1 /*
2  *  GRUB  --  GRand Unified Bootloader
3  *  Copyright (C) 1999  Free Software Foundation, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  This program is distributed in the hope that it will be useful,
11  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *  GNU General Public License for more details.
14  *
15  *  You should have received a copy of the GNU General Public License
16  *  along with this program; if not, write to the Free Software
17  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /*
21  * Most of this file was originally the source file "inflate.c", written
22  * by Mark Adler.  It has been very heavily modified.  In particular, the
23  * original would run through the whole file at once, and this version can
24  * be stopped and restarted on any boundary during the decompression process.
25  *
26  * The license and header comments that file are included here.
27  */
28 
29 /* inflate.c -- Not copyrighted 1992 by Mark Adler
30    version c10p1, 10 January 1993 */
31 
32 /* You can do whatever you like with this source file, though I would
33    prefer that if you modify it and redistribute it that you include
34    comments to that effect with your name and the date.  Thank you.
35  */
36 
37 /*
38    Inflate deflated (PKZIP's method 8 compressed) data.  The compression
39    method searches for as much of the current string of bytes (up to a
40    length of 258) in the previous 32K bytes.  If it doesn't find any
41    matches (of at least length 3), it codes the next byte.  Otherwise, it
42    codes the length of the matched string and its distance backwards from
43    the current position.  There is a single Huffman code that codes both
44    single bytes (called "literals") and match lengths.  A second Huffman
45    code codes the distance information, which follows a length code.  Each
46    length or distance code actually represents a base value and a number
47    of "extra" (sometimes zero) bits to get to add to the base value.  At
48    the end of each deflated block is a special end-of-block (EOB) literal/
49    length code.  The decoding process is basically: get a literal/length
50    code; if EOB then done; if a literal, emit the decoded byte; if a
51    length then get the distance and emit the referred-to bytes from the
52    sliding window of previously emitted data.
53 
54    There are (currently) three kinds of inflate blocks: stored, fixed, and
55    dynamic.  The compressor deals with some chunk of data at a time, and
56    decides which method to use on a chunk-by-chunk basis.  A chunk might
57    typically be 32K or 64K.  If the chunk is uncompressible, then the
58    "stored" method is used.  In this case, the bytes are simply stored as
59    is, eight bits per byte, with none of the above coding.  The bytes are
60    preceded by a count, since there is no longer an EOB code.
61 
62    If the data is compressible, then either the fixed or dynamic methods
63    are used.  In the dynamic method, the compressed data is preceded by
64    an encoding of the literal/length and distance Huffman codes that are
65    to be used to decode this block.  The representation is itself Huffman
66    coded, and so is preceded by a description of that code.  These code
67    descriptions take up a little space, and so for small blocks, there is
68    a predefined set of codes, called the fixed codes.  The fixed method is
69    used if the block codes up smaller that way (usually for quite small
70    chunks), otherwise the dynamic method is used.  In the latter case, the
71    codes are customized to the probabilities in the current block, and so
72    can code it much better than the pre-determined fixed codes.
73 
74    The Huffman codes themselves are decoded using a mutli-level table
75    lookup, in order to maximize the speed of decoding plus the speed of
76    building the decoding tables.  See the comments below that precede the
77    lbits and dbits tuning parameters.
78  */
79 
80 
81 /*
82    Notes beyond the 1.93a appnote.txt:
83 
84    1. Distance pointers never point before the beginning of the output
85       stream.
86    2. Distance pointers can point back across blocks, up to 32k away.
87    3. There is an implied maximum of 7 bits for the bit length table and
88       15 bits for the actual data.
89    4. If only one code exists, then it is encoded using one bit.  (Zero
90       would be more efficient, but perhaps a little confusing.)  If two
91       codes exist, they are coded using one bit each (0 and 1).
92    5. There is no way of sending zero distance codes--a dummy must be
93       sent if there are none.  (History: a pre 2.0 version of PKZIP would
94       store blocks with no distance codes, but this was discovered to be
95       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
96       zero distance codes, which is sent as one code of zero bits in
97       length.
98    6. There are up to 286 literal/length codes.  Code 256 represents the
99       end-of-block.  Note however that the static length tree defines
100       288 codes just to fill out the Huffman codes.  Codes 286 and 287
101       cannot be used though, since there is no length base or extra bits
102       defined for them.  Similarly, there are up to 30 distance codes.
103       However, static trees define 32 codes (all 5 bits) to fill out the
104       Huffman codes, but the last two had better not show up in the data.
105    7. Unzip can check dynamic Huffman blocks for complete code sets.
106       The exception is that a single code would not be complete (see #4).
107    8. The five bits following the block type is really the number of
108       literal codes sent minus 257.
109    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
110       (1+6+6).  Therefore, to output three times the length, you output
111       three codes (1+1+1), whereas to output four times the same length,
112       you only need two codes (1+3).  Hmm.
113   10. In the tree reconstruction algorithm, Code = Code + Increment
114       only if BitLength(i) is not zero.  (Pretty obvious.)
115   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
116   12. Note: length code 284 can represent 227-258, but length code 285
117       really is 258.  The last length deserves its own, short code
118       since it gets used a lot in very redundant files.  The length
119       258 is special since 258 - 3 (the min match length) is 255.
120   13. The literal/length and distance code bit lengths are read as a
121       single stream of lengths.  It is possible (and advantageous) for
122       a repeat code (16, 17, or 18) to go across the boundary between
123       the two sets of lengths.
124  */
125 
126 #ifndef NO_DECOMPRESSION
127 
128 #include "shared.h"
129 
130 #include "filesys.h"
131 
132 /* so we can disable decompression  */
133 int no_decompression = 0;
134 
135 /* used to tell if "read" should be redirected to "gunzip_read" */
136 int compressed_file;
137 
138 /* internal variables only */
139 static int gzip_data_offset;
140 static int gzip_filepos;
141 static int gzip_filemax;
142 static int gzip_fsmax;
143 static int saved_filepos;
144 static unsigned long gzip_crc;
145 
146 static unsigned long crc;
147 
148 
149 /* internal extra variables for use of inflate code */
150 static int block_type;
151 static int block_len;
152 static int last_block;
153 static int code_state;
154 
155 
156 /* Function prototypes */
157 static void initialize_tables (void);
158 static unsigned long updcrc(unsigned char *, unsigned);
159 
160 /*
161  *  Linear allocator.
162  */
163 
164 static unsigned long linalloc_topaddr;
165 
166 static void *
linalloc(int size)167 linalloc (int size)
168 {
169   linalloc_topaddr = (linalloc_topaddr - size) & ~3;
170   return (void *) linalloc_topaddr;
171 }
172 
173 static void
reset_linalloc(void)174 reset_linalloc (void)
175 {
176   linalloc_topaddr = RAW_ADDR ((mbi.mem_upper << 10) + 0x100000);
177   linalloc_topaddr -= ZFS_SCRATCH_SIZE;
178 }
179 
180 
181 /* internal variable swap function */
182 static void
gunzip_swap_values(void)183 gunzip_swap_values (void)
184 {
185   register int itmp;
186 
187   /* swap filepos */
188   itmp = filepos;
189   filepos = gzip_filepos;
190   gzip_filepos = itmp;
191 
192   /* swap filemax */
193   itmp = filemax;
194   filemax = gzip_filemax;
195   gzip_filemax = itmp;
196 
197   /* swap fsmax */
198   itmp = fsmax;
199   fsmax = gzip_fsmax;
200   gzip_fsmax = itmp;
201 }
202 
203 
204 /* internal function for eating variable-length header fields */
205 static int
bad_field(int len)206 bad_field (int len)
207 {
208   char ch = 1;
209   int not_retval = 1;
210 
211   do
212     {
213       if (len >= 0)
214 	{
215 	  if (!(len--))
216 	    break;
217 	}
218       else
219 	{
220 	  if (!ch)
221 	    break;
222 	}
223     }
224   while ((not_retval = grub_read (&ch, 1)) == 1);
225 
226   return (!not_retval);
227 }
228 
229 
230 /* Little-Endian defines for the 2-byte magic number for gzip files */
231 #define GZIP_HDR_LE      0x8B1F
232 #define OLD_GZIP_HDR_LE  0x9E1F
233 
234 /* Compression methods (see algorithm.doc) */
235 #define STORED      0
236 #define COMPRESSED  1
237 #define PACKED      2
238 #define LZHED       3
239 /* methods 4 to 7 reserved */
240 #define DEFLATED    8
241 #define MAX_METHODS 9
242 
243 /* gzip flag byte */
244 #define ASCII_FLAG   0x01	/* bit 0 set: file probably ascii text */
245 #define CONTINUATION 0x02	/* bit 1 set: continuation of multi-part gzip file */
246 #define EXTRA_FIELD  0x04	/* bit 2 set: extra field present */
247 #define ORIG_NAME    0x08	/* bit 3 set: original file name present */
248 #define COMMENT      0x10	/* bit 4 set: file comment present */
249 #define ENCRYPTED    0x20	/* bit 5 set: file is encrypted */
250 #define RESERVED     0xC0	/* bit 6,7:   reserved */
251 
252 #define UNSUPP_FLAGS (CONTINUATION|ENCRYPTED|RESERVED)
253 
254 /* inflate block codes */
255 #define INFLATE_STORED    0
256 #define INFLATE_FIXED     1
257 #define INFLATE_DYNAMIC   2
258 
259 typedef unsigned char uch;
260 typedef unsigned short ush;
261 typedef unsigned long ulg;
262 
263 /*
264  *  Window Size
265  *
266  *  This must be a power of two, and at least 32K for zip's deflate method
267  */
268 
269 #define WSIZE 0x8000
270 
271 
272 int
gunzip_test_header(void)273 gunzip_test_header (void)
274 {
275   unsigned char buf[10];
276 
277   /* "compressed_file" is already reset to zero by this point */
278 
279   /*
280    *  This checks if the file is gzipped.  If a problem occurs here
281    *  (other than a real error with the disk) then we don't think it
282    *  is a compressed file, and simply mark it as such.
283    */
284   if (no_decompression
285       || grub_read (buf, 10) != 10
286       || ((*((unsigned short *) buf) != GZIP_HDR_LE)
287 	  && (*((unsigned short *) buf) != OLD_GZIP_HDR_LE)))
288     {
289       filepos = 0;
290       return ! errnum;
291     }
292 
293   /*
294    *  This does consistency checking on the header data.  If a
295    *  problem occurs from here on, then we have corrupt or otherwise
296    *  bad data, and the error should be reported to the user.
297    */
298   if (buf[2] != DEFLATED
299       || (buf[3] & UNSUPP_FLAGS)
300       || ((buf[3] & EXTRA_FIELD)
301 	  && (grub_read (buf, 2) != 2
302 	      || bad_field (*((unsigned short *) buf))))
303       || ((buf[3] & ORIG_NAME) && bad_field (-1))
304       || ((buf[3] & COMMENT) && bad_field (-1)))
305     {
306       if (! errnum)
307 	errnum = ERR_BAD_GZIP_HEADER;
308 
309       return 0;
310     }
311 
312   gzip_data_offset = filepos;
313 
314   /* We could read the last 8 bytes of the file to get the uncompressed
315    * size. Doing so under tftp would cause the file to be downloaded
316    * twice, which can be problem with large files. So we set it to
317    * MAXINT and correct it later when we get to the end of the file
318    * in get_byte().
319    */
320   gzip_fsmax = gzip_filemax = MAXINT;
321 
322   initialize_tables ();
323 
324   compressed_file = 1;
325   gunzip_swap_values ();
326   /*
327    *  Now "gzip_*" values refer to the compressed data.
328    */
329 
330   filepos = 0;
331 
332   crc = (ulg)0xffffffffUL;
333 
334   return 1;
335 }
336 
337 
338 /* Huffman code lookup table entry--this entry is four bytes for machines
339    that have 16-bit pointers (e.g. PC's in the small or medium model).
340    Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
341    means that v is a literal, 16 < e < 32 means that v is a pointer to
342    the next table, which codes e - 16 bits, and lastly e == 99 indicates
343    an unused code.  If a code with e == 99 is looked up, this implies an
344    error in the data. */
345 struct huft
346 {
347   uch e;			/* number of extra bits or operation */
348   uch b;			/* number of bits in this code or subcode */
349   union
350     {
351       ush n;			/* literal, length base, or distance base */
352       struct huft *t;		/* pointer to next level of table */
353     }
354   v;
355 };
356 
357 
358 /* The inflate algorithm uses a sliding 32K byte window on the uncompressed
359    stream to find repeated byte strings.  This is implemented here as a
360    circular buffer.  The index is updated simply by incrementing and then
361    and'ing with 0x7fff (32K-1). */
362 /* It is left to other modules to supply the 32K area.  It is assumed
363    to be usable as if it were declared "uch slide[32768];" or as just
364    "uch *slide;" and then malloc'ed in the latter case.  The definition
365    must be in unzip.h, included above. */
366 
367 
368 /* sliding window in uncompressed data */
369 static uch slide[WSIZE];
370 
371 /* current position in slide */
372 static unsigned wp;
373 
374 
375 /* Tables for deflate from PKZIP's appnote.txt. */
376 static unsigned bitorder[] =
377 {				/* Order of the bit length code lengths */
378   16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
379 static ush cplens[] =
380 {				/* Copy lengths for literal codes 257..285 */
381   3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
382   35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
383 	/* note: see note #13 above about the 258 in this list. */
384 static ush cplext[] =
385 {				/* Extra bits for literal codes 257..285 */
386   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
387   3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99};	/* 99==invalid */
388 static ush cpdist[] =
389 {				/* Copy offsets for distance codes 0..29 */
390   1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
391   257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
392   8193, 12289, 16385, 24577};
393 static ush cpdext[] =
394 {				/* Extra bits for distance codes */
395   0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
396   7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
397   12, 12, 13, 13};
398 
399 
400 /*
401    Huffman code decoding is performed using a multi-level table lookup.
402    The fastest way to decode is to simply build a lookup table whose
403    size is determined by the longest code.  However, the time it takes
404    to build this table can also be a factor if the data being decoded
405    is not very long.  The most common codes are necessarily the
406    shortest codes, so those codes dominate the decoding time, and hence
407    the speed.  The idea is you can have a shorter table that decodes the
408    shorter, more probable codes, and then point to subsidiary tables for
409    the longer codes.  The time it costs to decode the longer codes is
410    then traded against the time it takes to make longer tables.
411 
412    This results of this trade are in the variables lbits and dbits
413    below.  lbits is the number of bits the first level table for literal/
414    length codes can decode in one step, and dbits is the same thing for
415    the distance codes.  Subsequent tables are also less than or equal to
416    those sizes.  These values may be adjusted either when all of the
417    codes are shorter than that, in which case the longest code length in
418    bits is used, or when the shortest code is *longer* than the requested
419    table size, in which case the length of the shortest code in bits is
420    used.
421 
422    There are two different values for the two tables, since they code a
423    different number of possibilities each.  The literal/length table
424    codes 286 possible values, or in a flat code, a little over eight
425    bits.  The distance table codes 30 possible values, or a little less
426    than five bits, flat.  The optimum values for speed end up being
427    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
428    The optimum values may differ though from machine to machine, and
429    possibly even between compilers.  Your mileage may vary.
430  */
431 
432 
433 static int lbits = 9;		/* bits in base literal/length lookup table */
434 static int dbits = 6;		/* bits in base distance lookup table */
435 
436 
437 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
438 #define BMAX 16			/* maximum bit length of any code (16 for explode) */
439 #define N_MAX 288		/* maximum number of codes in any set */
440 
441 
442 static unsigned hufts;		/* track memory usage */
443 
444 
445 /* Macros for inflate() bit peeking and grabbing.
446    The usage is:
447 
448         NEEDBITS(j)
449         x = b & mask_bits[j];
450         DUMPBITS(j)
451 
452    where NEEDBITS makes sure that b has at least j bits in it, and
453    DUMPBITS removes the bits from b.  The macros use the variable k
454    for the number of bits in b.  Normally, b and k are register
455    variables for speed, and are initialized at the beginning of a
456    routine that uses these macros from a global bit buffer and count.
457 
458    If we assume that EOB will be the longest code, then we will never
459    ask for bits with NEEDBITS that are beyond the end of the stream.
460    So, NEEDBITS should not read any more bytes than are needed to
461    meet the request.  Then no bytes need to be "returned" to the buffer
462    at the end of the last block.
463 
464    However, this assumption is not true for fixed blocks--the EOB code
465    is 7 bits, but the other literal/length codes can be 8 or 9 bits.
466    (The EOB code is shorter than other codes because fixed blocks are
467    generally short.  So, while a block always has an EOB, many other
468    literal/length codes have a significantly lower probability of
469    showing up at all.)  However, by making the first table have a
470    lookup of seven bits, the EOB code will be found in that first
471    lookup, and so will not require that too many bits be pulled from
472    the stream.
473  */
474 
475 static ulg bb;			/* bit buffer */
476 static unsigned bk;		/* bits in bit buffer */
477 
478 static ush mask_bits[] =
479 {
480   0x0000,
481   0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
482   0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
483 };
484 
485 #define NEEDBITS(n) do {while(k<(n)){b|=((ulg)get_byte())<<k;k+=8;}} while (0)
486 #define DUMPBITS(n) do {b>>=(n);k-=(n);} while (0)
487 
488 #define INBUFSIZ  0x2000
489 
490 static uch inbuf[INBUFSIZ];
491 static int bufloc;
492 static uch endbuf[8];
493 
494 static int
get_byte(void)495 get_byte (void)
496 {
497   if (filepos == gzip_data_offset || bufloc == INBUFSIZ)
498     {
499       int pos;
500       int old_filepos = filepos;
501       bufloc = 0;
502       grub_read (inbuf, INBUFSIZ);
503       /* If there are 8 bytes or less left, we have read in all the
504        * the file content. So get the last 8 bytes and get the crc
505        * and uncompressed size. This is important for the loop in
506        * gunzip_read() to terminate properly.
507        */
508       if (filepos >= filemax - 8) {
509 	uch *eb = endbuf;
510 	for (pos = filemax - 8; pos < filepos; pos++)
511 		*eb++ = inbuf[pos - old_filepos];
512 	if (filemax > filepos)
513 		grub_read(eb, filemax - filepos);
514   	gzip_crc = *((unsigned long *) endbuf);
515 	gzip_filemax = *((unsigned long *) (endbuf + 4));
516       }
517     }
518 
519   return inbuf[bufloc++];
520 }
521 
522 /* decompression global pointers */
523 static struct huft *tl;		/* literal/length code table */
524 static struct huft *td;		/* distance code table */
525 static int bl;			/* lookup bits for tl */
526 static int bd;			/* lookup bits for td */
527 
528 
529 /* more function prototypes */
530 static int huft_build (unsigned *, unsigned, unsigned, ush *, ush *,
531 		       struct huft **, int *);
532 static int inflate_codes_in_window (void);
533 
534 
535 /* Given a list of code lengths and a maximum table size, make a set of
536    tables to decode that set of codes.  Return zero on success, one if
537    the given code set is incomplete (the tables are still built in this
538    case), two if the input is invalid (all zero length codes or an
539    oversubscribed set of lengths), and three if not enough memory. */
540 
541 static int
huft_build(unsigned * b,unsigned n,unsigned s,ush * d,ush * e,struct huft ** t,int * m)542 huft_build (unsigned *b,	/* code lengths in bits (all assumed <= BMAX) */
543 	    unsigned n,		/* number of codes (assumed <= N_MAX) */
544 	    unsigned s,		/* number of simple-valued codes (0..s-1) */
545 	    ush * d,		/* list of base values for non-simple codes */
546 	    ush * e,		/* list of extra bits for non-simple codes */
547 	    struct huft **t,	/* result: starting table */
548 	    int *m)		/* maximum lookup bits, returns actual */
549 {
550   unsigned a;			/* counter for codes of length k */
551   unsigned c[BMAX + 1];		/* bit length count table */
552   unsigned f;			/* i repeats in table every f entries */
553   int g;			/* maximum code length */
554   int h;			/* table level */
555   register unsigned i;		/* counter, current code */
556   register unsigned j;		/* counter */
557   register int k;		/* number of bits in current code */
558   int l;			/* bits per table (returned in m) */
559   register unsigned *p;		/* pointer into c[], b[], or v[] */
560   register struct huft *q;	/* points to current table */
561   struct huft r;		/* table entry for structure assignment */
562   struct huft *u[BMAX];		/* table stack */
563   unsigned v[N_MAX];		/* values in order of bit length */
564   register int w;		/* bits before this table == (l * h) */
565   unsigned x[BMAX + 1];		/* bit offsets, then code stack */
566   unsigned *xp;			/* pointer into x */
567   int y;			/* number of dummy codes added */
568   unsigned z;			/* number of entries in current table */
569 
570   /* Generate counts for each bit length */
571   memset ((char *) c, 0, sizeof (c));
572   p = b;
573   i = n;
574   do
575     {
576       c[*p]++;			/* assume all entries <= BMAX */
577       p++;			/* Can't combine with above line (Solaris bug) */
578     }
579   while (--i);
580   if (c[0] == n)		/* null input--all zero length codes */
581     {
582       *t = (struct huft *) NULL;
583       *m = 0;
584       return 0;
585     }
586 
587   /* Find minimum and maximum length, bound *m by those */
588   l = *m;
589   for (j = 1; j <= BMAX; j++)
590     if (c[j])
591       break;
592   k = j;			/* minimum code length */
593   if ((unsigned) l < j)
594     l = j;
595   for (i = BMAX; i; i--)
596     if (c[i])
597       break;
598   g = i;			/* maximum code length */
599   if ((unsigned) l > i)
600     l = i;
601   *m = l;
602 
603   /* Adjust last length count to fill out codes, if needed */
604   for (y = 1 << j; j < i; j++, y <<= 1)
605     if ((y -= c[j]) < 0)
606       return 2;			/* bad input: more codes than bits */
607   if ((y -= c[i]) < 0)
608     return 2;
609   c[i] += y;
610 
611   /* Generate starting offsets into the value table for each length */
612   x[1] = j = 0;
613   p = c + 1;
614   xp = x + 2;
615   while (--i)
616     {				/* note that i == g from above */
617       *xp++ = (j += *p++);
618     }
619 
620   /* Make a table of values in order of bit lengths */
621   p = b;
622   i = 0;
623   do
624     {
625       if ((j = *p++) != 0)
626 	v[x[j]++] = i;
627     }
628   while (++i < n);
629 
630   /* Generate the Huffman codes and for each, make the table entries */
631   x[0] = i = 0;			/* first Huffman code is zero */
632   p = v;			/* grab values in bit order */
633   h = -1;			/* no tables yet--level -1 */
634   w = -l;			/* bits decoded == (l * h) */
635   u[0] = (struct huft *) NULL;	/* just to keep compilers happy */
636   q = (struct huft *) NULL;	/* ditto */
637   z = 0;			/* ditto */
638 
639   /* go through the bit lengths (k already is bits in shortest code) */
640   for (; k <= g; k++)
641     {
642       a = c[k];
643       while (a--)
644 	{
645 	  /* here i is the Huffman code of length k bits for value *p */
646 	  /* make tables up to required level */
647 	  while (k > w + l)
648 	    {
649 	      h++;
650 	      w += l;		/* previous table always l bits */
651 
652 	      /* compute minimum size table less than or equal to l bits */
653 	      z = (z = g - w) > (unsigned) l ? l : z;	/* upper limit on table size */
654 	      if ((f = 1 << (j = k - w)) > a + 1)	/* try a k-w bit table */
655 		{		/* too few codes for k-w bit table */
656 		  f -= a + 1;	/* deduct codes from patterns left */
657 		  xp = c + k;
658 		  while (++j < z)	/* try smaller tables up to z bits */
659 		    {
660 		      if ((f <<= 1) <= *++xp)
661 			break;	/* enough codes to use up j bits */
662 		      f -= *xp;	/* else deduct codes from patterns */
663 		    }
664 		}
665 	      z = 1 << j;	/* table entries for j-bit table */
666 
667 	      /* allocate and link in new table */
668 	      q = (struct huft *) linalloc ((z + 1) * sizeof (struct huft));
669 
670 	      hufts += z + 1;	/* track memory usage */
671 	      *t = q + 1;	/* link to list for huft_free() */
672 	      *(t = &(q->v.t)) = (struct huft *) NULL;
673 	      u[h] = ++q;	/* table starts after link */
674 
675 	      /* connect to last table, if there is one */
676 	      if (h)
677 		{
678 		  x[h] = i;	/* save pattern for backing up */
679 		  r.b = (uch) l;	/* bits to dump before this table */
680 		  r.e = (uch) (16 + j);		/* bits in this table */
681 		  r.v.t = q;	/* pointer to this table */
682 		  j = i >> (w - l);	/* (get around Turbo C bug) */
683 		  u[h - 1][j] = r;	/* connect to last table */
684 		}
685 	    }
686 
687 	  /* set up table entry in r */
688 	  r.b = (uch) (k - w);
689 	  if (p >= v + n)
690 	    r.e = 99;		/* out of values--invalid code */
691 	  else if (*p < s)
692 	    {
693 	      r.e = (uch) (*p < 256 ? 16 : 15);		/* 256 is end-of-block code */
694 	      r.v.n = (ush) (*p);	/* simple code is just the value */
695 	      p++;		/* one compiler does not like *p++ */
696 	    }
697 	  else
698 	    {
699 	      r.e = (uch) e[*p - s];	/* non-simple--look up in lists */
700 	      r.v.n = d[*p++ - s];
701 	    }
702 
703 	  /* fill code-like entries with r */
704 	  f = 1 << (k - w);
705 	  for (j = i >> w; j < z; j += f)
706 	    q[j] = r;
707 
708 	  /* backwards increment the k-bit code i */
709 	  for (j = 1 << (k - 1); i & j; j >>= 1)
710 	    i ^= j;
711 	  i ^= j;
712 
713 	  /* backup over finished tables */
714 	  while ((i & ((1 << w) - 1)) != x[h])
715 	    {
716 	      h--;		/* don't need to update q */
717 	      w -= l;
718 	    }
719 	}
720     }
721 
722   /* Return true (1) if we were given an incomplete table */
723   return y != 0 && g != 1;
724 }
725 
726 
727 /*
728  *  inflate (decompress) the codes in a deflated (compressed) block.
729  *  Return an error code or zero if it all goes ok.
730  */
731 
732 static unsigned inflate_n, inflate_d;
733 
734 static int
inflate_codes_in_window(void)735 inflate_codes_in_window (void)
736 {
737   register unsigned e;		/* table entry flag/number of extra bits */
738   unsigned n, d;		/* length and index for copy */
739   unsigned w;			/* current window position */
740   struct huft *t;		/* pointer to table entry */
741   unsigned ml, md;		/* masks for bl and bd bits */
742   register ulg b;		/* bit buffer */
743   register unsigned k;		/* number of bits in bit buffer */
744 
745   /* make local copies of globals */
746   d = inflate_d;
747   n = inflate_n;
748   b = bb;			/* initialize bit buffer */
749   k = bk;
750   w = wp;			/* initialize window position */
751 
752   /* inflate the coded data */
753   ml = mask_bits[bl];		/* precompute masks for speed */
754   md = mask_bits[bd];
755   for (;;)			/* do until end of block */
756     {
757       if (!code_state)
758 	{
759 	  NEEDBITS ((unsigned) bl);
760 	  if ((e = (t = tl + ((unsigned) b & ml))->e) > 16)
761 	    do
762 	      {
763 		if (e == 99)
764 		  {
765 		    errnum = ERR_BAD_GZIP_DATA;
766 		    return 0;
767 		  }
768 		DUMPBITS (t->b);
769 		e -= 16;
770 		NEEDBITS (e);
771 	      }
772 	    while ((e = (t = t->v.t + ((unsigned) b & mask_bits[e]))->e) > 16);
773 	  DUMPBITS (t->b);
774 
775 	  if (e == 16)		/* then it's a literal */
776 	    {
777 	      slide[w++] = (uch) t->v.n;
778 	      if (w == WSIZE)
779 		break;
780 	    }
781 	  else
782 	    /* it's an EOB or a length */
783 	    {
784 	      /* exit if end of block */
785 	      if (e == 15)
786 		{
787 		  block_len = 0;
788 		  break;
789 		}
790 
791 	      /* get length of block to copy */
792 	      NEEDBITS (e);
793 	      n = t->v.n + ((unsigned) b & mask_bits[e]);
794 	      DUMPBITS (e);
795 
796 	      /* decode distance of block to copy */
797 	      NEEDBITS ((unsigned) bd);
798 	      if ((e = (t = td + ((unsigned) b & md))->e) > 16)
799 		do
800 		  {
801 		    if (e == 99)
802 		      {
803 			errnum = ERR_BAD_GZIP_DATA;
804 			return 0;
805 		      }
806 		    DUMPBITS (t->b);
807 		    e -= 16;
808 		    NEEDBITS (e);
809 		  }
810 		while ((e = (t = t->v.t + ((unsigned) b & mask_bits[e]))->e)
811 		       > 16);
812 	      DUMPBITS (t->b);
813 	      NEEDBITS (e);
814 	      d = w - t->v.n - ((unsigned) b & mask_bits[e]);
815 	      DUMPBITS (e);
816 	      code_state++;
817 	    }
818 	}
819 
820       if (code_state)
821 	{
822 	  /* do the copy */
823 	  do
824 	    {
825 	      n -= (e = (e = WSIZE - ((d &= WSIZE - 1) > w ? d : w)) > n ? n
826 		    : e);
827 	      if (w - d >= e)
828 		{
829 		  memmove (slide + w, slide + d, e);
830 		  w += e;
831 		  d += e;
832 		}
833 	      else
834 		/* purposefully use the overlap for extra copies here!! */
835 		{
836 		  while (e--)
837 		    slide[w++] = slide[d++];
838 		}
839 	      if (w == WSIZE)
840 		break;
841 	    }
842 	  while (n);
843 
844 	  if (!n)
845 	    code_state--;
846 
847 	  /* did we break from the loop too soon? */
848 	  if (w == WSIZE)
849 	    break;
850 	}
851     }
852 
853   /* restore the globals from the locals */
854   inflate_d = d;
855   inflate_n = n;
856   wp = w;			/* restore global window pointer */
857   bb = b;			/* restore global bit buffer */
858   bk = k;
859 
860   return !block_len;
861 }
862 
863 
864 /* get header for an inflated type 0 (stored) block. */
865 
866 static void
init_stored_block(void)867 init_stored_block (void)
868 {
869   register ulg b;		/* bit buffer */
870   register unsigned k;		/* number of bits in bit buffer */
871 
872   /* make local copies of globals */
873   b = bb;			/* initialize bit buffer */
874   k = bk;
875 
876   /* go to byte boundary */
877   DUMPBITS (k & 7);
878 
879   /* get the length and its complement */
880   NEEDBITS (16);
881   block_len = ((unsigned) b & 0xffff);
882   DUMPBITS (16);
883   NEEDBITS (16);
884   if (block_len != (unsigned) ((~b) & 0xffff))
885     errnum = ERR_BAD_GZIP_DATA;
886   DUMPBITS (16);
887 
888   /* restore global variables */
889   bb = b;
890   bk = k;
891 }
892 
893 
894 /* get header for an inflated type 1 (fixed Huffman codes) block.  We should
895    either replace this with a custom decoder, or at least precompute the
896    Huffman tables. */
897 
898 static void
init_fixed_block()899 init_fixed_block ()
900 {
901   int i;			/* temporary variable */
902   unsigned l[288];		/* length list for huft_build */
903 
904   /* set up literal table */
905   for (i = 0; i < 144; i++)
906     l[i] = 8;
907   for (; i < 256; i++)
908     l[i] = 9;
909   for (; i < 280; i++)
910     l[i] = 7;
911   for (; i < 288; i++)		/* make a complete, but wrong code set */
912     l[i] = 8;
913   bl = 7;
914   if ((i = huft_build (l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
915     {
916       errnum = ERR_BAD_GZIP_DATA;
917       return;
918     }
919 
920   /* set up distance table */
921   for (i = 0; i < 30; i++)	/* make an incomplete code set */
922     l[i] = 5;
923   bd = 5;
924   if ((i = huft_build (l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
925     {
926       errnum = ERR_BAD_GZIP_DATA;
927       return;
928     }
929 
930   /* indicate we're now working on a block */
931   code_state = 0;
932   block_len++;
933 }
934 
935 
936 /* get header for an inflated type 2 (dynamic Huffman codes) block. */
937 
938 static void
init_dynamic_block(void)939 init_dynamic_block (void)
940 {
941   int i;			/* temporary variables */
942   unsigned j;
943   unsigned l;			/* last length */
944   unsigned m;			/* mask for bit lengths table */
945   unsigned n;			/* number of lengths to get */
946   unsigned nb;			/* number of bit length codes */
947   unsigned nl;			/* number of literal/length codes */
948   unsigned nd;			/* number of distance codes */
949   unsigned ll[286 + 30];	/* literal/length and distance code lengths */
950   register ulg b;		/* bit buffer */
951   register unsigned k;		/* number of bits in bit buffer */
952 
953   /* make local bit buffer */
954   b = bb;
955   k = bk;
956 
957   /* read in table lengths */
958   NEEDBITS (5);
959   nl = 257 + ((unsigned) b & 0x1f);	/* number of literal/length codes */
960   DUMPBITS (5);
961   NEEDBITS (5);
962   nd = 1 + ((unsigned) b & 0x1f);	/* number of distance codes */
963   DUMPBITS (5);
964   NEEDBITS (4);
965   nb = 4 + ((unsigned) b & 0xf);	/* number of bit length codes */
966   DUMPBITS (4);
967   if (nl > 286 || nd > 30)
968     {
969       errnum = ERR_BAD_GZIP_DATA;
970       return;
971     }
972 
973   /* read in bit-length-code lengths */
974   for (j = 0; j < nb; j++)
975     {
976       NEEDBITS (3);
977       ll[bitorder[j]] = (unsigned) b & 7;
978       DUMPBITS (3);
979     }
980   for (; j < 19; j++)
981     ll[bitorder[j]] = 0;
982 
983   /* build decoding table for trees--single level, 7 bit lookup */
984   bl = 7;
985   if ((i = huft_build (ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
986     {
987       errnum = ERR_BAD_GZIP_DATA;
988       return;
989     }
990 
991   /* read in literal and distance code lengths */
992   n = nl + nd;
993   m = mask_bits[bl];
994   i = l = 0;
995   while ((unsigned) i < n)
996     {
997       NEEDBITS ((unsigned) bl);
998       j = (td = tl + ((unsigned) b & m))->b;
999       DUMPBITS (j);
1000       j = td->v.n;
1001       if (j < 16)		/* length of code in bits (0..15) */
1002 	ll[i++] = l = j;	/* save last length in l */
1003       else if (j == 16)		/* repeat last length 3 to 6 times */
1004 	{
1005 	  NEEDBITS (2);
1006 	  j = 3 + ((unsigned) b & 3);
1007 	  DUMPBITS (2);
1008 	  if ((unsigned) i + j > n)
1009 	    {
1010 	      errnum = ERR_BAD_GZIP_DATA;
1011 	      return;
1012 	    }
1013 	  while (j--)
1014 	    ll[i++] = l;
1015 	}
1016       else if (j == 17)		/* 3 to 10 zero length codes */
1017 	{
1018 	  NEEDBITS (3);
1019 	  j = 3 + ((unsigned) b & 7);
1020 	  DUMPBITS (3);
1021 	  if ((unsigned) i + j > n)
1022 	    {
1023 	      errnum = ERR_BAD_GZIP_DATA;
1024 	      return;
1025 	    }
1026 	  while (j--)
1027 	    ll[i++] = 0;
1028 	  l = 0;
1029 	}
1030       else
1031 	/* j == 18: 11 to 138 zero length codes */
1032 	{
1033 	  NEEDBITS (7);
1034 	  j = 11 + ((unsigned) b & 0x7f);
1035 	  DUMPBITS (7);
1036 	  if ((unsigned) i + j > n)
1037 	    {
1038 	      errnum = ERR_BAD_GZIP_DATA;
1039 	      return;
1040 	    }
1041 	  while (j--)
1042 	    ll[i++] = 0;
1043 	  l = 0;
1044 	}
1045     }
1046 
1047   /* free decoding table for trees */
1048   reset_linalloc ();
1049 
1050   /* restore the global bit buffer */
1051   bb = b;
1052   bk = k;
1053 
1054   /* build the decoding tables for literal/length and distance codes */
1055   bl = lbits;
1056   if ((i = huft_build (ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
1057     {
1058 #if 0
1059       if (i == 1)
1060 	printf ("gunzip: incomplete literal tree\n");
1061 #endif
1062 
1063       errnum = ERR_BAD_GZIP_DATA;
1064       return;
1065     }
1066   bd = dbits;
1067   if ((i = huft_build (ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
1068     {
1069 #if 0
1070       if (i == 1)
1071 	printf ("gunzip: incomplete distance tree\n");
1072 #endif
1073 
1074       errnum = ERR_BAD_GZIP_DATA;
1075       return;
1076     }
1077 
1078   /* indicate we're now working on a block */
1079   code_state = 0;
1080   block_len++;
1081 }
1082 
1083 
1084 static void
get_new_block(void)1085 get_new_block (void)
1086 {
1087   register ulg b;		/* bit buffer */
1088   register unsigned k;		/* number of bits in bit buffer */
1089 
1090   hufts = 0;
1091 
1092   /* make local bit buffer */
1093   b = bb;
1094   k = bk;
1095 
1096   /* read in last block bit */
1097   NEEDBITS (1);
1098   last_block = (int) b & 1;
1099   DUMPBITS (1);
1100 
1101   /* read in block type */
1102   NEEDBITS (2);
1103   block_type = (unsigned) b & 3;
1104   DUMPBITS (2);
1105 
1106   /* restore the global bit buffer */
1107   bb = b;
1108   bk = k;
1109 
1110   if (block_type == INFLATE_STORED)
1111     init_stored_block ();
1112   if (block_type == INFLATE_FIXED)
1113     init_fixed_block ();
1114   if (block_type == INFLATE_DYNAMIC)
1115     init_dynamic_block ();
1116 }
1117 
1118 
1119 static void
inflate_window(void)1120 inflate_window (void)
1121 {
1122   /* initialize window */
1123   wp = 0;
1124 
1125   /*
1126    *  Main decompression loop.
1127    */
1128 
1129   while (wp < WSIZE && !errnum)
1130     {
1131       if (!block_len)
1132 	{
1133 	  if (last_block)
1134 	    break;
1135 
1136 	  get_new_block ();
1137 	}
1138 
1139       if (block_type > INFLATE_DYNAMIC)
1140 	errnum = ERR_BAD_GZIP_DATA;
1141 
1142       if (errnum)
1143 	return;
1144 
1145       /*
1146        *  Expand stored block here.
1147        */
1148       if (block_type == INFLATE_STORED)
1149 	{
1150 	  int w = wp;
1151 
1152 	  /*
1153 	   *  This is basically a glorified pass-through
1154 	   */
1155 
1156 	  while (block_len && w < WSIZE && !errnum)
1157 	    {
1158 	      slide[w++] = get_byte ();
1159 	      block_len--;
1160 	    }
1161 
1162 	  wp = w;
1163 
1164 	  continue;
1165 	}
1166 
1167       /*
1168        *  Expand other kind of block.
1169        */
1170 
1171       if (inflate_codes_in_window ())
1172 	reset_linalloc ();
1173     }
1174 
1175   saved_filepos += WSIZE;
1176 }
1177 
1178 
1179 static void
initialize_tables(void)1180 initialize_tables (void)
1181 {
1182   saved_filepos = 0;
1183   filepos = gzip_data_offset;
1184 
1185   /* initialize window, bit buffer */
1186   bk = 0;
1187   bb = 0;
1188 
1189   /* reset partial decompression code */
1190   last_block = 0;
1191   block_len = 0;
1192 
1193   /* reset memory allocation stuff */
1194   reset_linalloc ();
1195 }
1196 
1197 
1198 int
gunzip_read(char * buf,int len)1199 gunzip_read (char *buf, int len)
1200 {
1201   int ret = 0;
1202   int check_crc;
1203   ulg crc_value = 0xffffffffUL;
1204 
1205   compressed_file = 0;
1206   gunzip_swap_values ();
1207   /*
1208    *  Now "gzip_*" values refer to the uncompressed data.
1209    */
1210 
1211   /* do we reset decompression to the beginning of the file? */
1212   if (saved_filepos > gzip_filepos + WSIZE)
1213     initialize_tables ();
1214 
1215   /* perform CRC check only if reading the entire file */
1216   check_crc = (saved_filepos == 0 && len == MAXINT);
1217 
1218   /*
1219    *  This loop operates upon uncompressed data only.  The only
1220    *  special thing it does is to make sure the decompression
1221    *  window is within the range of data it needs.
1222    */
1223 
1224   while (len > 0 && !errnum)
1225     {
1226       register int size;
1227       register char *srcaddr;
1228 
1229       while (gzip_filepos >= saved_filepos && !errnum)
1230 	inflate_window ();
1231 
1232       if (errnum)
1233 	break;
1234 
1235       /* We could have started with an unknown gzip_filemax (MAXINT)
1236        * which has been updated in get_byte(). If so, update len
1237        * to avoid reading beyond the end.
1238        */
1239       if (len > (gzip_filemax - gzip_filepos)) {
1240         len = gzip_filemax - gzip_filepos;
1241 	if (len < 0) {
1242 	  errnum = ERR_BAD_GZIP_DATA;
1243 	  break;
1244 	}
1245       }
1246 
1247       srcaddr = (char *) ((gzip_filepos & (WSIZE - 1)) + slide);
1248       size = saved_filepos - gzip_filepos;
1249       if (size > len)
1250 	size = len;
1251 
1252       memmove (buf, srcaddr, size);
1253 
1254       /* do CRC calculation here! */
1255       crc_value = updcrc(buf, (unsigned)size);
1256 
1257       buf += size;
1258       len -= size;
1259       gzip_filepos += size;
1260       ret += size;
1261     }
1262 
1263   /* check for CRC error if reading entire file */
1264   if (!errnum && check_crc && gzip_crc != crc_value) {
1265 #if 0
1266     printf ("gunzip: crc value 0x%x, expected 0x%x\n", crc_value, gzip_crc);
1267 #endif
1268     errnum = ERR_BAD_GZIP_CRC;
1269   }
1270 
1271   compressed_file = 1;
1272   gunzip_swap_values ();
1273   /*
1274    *  Now "gzip_*" values refer to the compressed data.
1275    */
1276 
1277   if (errnum)
1278     ret = 0;
1279 
1280   return ret;
1281 }
1282 
1283 /* The crc_23_tab and updcrc() are adapted from gzip 1.3.3 */
1284 
1285 /* ========================================================================
1286  * Table of CRC-32's of all single-byte values (made by makecrc.c)
1287  */
1288 static ulg crc_32_tab[] = {
1289   0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
1290   0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
1291   0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
1292   0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
1293   0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
1294   0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
1295   0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
1296   0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
1297   0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
1298   0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
1299   0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
1300   0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
1301   0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
1302   0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
1303   0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
1304   0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
1305   0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
1306   0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
1307   0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
1308   0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
1309   0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
1310   0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
1311   0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
1312   0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
1313   0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
1314   0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
1315   0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
1316   0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
1317   0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
1318   0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
1319   0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
1320   0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
1321   0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
1322   0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
1323   0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
1324   0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
1325   0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
1326   0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
1327   0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
1328   0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
1329   0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
1330   0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
1331   0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
1332   0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
1333   0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
1334   0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
1335   0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
1336   0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
1337   0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
1338   0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
1339   0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
1340   0x2d02ef8dL
1341 };
1342 
1343 /* ===========================================================================
1344  * Run a set of bytes through the crc shift register.  If s is a NULL
1345  * pointer, then initialize the crc shift register contents instead.
1346  * Return the current crc in either case.
1347  */
updcrc(s,n)1348 static ulg updcrc(s, n)
1349     uch *s;                 /* pointer to bytes to pump through */
1350     unsigned n;             /* number of bytes in s[] */
1351 {
1352     register ulg c;         /* temporary variable */
1353 
1354     c = crc;
1355     if (n) do {
1356         c = crc_32_tab[((int)c ^ (*s++)) & 0xff] ^ (c >> 8);
1357     } while (--n);
1358     crc = c;
1359     return c ^ 0xffffffffL;       /* (instead of ~c for 64-bit machines) */
1360 }
1361 
1362 #endif /* ! NO_DECOMPRESSION */
1363