_args_t *acl_args = (acl_dump_args_t *)arg;
3771 
3772 	if (acl_args->a_version == 1) {
3773 		if (mdb_pwalk("zfs_acl_node_aces", acl_aces_cb,
3774 		    arg, addr) != 0) {
3775 			mdb_warn("can't walk ACEs");
3776 			return (DCMD_ERR);
3777 		}
3778 	} else {
3779 		if (mdb_pwalk("zfs_acl_node_aces0", acl_aces_cb,
3780 		    arg, addr) != 0) {
3781 			mdb_warn("can't walk ACEs");
3782 			return (DCMD_ERR);
3783 		}
3784 	}
3785 	return (WALK_NEXT);
3786 }
3787 
3788 /* ARGSUSED */
3789 static int
zfs_acl_dump(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3790 zfs_acl_dump(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3791 {
3792 	zfs_acl_t zacl;
3793 	int verbose = FALSE;
3794 	acl_dump_args_t acl_args;
3795 
3796 	if (!(flags & DCMD_ADDRSPEC))
3797 		return (DCMD_USAGE);
3798 
3799 	if (mdb_getopts(argc, argv,
3800 	    'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3801 		return (DCMD_USAGE);
3802 
3803 	if (mdb_vread(&zacl, sizeof (zfs_acl_t), addr) == -1) {
3804 		mdb_warn("failed to read zfs_acl_t");
3805 		return (DCMD_ERR);
3806 	}
3807 
3808 	acl_args.a_argc = argc;
3809 	acl_args.a_argv = argv;
3810 	acl_args.a_version = zacl.z_version;
3811 	acl_args.a_flags = DCMD_LOOPFIRST;
3812 
3813 	if (mdb_pwalk("zfs_acl_node", acl_cb, &acl_args, addr) != 0) {
3814 		mdb_warn("can't walk ACL");
3815 		return (DCMD_ERR);
3816 	}
3817 
3818 	return (DCMD_OK);
3819 }
3820 
3821 /* ARGSUSED */
3822 static int
zfs_acl_node_walk_init(mdb_walk_state_t * wsp)3823 zfs_acl_node_walk_init(mdb_walk_state_t *wsp)
3824 {
3825 	if (wsp->walk_addr == 0) {
3826 		mdb_warn("must supply address of zfs_acl_node_t\n");
3827 		return (WALK_ERR);
3828 	}
3829 
3830 	wsp->walk_addr +=
3831 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "zfs_acl", "z_acl");
3832 
3833 	if (mdb_layered_walk("list", wsp) == -1) {
3834 		mdb_warn("failed to walk 'list'\n");
3835 		return (WALK_ERR);
3836 	}
3837 
3838 	return (WALK_NEXT);
3839 }
3840 
3841 static int
zfs_acl_node_walk_step(mdb_walk_state_t * wsp)3842 zfs_acl_node_walk_step(mdb_walk_state_t *wsp)
3843 {
3844 	zfs_acl_node_t	aclnode;
3845 
3846 	if (mdb_vread(&aclnode, sizeof (zfs_acl_node_t),
3847 	    wsp->walk_addr) == -1) {
3848 		mdb_warn("failed to read zfs_acl_node at %p", wsp->walk_addr);
3849 		return (WALK_ERR);
3850 	}
3851 
3852 	return (wsp->walk_callback(wsp->walk_addr, &aclnode, wsp->walk_cbdata));
3853 }
3854 
3855 typedef struct ace_walk_data {
3856 	int		ace_count;
3857 	int		ace_version;
3858 } ace_walk_data_t;
3859 
3860 static int
zfs_aces_walk_init_common(mdb_walk_state_t * wsp,int version,int ace_count,uintptr_t ace_data)3861 zfs_aces_walk_init_common(mdb_walk_state_t *wsp, int version,
3862     int ace_count, uintptr_t ace_data)
3863 {
3864 	ace_walk_data_t *ace_walk_data;
3865 
3866 	if (wsp->walk_addr == 0) {
3867 		mdb_warn("must supply address of zfs_acl_node_t\n");
3868 		return (WALK_ERR);
3869 	}
3870 
3871 	ace_walk_data = mdb_alloc(sizeof (ace_walk_data_t), UM_SLEEP | UM_GC);
3872 
3873 	ace_walk_data->ace_count = ace_count;
3874 	ace_walk_data->ace_version = version;
3875 
3876 	wsp->walk_addr = ace_data;
3877 	wsp->walk_data = ace_walk_data;
3878 
3879 	return (WALK_NEXT);
3880 }
3881 
3882 static int
zfs_acl_node_aces_walk_init_common(mdb_walk_state_t * wsp,int version)3883 zfs_acl_node_aces_walk_init_common(mdb_walk_state_t *wsp, int version)
3884 {
3885 	static int gotid;
3886 	static mdb_ctf_id_t acl_id;
3887 	int z_ace_count;
3888 	uintptr_t z_acldata;
3889 
3890 	if (!gotid) {
3891 		if (mdb_ctf_lookup_by_name("struct zfs_acl_node",
3892 		    &acl_id) == -1) {
3893 			mdb_warn("couldn't find struct zfs_acl_node");
3894 			return (DCMD_ERR);
3895 		}
3896 		gotid = TRUE;
3897 	}
3898 
3899 	if (GETMEMBID(wsp->walk_addr, &acl_id, z_ace_count, z_ace_count)) {
3900 		return (DCMD_ERR);
3901 	}
3902 	if (GETMEMBID(wsp->walk_addr, &acl_id, z_acldata, z_acldata)) {
3903 		return (DCMD_ERR);
3904 	}
3905 
3906 	return (zfs_aces_walk_init_common(wsp, version,
3907 	    z_ace_count, z_acldata));
3908 }
3909 
3910 /* ARGSUSED */
3911 static int
zfs_acl_node_aces_walk_init(mdb_walk_state_t * wsp)3912 zfs_acl_node_aces_walk_init(mdb_walk_state_t *wsp)
3913 {
3914 	return (zfs_acl_node_aces_walk_init_common(wsp, 1));
3915 }
3916 
3917 /* ARGSUSED */
3918 static int
zfs_acl_node_aces0_walk_init(mdb_walk_state_t * wsp)3919 zfs_acl_node_aces0_walk_init(mdb_walk_state_t *wsp)
3920 {
3921 	return (zfs_acl_node_aces_walk_init_common(wsp, 0));
3922 }
3923 
3924 static int
zfs_aces_walk_step(mdb_walk_state_t * wsp)3925 zfs_aces_walk_step(mdb_walk_state_t *wsp)
3926 {
3927 	ace_walk_data_t *ace_data = wsp->walk_data;
3928 	zfs_ace_t zace;
3929 	ace_t *acep;
3930 	int status;
3931 	int entry_type;
3932 	int allow_type;
3933 	uintptr_t ptr;
3934 
3935 	if (ace_data->ace_count == 0)
3936 		return (WALK_DONE);
3937 
3938 	if (mdb_vread(&zace, sizeof (zfs_ace_t), wsp->walk_addr) == -1) {
3939 		mdb_warn("failed to read zfs_ace_t at %#lx",
3940 		    wsp->walk_addr);
3941 		return (WALK_ERR);
3942 	}
3943 
3944 	switch (ace_data->ace_version) {
3945 	case 0:
3946 		acep = (ace_t *)&zace;
3947 		entry_type = acep->a_flags & ACE_TYPE_FLAGS;
3948 		allow_type = acep->a_type;
3949 		break;
3950 	case 1:
3951 		entry_type = zace.z_hdr.z_flags & ACE_TYPE_FLAGS;
3952 		allow_type = zace.z_hdr.z_type;
3953 		break;
3954 	default:
3955 		return (WALK_ERR);
3956 	}
3957 
3958 	ptr = (uintptr_t)wsp->walk_addr;
3959 	switch (entry_type) {
3960 	case ACE_OWNER:
3961 	case ACE_EVERYONE:
3962 	case (ACE_IDENTIFIER_GROUP | ACE_GROUP):
3963 		ptr += ace_data->ace_version == 0 ?
3964 		    sizeof (ace_t) : sizeof (zfs_ace_hdr_t);
3965 		break;
3966 	case ACE_IDENTIFIER_GROUP:
3967 	default:
3968 		switch (allow_type) {
3969 		case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
3970 		case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
3971 		case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
3972 		case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
3973 			ptr += ace_data->ace_version == 0 ?
3974 			    sizeof (ace_t) : sizeof (zfs_object_ace_t);
3975 			break;
3976 		default:
3977 			ptr += ace_data->ace_version == 0 ?
3978 			    sizeof (ace_t) : sizeof (zfs_ace_t);
3979 			break;
3980 		}
3981 	}
3982 
3983 	ace_data->ace_count--;
3984 	status = wsp->walk_callback(wsp->walk_addr,
3985 	    (void *)(uintptr_t)&zace, wsp->walk_cbdata);
3986 
3987 	wsp->walk_addr = ptr;
3988 	return (status);
3989 }
3990 
3991 typedef struct mdb_zfs_rrwlock {
3992 	uintptr_t	rr_writer;
3993 	boolean_t	rr_writer_wanted;
3994 } mdb_zfs_rrwlock_t;
3995 
3996 static uint_t rrw_key;
3997 
3998 /* ARGSUSED */
3999 static int
rrwlock(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4000 rrwlock(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4001 {
4002 	mdb_zfs_rrwlock_t rrw;
4003 
4004 	if (rrw_key == 0) {
4005 		if (mdb_ctf_readsym(&rrw_key, "uint_t", "rrw_tsd_key", 0) == -1)
4006 			return (DCMD_ERR);
4007 	}
4008 
4009 	if (mdb_ctf_vread(&rrw, "rrwlock_t", "mdb_zfs_rrwlock_t", addr,
4010 	    0) == -1)
4011 		return (DCMD_ERR);
4012 
4013 	if (rrw.rr_writer != 0) {
4014 		mdb_printf("write lock held by thread %lx\n", rrw.rr_writer);
4015 		return (DCMD_OK);
4016 	}
4017 
4018 	if (rrw.rr_writer_wanted) {
4019 		mdb_printf("writer wanted\n");
4020 	}
4021 
4022 	mdb_printf("anonymous references:\n");
4023 	(void) mdb_call_dcmd("zfs_refcount", addr +
4024 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "rrwlock", "rr_anon_rcount"),
4025 	    DCMD_ADDRSPEC, 0, NULL);
4026 
4027 	mdb_printf("linked references:\n");
4028 	(void) mdb_call_dcmd("zfs_refcount", addr +
4029 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "rrwlock", "rr_linked_rcount"),
4030 	    DCMD_ADDRSPEC, 0, NULL);
4031 
4032 	/*
4033 	 * XXX This should find references from
4034 	 * "::walk thread | ::tsd -v <rrw_key>", but there is no support
4035 	 * for programmatic consumption of dcmds, so this would be
4036 	 * difficult, potentially requiring reimplementing ::tsd (both
4037 	 * user and kernel versions) in this MDB module.
4038 	 */
4039 
4040 	return (DCMD_OK);
4041 }
4042 
4043 typedef struct mdb_arc_buf_hdr_t {
4044 	uint16_t b_psize;
4045 	uint16_t b_lsize;
4046 	struct {
4047 		uint32_t	b_bufcnt;
4048 		uintptr_t	b_state;
4049 	} b_l1hdr;
4050 } mdb_arc_buf_hdr_t;
4051 
4052 enum arc_cflags {
4053 	ARC_CFLAG_VERBOSE		= 1 << 0,
4054 	ARC_CFLAG_ANON			= 1 << 1,
4055 	ARC_CFLAG_MRU			= 1 << 2,
4056 	ARC_CFLAG_MFU			= 1 << 3,
4057 	ARC_CFLAG_BUFS			= 1 << 4,
4058 };
4059 
4060 typedef struct arc_compression_stats_data {
4061 	GElf_Sym anon_sym;	/* ARC_anon symbol */
4062 	GElf_Sym mru_sym;	/* ARC_mru symbol */
4063 	GElf_Sym mrug_sym;	/* ARC_mru_ghost symbol */
4064 	GElf_Sym mfu_sym;	/* ARC_mfu symbol */
4065 	GElf_Sym mfug_sym;	/* ARC_mfu_ghost symbol */
4066 	GElf_Sym l2c_sym;	/* ARC_l2c_only symbol */
4067 	uint64_t *anon_c_hist;	/* histogram of compressed sizes in anon */
4068 	uint64_t *anon_u_hist;	/* histogram of uncompressed sizes in anon */
4069 	uint64_t *anon_bufs;	/* histogram of buffer counts in anon state */
4070 	uint64_t *mru_c_hist;	/* histogram of compressed sizes in mru */
4071 	uint64_t *mru_u_hist;	/* histogram of uncompressed sizes in mru */
4072 	uint64_t *mru_bufs;	/* histogram of buffer counts in mru */
4073 	uint64_t *mfu_c_hist;	/* histogram of compressed sizes in mfu */
4074 	uint64_t *mfu_u_hist;	/* histogram of uncompressed sizes in mfu */
4075 	uint64_t *mfu_bufs;	/* histogram of buffer counts in mfu */
4076 	uint64_t *all_c_hist;	/* histogram of compressed anon + mru + mfu */
4077 	uint64_t *all_u_hist;	/* histogram of uncompressed anon + mru + mfu */
4078 	uint64_t *all_bufs;	/* histogram of buffer counts in all states  */
4079 	int arc_cflags;		/* arc compression flags, specified by user */
4080 	int hist_nbuckets;	/* number of buckets in each histogram */
4081 
4082 	ulong_t l1hdr_off;	/* offset of b_l1hdr in arc_buf_hdr_t */
4083 } arc_compression_stats_data_t;
4084 
4085 int
highbit64(uint64_t i)4086 highbit64(uint64_t i)
4087 {
4088 	int h = 1;
4089 
4090 	if (i == 0)
4091 		return (0);
4092 	if (i & 0xffffffff00000000ULL) {
4093 		h += 32; i >>= 32;
4094 	}
4095 	if (i & 0xffff0000) {
4096 		h += 16; i >>= 16;
4097 	}
4098 	if (i & 0xff00) {
4099 		h += 8; i >>= 8;
4100 	}
4101 	if (i & 0xf0) {
4102 		h += 4; i >>= 4;
4103 	}
4104 	if (i & 0xc) {
4105 		h += 2; i >>= 2;
4106 	}
4107 	if (i & 0x2) {
4108 		h += 1;
4109 	}
4110 	return (h);
4111 }
4112 
4113 /* ARGSUSED */
4114 static int
arc_compression_stats_cb(uintptr_t addr,const void * unknown,void * arg)4115 arc_compression_stats_cb(uintptr_t addr, const void *unknown, void *arg)
4116 {
4117 	arc_compression_stats_data_t *data = arg;
4118 	arc_flags_t flags;
4119 	mdb_arc_buf_hdr_t hdr;
4120 	int cbucket, ubucket, bufcnt;
4121 
4122 	/*
4123 	 * mdb_ctf_vread() uses the sizeof the target type (e.g.
4124 	 * sizeof (arc_buf_hdr_t) in the target) to read in the entire contents
4125 	 * of the target type into a buffer and then copy the values of the
4126 	 * desired members from the mdb typename (e.g. mdb_arc_buf_hdr_t) from
4127 	 * this buffer. Unfortunately, the way arc_buf_hdr_t is used by zfs,
4128 	 * the actual size allocated by the kernel for arc_buf_hdr_t is often
4129 	 * smaller than `sizeof (arc_buf_hdr_t)` (see the definitions of
4130 	 * l1arc_buf_hdr_t and arc_buf_hdr_t in
4131 	 * usr/src/uts/common/fs/zfs/arc.c). Attempting to read the entire
4132 	 * contents of arc_buf_hdr_t from the target (as mdb_ctf_vread() does)
4133 	 * can cause an error if the allocated size is indeed smaller--it's
4134 	 * possible that the 'missing' trailing members of arc_buf_hdr_t
4135 	 * (l1arc_buf_hdr_t and/or arc_buf_hdr_crypt_t) may fall into unmapped
4136 	 * memory.
4137 	 *
4138 	 * We use the GETMEMB macro instead which performs an mdb_vread()
4139 	 * but only reads enough of the target to retrieve the desired struct
4140 	 * member instead of the entire struct.
4141 	 */
4142 	if (GETMEMB(addr, "arc_buf_hdr", b_flags, flags) == -1)
4143 		return (WALK_ERR);
4144 
4145 	/*
4146 	 * We only count headers that have data loaded in the kernel.
4147 	 * This means an L1 header must be present as well as the data
4148 	 * that corresponds to the L1 header. If there's no L1 header,
4149 	 * we can skip the arc_buf_hdr_t completely. If it's present, we
4150 	 * must look at the ARC state (b_l1hdr.b_state) to determine if
4151 	 * the data is present.
4152 	 */
4153 	if ((flags & ARC_FLAG_HAS_L1HDR) == 0)
4154 		return (WALK_NEXT);
4155 
4156 	if (GETMEMB(addr, "arc_buf_hdr", b_psize, hdr.b_psize) == -1 ||
4157 	    GETMEMB(addr, "arc_buf_hdr", b_lsize, hdr.b_lsize) == -1 ||
4158 	    GETMEMB(addr + data->l1hdr_off, "l1arc_buf_hdr", b_bufcnt,
4159 	    hdr.b_l1hdr.b_bufcnt) == -1 ||
4160 	    GETMEMB(addr + data->l1hdr_off, "l1arc_buf_hdr", b_state,
4161 	    hdr.b_l1hdr.b_state) == -1)
4162 		return (WALK_ERR);
4163 
4164 	/*
4165 	 * Headers in the ghost states, or the l2c_only state don't have
4166 	 * arc buffers linked off of them. Thus, their compressed size
4167 	 * is meaningless, so we skip these from the stats.
4168 	 */
4169 	if (hdr.b_l1hdr.b_state == data->mrug_sym.st_value ||
4170 	    hdr.b_l1hdr.b_state == data->mfug_sym.st_value ||
4171 	    hdr.b_l1hdr.b_state == data->l2c_sym.st_value) {
4172 		return (WALK_NEXT);
4173 	}
4174 
4175 	/*
4176 	 * The physical size (compressed) and logical size
4177 	 * (uncompressed) are in units of SPA_MINBLOCKSIZE. By default,
4178 	 * we use the log2 of this value (rounded down to the nearest
4179 	 * integer) to determine the bucket to assign this header to.
4180 	 * Thus, the histogram is logarithmic with respect to the size
4181 	 * of the header. For example, the following is a mapping of the
4182 	 * bucket numbers and the range of header sizes they correspond to:
4183 	 *
4184 	 *	0: 0 byte headers
4185 	 *	1: 512 byte headers
4186 	 *	2: [1024 - 2048) byte headers
4187 	 *	3: [2048 - 4096) byte headers
4188 	 *	4: [4096 - 8192) byte headers
4189 	 *	5: [8192 - 16394) byte headers
4190 	 *	6: [16384 - 32768) byte headers
4191 	 *	7: [32768 - 65536) byte headers
4192 	 *	8: [65536 - 131072) byte headers
4193 	 *	9: 131072 byte headers
4194 	 *
4195 	 * If the ARC_CFLAG_VERBOSE flag was specified, we use the
4196 	 * physical and logical sizes directly. Thus, the histogram will
4197 	 * no longer be logarithmic; instead it will be linear with
4198 	 * respect to the size of the header. The following is a mapping
4199 	 * of the first many bucket numbers and the header size they
4200 	 * correspond to:
4201 	 *
4202 	 *	0: 0 byte headers
4203 	 *	1: 512 byte headers
4204 	 *	2: 1024 byte headers
4205 	 *	3: 1536 byte headers
4206 	 *	4: 2048 byte headers
4207 	 *	5: 2560 byte headers
4208 	 *	6: 3072 byte headers
4209 	 *
4210 	 * And so on. Keep in mind that a range of sizes isn't used in
4211 	 * the case of linear scale because the headers can only
4212 	 * increment or decrement in sizes of 512 bytes. So, it's not
4213 	 * possible for a header to be sized in between whats listed
4214 	 * above.
4215 	 *
4216 	 * Also, the above mapping values were calculated assuming a
4217 	 * SPA_MINBLOCKSHIFT of 512 bytes and a SPA_MAXBLOCKSIZE of 128K.
4218 	 */
4219 
4220 	if (data->arc_cflags & ARC_CFLAG_VERBOSE) {
4221 		cbucket = hdr.b_psize;
4222 		ubucket = hdr.b_lsize;
4223 	} else {
4224 		cbucket = highbit64(hdr.b_psize);
4225 		ubucket = highbit64(hdr.b_lsize);
4226 	}
4227 
4228 	bufcnt = hdr.b_l1hdr.b_bufcnt;
4229 	if (bufcnt >= data->hist_nbuckets)
4230 		bufcnt = data->hist_nbuckets - 1;
4231 
4232 	/* Ensure we stay within the bounds of the histogram array */
4233 	ASSERT3U(cbucket, <, data->hist_nbuckets);
4234 	ASSERT3U(ubucket, <, data->hist_nbuckets);
4235 
4236 	if (hdr.b_l1hdr.b_state == data->anon_sym.st_value) {
4237 		data->anon_c_hist[cbucket]++;
4238 		data->anon_u_hist[ubucket]++;
4239 		data->anon_bufs[bufcnt]++;
4240 	} else if (hdr.b_l1hdr.b_state == data->mru_sym.st_value) {
4241 		data->mru_c_hist[cbucket]++;
4242 		data->mru_u_hist[ubucket]++;
4243 		data->mru_bufs[bufcnt]++;
4244 	} else if (hdr.b_l1hdr.b_state == data->mfu_sym.st_value) {
4245 		data->mfu_c_hist[cbucket]++;
4246 		data->mfu_u_hist[ubucket]++;
4247 		data->mfu_bufs[bufcnt]++;
4248 	}
4249 
4250 	data->all_c_hist[cbucket]++;
4251 	data->all_u_hist[ubucket]++;
4252 	data->all_bufs[bufcnt]++;
4253 
4254 	return (WALK_NEXT);
4255 }
4256 
4257 /* ARGSUSED */
4258 static int
arc_compression_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4259 arc_compression_stats(uintptr_t addr, uint_t flags, int argc,
4260     const mdb_arg_t *argv)
4261 {
4262 	arc_compression_stats_data_t data = { 0 };
4263 	unsigned int max_shifted = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
4264 	unsigned int hist_size;
4265 	char range[32];
4266 	int rc = DCMD_OK;
4267 	int off;
4268 
4269 	if (mdb_getopts(argc, argv,
4270 	    'v', MDB_OPT_SETBITS, ARC_CFLAG_VERBOSE, &data.arc_cflags,
4271 	    'a', MDB_OPT_SETBITS, ARC_CFLAG_ANON, &data.arc_cflags,
4272 	    'b', MDB_OPT_SETBITS, ARC_CFLAG_BUFS, &data.arc_cflags,
4273 	    'r', MDB_OPT_SETBITS, ARC_CFLAG_MRU, &data.arc_cflags,
4274 	    'f', MDB_OPT_SETBITS, ARC_CFLAG_MFU, &data.arc_cflags,
4275 	    NULL) != argc)
4276 		return (DCMD_USAGE);
4277 
4278 	if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_anon", &data.anon_sym) ||
4279 	    mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mru", &data.mru_sym) ||
4280 	    mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mru_ghost", &data.mrug_sym) ||
4281 	    mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mfu", &data.mfu_sym) ||
4282 	    mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_mfu_ghost", &data.mfug_sym) ||
4283 	    mdb_lookup_by_obj(ZFS_OBJ_NAME, "ARC_l2c_only", &data.l2c_sym)) {
4284 		mdb_warn("can't find arc state symbol");
4285 		return (DCMD_ERR);
4286 	}
4287 
4288 	/*
4289 	 * Determine the maximum expected size for any header, and use
4290 	 * this to determine the number of buckets needed for each
4291 	 * histogram. If ARC_CFLAG_VERBOSE is specified, this value is
4292 	 * used directly; otherwise the log2 of the maximum size is
4293 	 * used. Thus, if using a log2 scale there's a maximum of 10
4294 	 * possible buckets, while the linear scale (when using
4295 	 * ARC_CFLAG_VERBOSE) has a maximum of 257 buckets.
4296 	 */
4297 	if (data.arc_cflags & ARC_CFLAG_VERBOSE)
4298 		data.hist_nbuckets = max_shifted + 1;
4299 	else
4300 		data.hist_nbuckets = highbit64(max_shifted) + 1;
4301 
4302 	hist_size = sizeof (uint64_t) * data.hist_nbuckets;
4303 
4304 	data.anon_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4305 	data.anon_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4306 	data.anon_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4307 
4308 	data.mru_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4309 	data.mru_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4310 	data.mru_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4311 
4312 	data.mfu_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4313 	data.mfu_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4314 	data.mfu_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4315 
4316 	data.all_c_hist = mdb_zalloc(hist_size, UM_SLEEP);
4317 	data.all_u_hist = mdb_zalloc(hist_size, UM_SLEEP);
4318 	data.all_bufs = mdb_zalloc(hist_size, UM_SLEEP);
4319 
4320 	if ((off = mdb_ctf_offsetof_by_name(ZFS_STRUCT "arc_buf_hdr",
4321 	    "b_l1hdr")) == -1) {
4322 		mdb_warn("could not get offset of b_l1hdr from arc_buf_hdr_t");
4323 		rc = DCMD_ERR;
4324 		goto out;
4325 	}
4326 	data.l1hdr_off = off;
4327 
4328 	if (mdb_walk("arc_buf_hdr_t_full", arc_compression_stats_cb,
4329 	    &data) != 0) {
4330 		mdb_warn("can't walk arc_buf_hdr's");
4331 		rc = DCMD_ERR;
4332 		goto out;
4333 	}
4334 
4335 	if (data.arc_cflags & ARC_CFLAG_VERBOSE) {
4336 		rc = mdb_snprintf(range, sizeof (range),
4337 		    "[n*%llu, (n+1)*%llu)", SPA_MINBLOCKSIZE,
4338 		    SPA_MINBLOCKSIZE);
4339 	} else {
4340 		rc = mdb_snprintf(range, sizeof (range),
4341 		    "[2^(n-1)*%llu, 2^n*%llu)", SPA_MINBLOCKSIZE,
4342 		    SPA_MINBLOCKSIZE);
4343 	}
4344 
4345 	if (rc < 0) {
4346 		/* snprintf failed, abort the dcmd */
4347 		rc = DCMD_ERR;
4348 		goto out;
4349 	} else {
4350 		/* snprintf succeeded above, reset return code */
4351 		rc = DCMD_OK;
4352 	}
4353 
4354 	if (data.arc_cflags & ARC_CFLAG_ANON) {
4355 		if (data.arc_cflags & ARC_CFLAG_BUFS) {
4356 			mdb_printf("Histogram of the number of anon buffers "
4357 			    "that are associated with an arc hdr.\n");
4358 			dump_histogram(data.anon_bufs, data.hist_nbuckets, 0);
4359 			mdb_printf("\n");
4360 		}
4361 		mdb_printf("Histogram of compressed anon buffers.\n"
4362 		    "Each bucket represents buffers of size: %s.\n", range);
4363 		dump_histogram(data.anon_c_hist, data.hist_nbuckets, 0);
4364 		mdb_printf("\n");
4365 
4366 		mdb_printf("Histogram of uncompressed anon buffers.\n"
4367 		    "Each bucket represents buffers of size: %s.\n", range);
4368 		dump_histogram(data.anon_u_hist, data.hist_nbuckets, 0);
4369 		mdb_printf("\n");
4370 	}
4371 
4372 	if (data.arc_cflags & ARC_CFLAG_MRU) {
4373 		if (data.arc_cflags & ARC_CFLAG_BUFS) {
4374 			mdb_printf("Histogram of the number of mru buffers "
4375 			    "that are associated with an arc hdr.\n");
4376 			dump_histogram(data.mru_bufs, data.hist_nbuckets, 0);
4377 			mdb_printf("\n");
4378 		}
4379 		mdb_printf("Histogram of compressed mru buffers.\n"
4380 		    "Each bucket represents buffers of size: %s.\n", range);
4381 		dump_histogram(data.mru_c_hist, data.hist_nbuckets, 0);
4382 		mdb_printf("\n");
4383 
4384 		mdb_printf("Histogram of uncompressed mru buffers.\n"
4385 		    "Each bucket represents buffers of size: %s.\n", range);
4386 		dump_histogram(data.mru_u_hist, data.hist_nbuckets, 0);
4387 		mdb_printf("\n");
4388 	}
4389 
4390 	if (data.arc_cflags & ARC_CFLAG_MFU) {
4391 		if (data.arc_cflags & ARC_CFLAG_BUFS) {
4392 			mdb_printf("Histogram of the number of mfu buffers "
4393 			    "that are associated with an arc hdr.\n");
4394 			dump_histogram(data.mfu_bufs, data.hist_nbuckets, 0);
4395 			mdb_printf("\n");
4396 		}
4397 
4398 		mdb_printf("Histogram of compressed mfu buffers.\n"
4399 		    "Each bucket represents buffers of size: %s.\n", range);
4400 		dump_histogram(data.mfu_c_hist, data.hist_nbuckets, 0);
4401 		mdb_printf("\n");
4402 
4403 		mdb_printf("Histogram of uncompressed mfu buffers.\n"
4404 		    "Each bucket represents buffers of size: %s.\n", range);
4405 		dump_histogram(data.mfu_u_hist, data.hist_nbuckets, 0);
4406 		mdb_printf("\n");
4407 	}
4408 
4409 	if (data.arc_cflags & ARC_CFLAG_BUFS) {
4410 		mdb_printf("Histogram of all buffers that "
4411 		    "are associated with an arc hdr.\n");
4412 		dump_histogram(data.all_bufs, data.hist_nbuckets, 0);
4413 		mdb_printf("\n");
4414 	}
4415 
4416 	mdb_printf("Histogram of all compressed buffers.\n"
4417 	    "Each bucket represents buffers of size: %s.\n", range);
4418 	dump_histogram(data.all_c_hist, data.hist_nbuckets, 0);
4419 	mdb_printf("\n");
4420 
4421 	mdb_printf("Histogram of all uncompressed buffers.\n"
4422 	    "Each bucket represents buffers of size: %s.\n", range);
4423 	dump_histogram(data.all_u_hist, data.hist_nbuckets, 0);
4424 
4425 out:
4426 	mdb_free(data.anon_c_hist, hist_size);
4427 	mdb_free(data.anon_u_hist, hist_size);
4428 	mdb_free(data.anon_bufs, hist_size);
4429 
4430 	mdb_free(data.mru_c_hist, hist_size);
4431 	mdb_free(data.mru_u_hist, hist_size);
4432 	mdb_free(data.mru_bufs, hist_size);
4433 
4434 	mdb_free(data.mfu_c_hist, hist_size);
4435 	mdb_free(data.mfu_u_hist, hist_size);
4436 	mdb_free(data.mfu_bufs, hist_size);
4437 
4438 	mdb_free(data.all_c_hist, hist_size);
4439 	mdb_free(data.all_u_hist, hist_size);
4440 	mdb_free(data.all_bufs, hist_size);
4441 
4442 	return (rc);
4443 }
4444 
4445 typedef struct mdb_range_seg64 {
4446 	uint64_t rs_start;
4447 	uint64_t rs_end;
4448 } mdb_range_seg64_t;
4449 
4450 typedef struct mdb_range_seg32 {
4451 	uint32_t rs_start;
4452 	uint32_t rs_end;
4453 } mdb_range_seg32_t;
4454 
4455 /* ARGSUSED */
4456 static int
range_tree_cb(uintptr_t addr,const void * unknown,void * arg)4457 range_tree_cb(uintptr_t addr, const void *unknown, void *arg)
4458 {
4459 	mdb_range_tree_t *rt = (mdb_range_tree_t *)arg;
4460 	uint64_t start, end;
4461 
4462 	if (rt->rt_type == RANGE_SEG64) {
4463 		mdb_range_seg64_t rs;
4464 
4465 		if (mdb_ctf_vread(&rs, ZFS_STRUCT "range_seg64",
4466 		    "mdb_range_seg64_t", addr, 0) == -1)
4467 			return (DCMD_ERR);
4468 		start = rs.rs_start;
4469 		end = rs.rs_end;
4470 	} else {
4471 		ASSERT3U(rt->rt_type, ==, RANGE_SEG32);
4472 		mdb_range_seg32_t rs;
4473 
4474 		if (mdb_ctf_vread(&rs, ZFS_STRUCT "range_seg32",
4475 		    "mdb_range_seg32_t", addr, 0) == -1)
4476 			return (DCMD_ERR);
4477 		start = ((uint64_t)rs.rs_start << rt->rt_shift) + rt->rt_start;
4478 		end = ((uint64_t)rs.rs_end << rt->rt_shift) + rt->rt_start;
4479 	}
4480 
4481 	mdb_printf("\t[%llx %llx) (length %llx)\n", start, end, end - start);
4482 
4483 	return (0);
4484 }
4485 
4486 /* ARGSUSED */
4487 static int
range_tree(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4488 range_tree(uintptr_t addr, uint_t flags, int argc,
4489     const mdb_arg_t *argv)
4490 {
4491 	mdb_range_tree_t rt;
4492 	uintptr_t btree_addr;
4493 
4494 	if (!(flags & DCMD_ADDRSPEC))
4495 		return (DCMD_USAGE);
4496 
4497 	if (mdb_ctf_vread(&rt, ZFS_STRUCT "range_tree", "mdb_range_tree_t",
4498 	    addr, 0) == -1)
4499 		return (DCMD_ERR);
4500 
4501 	mdb_printf("%p: range tree of %llu entries, %llu bytes\n",
4502 	    addr, rt.rt_root.bt_num_elems, rt.rt_space);
4503 
4504 	btree_addr = addr +
4505 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "range_tree", "rt_root");
4506 
4507 	if (mdb_pwalk("zfs_btree", range_tree_cb, &rt, btree_addr) != 0) {
4508 		mdb_warn("can't walk range_tree segments");
4509 		return (DCMD_ERR);
4510 	}
4511 	return (DCMD_OK);
4512 }
4513 
4514 typedef struct mdb_spa_log_sm {
4515 	uint64_t sls_sm_obj;
4516 	uint64_t sls_txg;
4517 	uint64_t sls_nblocks;
4518 	uint64_t sls_mscount;
4519 } mdb_spa_log_sm_t;
4520 
4521 /* ARGSUSED */
4522 static int
logsm_stats_cb(uintptr_t addr,const void * unknown,void * arg)4523 logsm_stats_cb(uintptr_t addr, const void *unknown, void *arg)
4524 {
4525 	mdb_spa_log_sm_t sls;
4526 	if (mdb_ctf_vread(&sls, ZFS_STRUCT "spa_log_sm", "mdb_spa_log_sm_t",
4527 	    addr, 0) == -1)
4528 		return (WALK_ERR);
4529 
4530 	mdb_printf("%7lld %7lld %7lld %7lld\n",
4531 	    sls.sls_txg, sls.sls_nblocks, sls.sls_mscount, sls.sls_sm_obj);
4532 
4533 	return (WALK_NEXT);
4534 }
4535 typedef struct mdb_log_summary_entry {
4536 	uint64_t lse_start;
4537 	uint64_t lse_blkcount;
4538 	uint64_t lse_mscount;
4539 } mdb_log_summary_entry_t;
4540 
4541 /* ARGSUSED */
4542 static int
logsm_summary_cb(uintptr_t addr,const void * unknown,void * arg)4543 logsm_summary_cb(uintptr_t addr, const void *unknown, void *arg)
4544 {
4545 	mdb_log_summary_entry_t lse;
4546 	if (mdb_ctf_vread(&lse, ZFS_STRUCT "log_summary_entry",
4547 	    "mdb_log_summary_entry_t", addr, 0) == -1)
4548 		return (WALK_ERR);
4549 
4550 	mdb_printf("%7lld %7lld %7lld\n",
4551 	    lse.lse_start, lse.lse_blkcount, lse.lse_mscount);
4552 	return (WALK_NEXT);
4553 }
4554 
4555 /* ARGSUSED */
4556 static int
logsm_stats(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)4557 logsm_stats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4558 {
4559 	if (!(flags & DCMD_ADDRSPEC))
4560 		return (DCMD_USAGE);
4561 
4562 	uintptr_t sls_avl_addr = addr +
4563 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "spa", "spa_sm_logs_by_txg");
4564 	uintptr_t summary_addr = addr +
4565 	    mdb_ctf_offsetof_by_name(ZFS_STRUCT "spa", "spa_log_summary");
4566 
4567 	mdb_printf("Log Entries:\n");
4568 	mdb_printf("%7s %7s %7s %7s\n", "txg", "blk", "ms", "obj");
4569 	if (mdb_pwalk("avl", logsm_stats_cb, NULL, sls_avl_addr) != 0)
4570 		return (DCMD_ERR);
4571 
4572 	mdb_printf("\nSummary Entries:\n");
4573 	mdb_printf("%7s %7s %7s\n", "txg", "blk", "ms");
4574 	if (mdb_pwalk("list", logsm_summary_cb, NULL, summary_addr) != 0)
4575 		return (DCMD_ERR);
4576 
4577 	return (DCMD_OK);
4578 }
4579 
4580 /*
4581  * MDB module linkage information:
4582  *
4583  * We declare a list of structures describing our dcmds, and a function
4584  * named _mdb_init to return a pointer to our module information.
4585  */
4586 
4587 static const mdb_dcmd_t dcmds[] = {
4588 	{ "arc", "[-bkmg]", "print ARC variables", arc_print },
4589 	{ "blkptr", ":", "print blkptr_t", blkptr },
4590 	{ "dva", ":", "print dva_t", dva },
4591 	{ "dbuf", ":", "print dmu_buf_impl_t", dbuf },
4592 	{ "dbuf_stats", ":", "dbuf stats", dbuf_stats },
4593 	{ "dbufs",
4594 	    "\t[-O objset_t*] [-n objset_name | \"mos\"] "
4595 	    "[-o object | \"mdn\"] \n"
4596 	    "\t[-l level] [-b blkid | \"bonus\"]",
4597 	    "find dmu_buf_impl_t's that match specified criteria", dbufs },
4598 	{ "abuf_find", "dva_word[0] dva_word[1]",
4599 	    "find arc_buf_hdr_t of a specified DVA",
4600 	    abuf_find },
4601 	{ "logsm_stats", ":", "print log space map statistics of a spa_t",
4602 	    logsm_stats},
4603 	{ "spa", "?[-cevmMh]\n"
4604 	    "\t-c display spa config\n"
4605 	    "\t-e display vdev statistics\n"
4606 	    "\t-v display vdev information\n"
4607 	    "\t-m display metaslab statistics\n"
4608 	    "\t-M display metaslab group statistics\n"
4609 	    "\t-h display histogram (requires -m or -M)\n",
4610 	    "spa_t summary", spa_print },
4611 	{ "spa_config", ":", "print spa_t configuration", spa_print_config },
4612 	{ "spa_space", ":[-b]", "print spa_t on-disk space usage", spa_space },
4613 	{ "spa_vdevs", ":[-emMh]\n"
4614 	    "\t-e display vdev statistics\n"
4615 	    "\t-m dispaly metaslab statistics\n"
4616 	    "\t-M display metaslab group statistic\n"
4617 	    "\t-h display histogram (requires -m or -M)\n",
4618 	    "given a spa_t, print vdev summary", spa_vdevs },
4619 	{ "sm_entries", "<buffer length in bytes>",
4620 	    "print out space map entries from a buffer decoded",
4621 	    sm_entries},
4622 	{ "vdev", ":[-remMh]\n"
4623 	    "\t-r display recursively\n"
4624 	    "\t-e display statistics\n"
4625 	    "\t-m display metaslab statistics (top level vdev only)\n"
4626 	    "\t-M display metaslab group statistics (top level vdev only)\n"
4627 	    "\t-h display histogram (requires -m or -M)\n",
4628 	    "vdev_t summary", vdev_print },
4629 	{ "zio", ":[-cpr]\n"
4630 	    "\t-c display children\n"
4631 	    "\t-p display parents\n"
4632 	    "\t-r display recursively",
4633 	    "zio_t summary", zio_print },
4634 	{ "zio_state", "?", "print out all zio_t structures on system or "
4635 	    "for a particular pool", zio_state },
4636 	{ "zfs_blkstats", ":[-v]",
4637 	    "given a spa_t, print block type stats from last scrub",
4638 	    zfs_blkstats },
4639 	{ "zfs_params", "", "print zfs tunable parameters", zfs_params },
4640 	{ "zfs_refcount", ":[-r]\n"
4641 	    "\t-r display recently removed references",
4642 	    "print zfs_refcount_t holders", zfs_refcount },
4643 	{ "zap_leaf", "", "print zap_leaf_phys_t", zap_leaf },
4644 	{ "zfs_aces", ":[-v]", "print all ACEs from a zfs_acl_t",
4645 	    zfs_acl_dump },
4646 	{ "zfs_ace", ":[-v]", "print zfs_ace", zfs_ace_print },
4647 	{ "zfs_ace0", ":[-v]", "print zfs_ace0", zfs_ace0_print },
4648 	{ "sa_attr_table", ":", "print SA attribute table from sa_os_t",
4649 	    sa_attr_table},
4650 	{ "sa_attr", ": attr_id",
4651 	    "print SA attribute address when given sa_handle_t", sa_attr_print},
4652 	{ "zfs_dbgmsg", ":[-var]",
4653 	    "print zfs debug log", dbgmsg},
4654 	{ "rrwlock", ":",
4655 	    "print rrwlock_t, including readers", rrwlock},
4656 	{ "metaslab_weight", "weight",
4657 	    "print metaslab weight", metaslab_weight},
4658 	{ "metaslab_trace", ":",
4659 	    "print metaslab allocation trace records", metaslab_trace},
4660 	{ "arc_compression_stats", ":[-vabrf]\n"
4661 	    "\t-v verbose, display a linearly scaled histogram\n"
4662 	    "\t-a display ARC_anon state statistics individually\n"
4663 	    "\t-r display ARC_mru state statistics individually\n"
4664 	    "\t-f display ARC_mfu state statistics individually\n"
4665 	    "\t-b display histogram of buffer counts\n",
4666 	    "print a histogram of compressed arc buffer sizes",
4667 	    arc_compression_stats},
4668 	{ "range_tree", ":",
4669 	    "print entries in range_tree_t", range_tree},
4670 	{ NULL }
4671 };
4672 
4673 static const mdb_walker_t walkers[] = {
4674 	{ "txg_list", "given any txg_list_t *, walk all entries in all txgs",
4675 	    txg_list_walk_init, txg_list_walk_step, NULL },
4676 	{ "txg_list0", "given any txg_list_t *, walk all entries in txg 0",
4677 	    txg_list0_walk_init, txg_list_walk_step, NULL },
4678 	{ "txg_list1", "given any txg_list_t *, walk all entries in txg 1",
4679 	    txg_list1_walk_init, txg_list_walk_step, NULL },
4680 	{ "txg_list2", "given any txg_list_t *, walk all entries in txg 2",
4681 	    txg_list2_walk_init, txg_list_walk_step, NULL },
4682 	{ "txg_list3", "given any txg_list_t *, walk all entries in txg 3",
4683 	    txg_list3_walk_init, txg_list_walk_step, NULL },
4684 	{ "zio", "walk all zio structures, optionally for a particular spa_t",
4685 	    zio_walk_init, zio_walk_step, NULL },
4686 	{ "zio_root",
4687 	    "walk all root zio_t structures, optionally for a particular spa_t",
4688 	    zio_walk_init, zio_walk_root_step, NULL },
4689 	{ "spa", "walk all spa_t entries in the namespace",
4690 	    spa_walk_init, spa_walk_step, NULL },
4691 	{ "metaslab", "given a spa_t *, walk all metaslab_t structures",
4692 	    metaslab_walk_init, metaslab_walk_step, NULL },
4693 	{ "multilist", "given a multilist_t *, walk all list_t structures",
4694 	    multilist_walk_init, multilist_walk_step, NULL },
4695 	{ "zfs_acl_node", "given a zfs_acl_t, walk all zfs_acl_nodes",
4696 	    zfs_acl_node_walk_init, zfs_acl_node_walk_step, NULL },
4697 	{ "zfs_acl_node_aces", "given a zfs_acl_node_t, walk all ACEs",
4698 	    zfs_acl_node_aces_walk_init, zfs_aces_walk_step, NULL },
4699 	{ "zfs_acl_node_aces0",
4700 	    "given a zfs_acl_node_t, walk all ACEs as ace_t",
4701 	    zfs_acl_node_aces0_walk_init, zfs_aces_walk_step, NULL },
4702 	{ "zfs_btree", "given a zfs_btree_t *, walk all entries",
4703 	    btree_walk_init, btree_walk_step, btree_walk_fini },
4704 	{ NULL }
4705 };
4706 
4707 static const mdb_modinfo_t modinfo = {
4708 	MDB_API_VERSION, dcmds, walkers
4709 };
4710 
4711 const mdb_modinfo_t *
_mdb_init(void)4712 _mdb_init(void)
4713 {
4714 	return (&modinfo);
4715 }
4716