1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2014 Racktop Systems.
25  * Copyright 2019 OmniOS Community Edition (OmniOSce) Association.
26  * Copyright 2020 Peter Tribble.
27  */
28 
29 /*
30  * Kstat.xs is a Perl XS (eXStension module) that makes the Solaris
31  * kstat(3KSTAT) facility available to Perl scripts.  Kstat is a general-purpose
32  * mechanism  for  providing kernel statistics to users.  The Solaris API is
33  * function-based (see the manpage for details), but for ease of use in Perl
34  * scripts this module presents the information as a nested hash data structure.
35  * It would be too inefficient to read every kstat in the system, so this module
36  * uses the Perl TIEHASH mechanism to implement a read-on-demand semantic, which
37  * only reads and updates kstats as and when they are actually accessed.
38  */
39 
40 /*
41  * Ignored raw kstats.
42  *
43  * Some raw kstats are ignored by this module, these are listed below.  The
44  * most common reason is that the kstats are stored as arrays and the ks_ndata
45  * and/or ks_data_size fields are invalid.  In this case it is impossible to
46  * know how many records are in the array, so they can't be read.
47  *
48  * unix:*:sfmmu_percpu_stat
49  * This is stored as an array with one entry per cpu.  Each element is of type
50  * struct sfmmu_percpu_stat.  The ks_ndata and ks_data_size fields are bogus.
51  *
52  * ufs directio:*:UFS DirectIO Stats
53  * The structure definition used for these kstats (ufs_directio_kstats) is in a
54  * C file (uts/common/fs/ufs/ufs_directio.c) rather than a header file, so it
55  * isn't accessible.
56  *
57  * qlc:*:statistics
58  * This is a third-party driver for which we don't have source.
59  *
60  * mm:*:phys_installed
61  * This is stored as an array of uint64_t, with each pair of values being the
62  * (address, size) of a memory segment.  The ks_ndata and ks_data_size fields
63  * are both zero.
64  *
65  * sockfs:*:sock_unix_list
66  * This is stored as an array with one entry per active socket.  Each element
67  * is of type struct sockinfo.  ks_ndata is the number of elements of that
68  * array and ks_data_size is the total size of the array.
69  *
70  * Note that the ks_ndata and ks_data_size of many non-array raw kstats are
71  * also incorrect.  The relevant assertions are therefore commented out in the
72  * appropriate raw kstat read routines.
73  */
74 
75 /* Kstat related includes */
76 #include <libgen.h>
77 #include <kstat.h>
78 #include <sys/var.h>
79 #include <sys/utsname.h>
80 #include <sys/sysinfo.h>
81 #include <sys/flock.h>
82 #include <sys/dnlc.h>
83 #include <nfs/nfs.h>
84 #include <nfs/nfs_clnt.h>
85 
86 /* Ultra-specific kstat includes */
87 #ifdef __sparc
88 #include <vm/hat_sfmmu.h>	/* from /usr/platform/sun4u/include */
89 #endif
90 
91 /*
92  * Solaris #defines SP, which conflicts with the perl definition of SP
93  * We don't need the Solaris one, so get rid of it to avoid warnings
94  */
95 #undef SP
96 
97 /* Perl XS includes */
98 #include "EXTERN.h"
99 #include "perl.h"
100 #include "XSUB.h"
101 
102 /* Debug macros */
103 #define	DEBUG_ID "Sun::Solaris::Kstat"
104 #ifdef KSTAT_DEBUG
105 #define	PERL_ASSERT(EXP) \
106     ((void)((EXP) || (croak("%s: assertion failed at %s:%d: %s", \
107     DEBUG_ID, __FILE__, __LINE__, #EXP), 0), 0))
108 #define	PERL_ASSERTMSG(EXP, MSG) \
109     ((void)((EXP) || (croak(DEBUG_ID ": " MSG), 0), 0))
110 #else
111 #define	PERL_ASSERT(EXP)		((void)0)
112 #define	PERL_ASSERTMSG(EXP, MSG)	((void)0)
113 #endif
114 
115 /* Macros for saving the contents of KSTAT_RAW structures */
116 #if defined(HAS_QUAD) && defined(USE_64_BIT_INT)
117 #define NEW_IV(V) \
118     (newSViv((IVTYPE) V))
119 #define NEW_UV(V) \
120     (newSVuv((UVTYPE) V))
121 #else
122 #define NEW_IV(V) \
123     (V >= IV_MIN && V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V))
124 #if defined(UVTYPE)
125 #define NEW_UV(V) \
126     (V <= UV_MAX ? newSVuv((UVTYPE) V) : newSVnv((NVTYPE) V))
127 # else
128 #define NEW_UV(V) \
129     (V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V))
130 #endif
131 #endif
132 #define	NEW_HRTIME(V) \
133     newSVnv((NVTYPE) (V / 1000000000.0))
134 
135 #define	SAVE_FNP(H, F, K) \
136     hv_store(H, K, sizeof (K) - 1, newSViv((IVTYPE)(uintptr_t)&F), 0)
137 #define	SAVE_STRING(H, S, K, SS) \
138     hv_store(H, #K, sizeof (#K) - 1, \
139     newSVpvn(S->K, SS ? strlen(S->K) : sizeof(S->K)), 0)
140 #define	SAVE_INT32(H, S, K) \
141     hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0)
142 #define	SAVE_UINT32(H, S, K) \
143     hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0)
144 #define	SAVE_INT64(H, S, K) \
145     hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0)
146 #define	SAVE_UINT64(H, S, K) \
147     hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0)
148 #define	SAVE_HRTIME(H, S, K) \
149     hv_store(H, #K, sizeof (#K) - 1, NEW_HRTIME(S->K), 0)
150 
151 /* Private structure used for saving kstat info in the tied hashes */
152 typedef struct {
153 	char		read;		/* Kstat block has been read before */
154 	char		valid;		/* Kstat still exists in kstat chain */
155 	char		strip_str;	/* Strip KSTAT_DATA_CHAR fields */
156 	kstat_ctl_t	*kstat_ctl;	/* Handle returned by kstat_open */
157 	kstat_t		*kstat;		/* Handle used by kstat_read */
158 } KstatInfo_t;
159 
160 /* typedef for apply_to_ties callback functions */
161 typedef int (*ATTCb_t)(HV *, void *);
162 
163 /* typedef for raw kstat reader functions */
164 typedef void (*kstat_raw_reader_t)(HV *, kstat_t *, int);
165 
166 /* Hash of "module:name" to KSTAT_RAW read functions */
167 static HV *raw_kstat_lookup;
168 
169 /*
170  * Kstats come in two flavours, named and raw.  Raw kstats are just C structs,
171  * so we need a function per raw kstat to convert the C struct into the
172  * corresponding perl hash.  All such conversion functions are in the following
173  * section.
174  */
175 
176 /*
177  * Definitions in /usr/include/sys/cpuvar.h and /usr/include/sys/sysinfo.h
178  */
179 
180 static void
save_cpu_stat(HV * self,kstat_t * kp,int strip_str)181 save_cpu_stat(HV *self, kstat_t *kp, int strip_str)
182 {
183 	cpu_stat_t    *statp;
184 	cpu_sysinfo_t *sysinfop;
185 	cpu_syswait_t *syswaitp;
186 	cpu_vminfo_t  *vminfop;
187 
188 	/* PERL_ASSERT(kp->ks_ndata == 1); */
189 	PERL_ASSERT(kp->ks_data_size == sizeof (cpu_stat_t));
190 	statp = (cpu_stat_t *)(kp->ks_data);
191 	sysinfop = &statp->cpu_sysinfo;
192 	syswaitp = &statp->cpu_syswait;
193 	vminfop  = &statp->cpu_vminfo;
194 
195 	hv_store(self, "idle", 4, NEW_UV(sysinfop->cpu[CPU_IDLE]), 0);
196 	hv_store(self, "user", 4, NEW_UV(sysinfop->cpu[CPU_USER]), 0);
197 	hv_store(self, "kernel", 6, NEW_UV(sysinfop->cpu[CPU_KERNEL]), 0);
198 	hv_store(self, "wait", 4, NEW_UV(sysinfop->cpu[CPU_WAIT]), 0);
199 	hv_store(self, "wait_io", 7, NEW_UV(sysinfop->wait[W_IO]), 0);
200 	hv_store(self, "wait_swap", 9, NEW_UV(sysinfop->wait[W_SWAP]), 0);
201 	hv_store(self, "wait_pio",  8, NEW_UV(sysinfop->wait[W_PIO]), 0);
202 	SAVE_UINT32(self, sysinfop, bread);
203 	SAVE_UINT32(self, sysinfop, bwrite);
204 	SAVE_UINT32(self, sysinfop, lread);
205 	SAVE_UINT32(self, sysinfop, lwrite);
206 	SAVE_UINT32(self, sysinfop, phread);
207 	SAVE_UINT32(self, sysinfop, phwrite);
208 	SAVE_UINT32(self, sysinfop, pswitch);
209 	SAVE_UINT32(self, sysinfop, trap);
210 	SAVE_UINT32(self, sysinfop, intr);
211 	SAVE_UINT32(self, sysinfop, syscall);
212 	SAVE_UINT32(self, sysinfop, sysread);
213 	SAVE_UINT32(self, sysinfop, syswrite);
214 	SAVE_UINT32(self, sysinfop, sysfork);
215 	SAVE_UINT32(self, sysinfop, sysvfork);
216 	SAVE_UINT32(self, sysinfop, sysexec);
217 	SAVE_UINT32(self, sysinfop, readch);
218 	SAVE_UINT32(self, sysinfop, writech);
219 	SAVE_UINT32(self, sysinfop, rcvint);
220 	SAVE_UINT32(self, sysinfop, xmtint);
221 	SAVE_UINT32(self, sysinfop, mdmint);
222 	SAVE_UINT32(self, sysinfop, rawch);
223 	SAVE_UINT32(self, sysinfop, canch);
224 	SAVE_UINT32(self, sysinfop, outch);
225 	SAVE_UINT32(self, sysinfop, msg);
226 	SAVE_UINT32(self, sysinfop, sema);
227 	SAVE_UINT32(self, sysinfop, namei);
228 	SAVE_UINT32(self, sysinfop, ufsiget);
229 	SAVE_UINT32(self, sysinfop, ufsdirblk);
230 	SAVE_UINT32(self, sysinfop, ufsipage);
231 	SAVE_UINT32(self, sysinfop, ufsinopage);
232 	SAVE_UINT32(self, sysinfop, inodeovf);
233 	SAVE_UINT32(self, sysinfop, fileovf);
234 	SAVE_UINT32(self, sysinfop, procovf);
235 	SAVE_UINT32(self, sysinfop, intrthread);
236 	SAVE_UINT32(self, sysinfop, intrblk);
237 	SAVE_UINT32(self, sysinfop, idlethread);
238 	SAVE_UINT32(self, sysinfop, inv_swtch);
239 	SAVE_UINT32(self, sysinfop, nthreads);
240 	SAVE_UINT32(self, sysinfop, cpumigrate);
241 	SAVE_UINT32(self, sysinfop, xcalls);
242 	SAVE_UINT32(self, sysinfop, mutex_adenters);
243 	SAVE_UINT32(self, sysinfop, rw_rdfails);
244 	SAVE_UINT32(self, sysinfop, rw_wrfails);
245 	SAVE_UINT32(self, sysinfop, modload);
246 	SAVE_UINT32(self, sysinfop, modunload);
247 	SAVE_UINT32(self, sysinfop, bawrite);
248 #ifdef STATISTICS	/* see header file */
249 	SAVE_UINT32(self, sysinfop, rw_enters);
250 	SAVE_UINT32(self, sysinfop, win_uo_cnt);
251 	SAVE_UINT32(self, sysinfop, win_uu_cnt);
252 	SAVE_UINT32(self, sysinfop, win_so_cnt);
253 	SAVE_UINT32(self, sysinfop, win_su_cnt);
254 	SAVE_UINT32(self, sysinfop, win_suo_cnt);
255 #endif
256 
257 	SAVE_INT32(self, syswaitp, iowait);
258 	SAVE_INT32(self, syswaitp, swap);
259 	SAVE_INT32(self, syswaitp, physio);
260 
261 	SAVE_UINT32(self, vminfop, pgrec);
262 	SAVE_UINT32(self, vminfop, pgfrec);
263 	SAVE_UINT32(self, vminfop, pgin);
264 	SAVE_UINT32(self, vminfop, pgpgin);
265 	SAVE_UINT32(self, vminfop, pgout);
266 	SAVE_UINT32(self, vminfop, pgpgout);
267 	SAVE_UINT32(self, vminfop, swapin);
268 	SAVE_UINT32(self, vminfop, pgswapin);
269 	SAVE_UINT32(self, vminfop, swapout);
270 	SAVE_UINT32(self, vminfop, pgswapout);
271 	SAVE_UINT32(self, vminfop, zfod);
272 	SAVE_UINT32(self, vminfop, dfree);
273 	SAVE_UINT32(self, vminfop, scan);
274 	SAVE_UINT32(self, vminfop, rev);
275 	SAVE_UINT32(self, vminfop, hat_fault);
276 	SAVE_UINT32(self, vminfop, as_fault);
277 	SAVE_UINT32(self, vminfop, maj_fault);
278 	SAVE_UINT32(self, vminfop, cow_fault);
279 	SAVE_UINT32(self, vminfop, prot_fault);
280 	SAVE_UINT32(self, vminfop, softlock);
281 	SAVE_UINT32(self, vminfop, kernel_asflt);
282 	SAVE_UINT32(self, vminfop, pgrrun);
283 	SAVE_UINT32(self, vminfop, execpgin);
284 	SAVE_UINT32(self, vminfop, execpgout);
285 	SAVE_UINT32(self, vminfop, execfree);
286 	SAVE_UINT32(self, vminfop, anonpgin);
287 	SAVE_UINT32(self, vminfop, anonpgout);
288 	SAVE_UINT32(self, vminfop, anonfree);
289 	SAVE_UINT32(self, vminfop, fspgin);
290 	SAVE_UINT32(self, vminfop, fspgout);
291 	SAVE_UINT32(self, vminfop, fsfree);
292 }
293 
294 /*
295  * Definitions in /usr/include/sys/var.h
296  */
297 
298 static void
save_var(HV * self,kstat_t * kp,int strip_str)299 save_var(HV *self, kstat_t *kp, int strip_str)
300 {
301 	struct var *varp;
302 
303 	/* PERL_ASSERT(kp->ks_ndata == 1); */
304 	PERL_ASSERT(kp->ks_data_size == sizeof (struct var));
305 	varp = (struct var *)(kp->ks_data);
306 
307 	SAVE_INT32(self, varp, v_buf);
308 	SAVE_INT32(self, varp, v_call);
309 	SAVE_INT32(self, varp, v_proc);
310 	SAVE_INT32(self, varp, v_maxupttl);
311 	SAVE_INT32(self, varp, v_nglobpris);
312 	SAVE_INT32(self, varp, v_maxsyspri);
313 	SAVE_INT32(self, varp, v_clist);
314 	SAVE_INT32(self, varp, v_maxup);
315 	SAVE_INT32(self, varp, v_hbuf);
316 	SAVE_INT32(self, varp, v_hmask);
317 	SAVE_INT32(self, varp, v_pbuf);
318 	SAVE_INT32(self, varp, v_sptmap);
319 	SAVE_INT32(self, varp, v_maxpmem);
320 	SAVE_INT32(self, varp, v_autoup);
321 	SAVE_INT32(self, varp, v_bufhwm);
322 }
323 
324 /*
325  * Definition in /usr/include/sys/dnlc.h
326  */
327 
328 static void
save_ncstats(HV * self,kstat_t * kp,int strip_str)329 save_ncstats(HV *self, kstat_t *kp, int strip_str)
330 {
331 	struct ncstats *ncstatsp;
332 
333 	/* PERL_ASSERT(kp->ks_ndata == 1); */
334 	PERL_ASSERT(kp->ks_data_size == sizeof (struct ncstats));
335 	ncstatsp = (struct ncstats *)(kp->ks_data);
336 
337 	SAVE_INT32(self, ncstatsp, hits);
338 	SAVE_INT32(self, ncstatsp, misses);
339 	SAVE_INT32(self, ncstatsp, enters);
340 	SAVE_INT32(self, ncstatsp, dbl_enters);
341 	SAVE_INT32(self, ncstatsp, long_enter);
342 	SAVE_INT32(self, ncstatsp, long_look);
343 	SAVE_INT32(self, ncstatsp, move_to_front);
344 	SAVE_INT32(self, ncstatsp, purges);
345 }
346 
347 /*
348  * Definition in  /usr/include/sys/sysinfo.h
349  */
350 
351 static void
save_sysinfo(HV * self,kstat_t * kp,int strip_str)352 save_sysinfo(HV *self, kstat_t *kp, int strip_str)
353 {
354 	sysinfo_t *sysinfop;
355 
356 	/* PERL_ASSERT(kp->ks_ndata == 1); */
357 	PERL_ASSERT(kp->ks_data_size == sizeof (sysinfo_t));
358 	sysinfop = (sysinfo_t *)(kp->ks_data);
359 
360 	SAVE_UINT32(self, sysinfop, updates);
361 	SAVE_UINT32(self, sysinfop, runque);
362 	SAVE_UINT32(self, sysinfop, runocc);
363 	SAVE_UINT32(self, sysinfop, swpque);
364 	SAVE_UINT32(self, sysinfop, swpocc);
365 	SAVE_UINT32(self, sysinfop, waiting);
366 }
367 
368 /*
369  * Definition in  /usr/include/sys/sysinfo.h
370  */
371 
372 static void
save_vminfo(HV * self,kstat_t * kp,int strip_str)373 save_vminfo(HV *self, kstat_t *kp, int strip_str)
374 {
375 	vminfo_t *vminfop;
376 
377 	/* PERL_ASSERT(kp->ks_ndata == 1); */
378 	PERL_ASSERT(kp->ks_data_size == sizeof (vminfo_t));
379 	vminfop = (vminfo_t *)(kp->ks_data);
380 
381 	SAVE_UINT64(self, vminfop, freemem);
382 	SAVE_UINT64(self, vminfop, swap_resv);
383 	SAVE_UINT64(self, vminfop, swap_alloc);
384 	SAVE_UINT64(self, vminfop, swap_avail);
385 	SAVE_UINT64(self, vminfop, swap_free);
386 	SAVE_UINT64(self, vminfop, updates);
387 }
388 
389 /*
390  * Definition in /usr/include/nfs/nfs_clnt.h
391  */
392 
393 static void
save_nfs(HV * self,kstat_t * kp,int strip_str)394 save_nfs(HV *self, kstat_t *kp, int strip_str)
395 {
396 	struct mntinfo_kstat *mntinfop;
397 
398 	/* PERL_ASSERT(kp->ks_ndata == 1); */
399 	PERL_ASSERT(kp->ks_data_size == sizeof (struct mntinfo_kstat));
400 	mntinfop = (struct mntinfo_kstat *)(kp->ks_data);
401 
402 	SAVE_STRING(self, mntinfop, mik_proto, strip_str);
403 	SAVE_UINT32(self, mntinfop, mik_vers);
404 	SAVE_UINT32(self, mntinfop, mik_flags);
405 	SAVE_UINT32(self, mntinfop, mik_secmod);
406 	SAVE_UINT32(self, mntinfop, mik_curread);
407 	SAVE_UINT32(self, mntinfop, mik_curwrite);
408 	SAVE_INT32(self, mntinfop, mik_timeo);
409 	SAVE_INT32(self, mntinfop, mik_retrans);
410 	SAVE_UINT32(self, mntinfop, mik_acregmin);
411 	SAVE_UINT32(self, mntinfop, mik_acregmax);
412 	SAVE_UINT32(self, mntinfop, mik_acdirmin);
413 	SAVE_UINT32(self, mntinfop, mik_acdirmax);
414 	hv_store(self, "lookup_srtt", 11,
415 	    NEW_UV(mntinfop->mik_timers[0].srtt), 0);
416 	hv_store(self, "lookup_deviate", 14,
417 	    NEW_UV(mntinfop->mik_timers[0].deviate), 0);
418 	hv_store(self, "lookup_rtxcur", 13,
419 	    NEW_UV(mntinfop->mik_timers[0].rtxcur), 0);
420 	hv_store(self, "read_srtt", 9,
421 	    NEW_UV(mntinfop->mik_timers[1].srtt), 0);
422 	hv_store(self, "read_deviate", 12,
423 	    NEW_UV(mntinfop->mik_timers[1].deviate), 0);
424 	hv_store(self, "read_rtxcur", 11,
425 	    NEW_UV(mntinfop->mik_timers[1].rtxcur), 0);
426 	hv_store(self, "write_srtt", 10,
427 	    NEW_UV(mntinfop->mik_timers[2].srtt), 0);
428 	hv_store(self, "write_deviate", 13,
429 	    NEW_UV(mntinfop->mik_timers[2].deviate), 0);
430 	hv_store(self, "write_rtxcur", 12,
431 	    NEW_UV(mntinfop->mik_timers[2].rtxcur), 0);
432 	SAVE_UINT32(self, mntinfop, mik_noresponse);
433 	SAVE_UINT32(self, mntinfop, mik_failover);
434 	SAVE_UINT32(self, mntinfop, mik_remap);
435 	SAVE_STRING(self, mntinfop, mik_curserver, strip_str);
436 }
437 
438 /*
439  * The following struct => hash functions are all only present on the sparc
440  * platform, so they are all conditionally compiled depending on __sparc
441  */
442 
443 /*
444  * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h
445  */
446 
447 #ifdef __sparc
448 static void
save_sfmmu_global_stat(HV * self,kstat_t * kp,int strip_str)449 save_sfmmu_global_stat(HV *self, kstat_t *kp, int strip_str)
450 {
451 	struct sfmmu_global_stat *sfmmugp;
452 
453 	/* PERL_ASSERT(kp->ks_ndata == 1); */
454 	PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_global_stat));
455 	sfmmugp = (struct sfmmu_global_stat *)(kp->ks_data);
456 
457 	SAVE_INT32(self, sfmmugp, sf_tsb_exceptions);
458 	SAVE_INT32(self, sfmmugp, sf_tsb_raise_exception);
459 	SAVE_INT32(self, sfmmugp, sf_pagefaults);
460 	SAVE_INT32(self, sfmmugp, sf_uhash_searches);
461 	SAVE_INT32(self, sfmmugp, sf_uhash_links);
462 	SAVE_INT32(self, sfmmugp, sf_khash_searches);
463 	SAVE_INT32(self, sfmmugp, sf_khash_links);
464 	SAVE_INT32(self, sfmmugp, sf_swapout);
465 	SAVE_INT32(self, sfmmugp, sf_tsb_alloc);
466 	SAVE_INT32(self, sfmmugp, sf_tsb_allocfail);
467 	SAVE_INT32(self, sfmmugp, sf_tsb_sectsb_create);
468 	SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_alloc);
469 	SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_alloc);
470 	SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_allocfail);
471 	SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_allocfail);
472 	SAVE_INT32(self, sfmmugp, sf_tteload8k);
473 	SAVE_INT32(self, sfmmugp, sf_tteload64k);
474 	SAVE_INT32(self, sfmmugp, sf_tteload512k);
475 	SAVE_INT32(self, sfmmugp, sf_tteload4m);
476 	SAVE_INT32(self, sfmmugp, sf_tteload32m);
477 	SAVE_INT32(self, sfmmugp, sf_tteload256m);
478 	SAVE_INT32(self, sfmmugp, sf_tsb_load8k);
479 	SAVE_INT32(self, sfmmugp, sf_tsb_load4m);
480 	SAVE_INT32(self, sfmmugp, sf_hblk_hit);
481 	SAVE_INT32(self, sfmmugp, sf_hblk8_ncreate);
482 	SAVE_INT32(self, sfmmugp, sf_hblk8_nalloc);
483 	SAVE_INT32(self, sfmmugp, sf_hblk1_ncreate);
484 	SAVE_INT32(self, sfmmugp, sf_hblk1_nalloc);
485 	SAVE_INT32(self, sfmmugp, sf_hblk_slab_cnt);
486 	SAVE_INT32(self, sfmmugp, sf_hblk_reserve_cnt);
487 	SAVE_INT32(self, sfmmugp, sf_hblk_recurse_cnt);
488 	SAVE_INT32(self, sfmmugp, sf_hblk_reserve_hit);
489 	SAVE_INT32(self, sfmmugp, sf_get_free_success);
490 	SAVE_INT32(self, sfmmugp, sf_get_free_throttle);
491 	SAVE_INT32(self, sfmmugp, sf_get_free_fail);
492 	SAVE_INT32(self, sfmmugp, sf_put_free_success);
493 	SAVE_INT32(self, sfmmugp, sf_put_free_fail);
494 	SAVE_INT32(self, sfmmugp, sf_pgcolor_conflict);
495 	SAVE_INT32(self, sfmmugp, sf_uncache_conflict);
496 	SAVE_INT32(self, sfmmugp, sf_unload_conflict);
497 	SAVE_INT32(self, sfmmugp, sf_ism_uncache);
498 	SAVE_INT32(self, sfmmugp, sf_ism_recache);
499 	SAVE_INT32(self, sfmmugp, sf_recache);
500 	SAVE_INT32(self, sfmmugp, sf_steal_count);
501 	SAVE_INT32(self, sfmmugp, sf_pagesync);
502 	SAVE_INT32(self, sfmmugp, sf_clrwrt);
503 	SAVE_INT32(self, sfmmugp, sf_pagesync_invalid);
504 	SAVE_INT32(self, sfmmugp, sf_kernel_xcalls);
505 	SAVE_INT32(self, sfmmugp, sf_user_xcalls);
506 	SAVE_INT32(self, sfmmugp, sf_tsb_grow);
507 	SAVE_INT32(self, sfmmugp, sf_tsb_shrink);
508 	SAVE_INT32(self, sfmmugp, sf_tsb_resize_failures);
509 	SAVE_INT32(self, sfmmugp, sf_tsb_reloc);
510 	SAVE_INT32(self, sfmmugp, sf_user_vtop);
511 	SAVE_INT32(self, sfmmugp, sf_ctx_inv);
512 	SAVE_INT32(self, sfmmugp, sf_tlb_reprog_pgsz);
513 	SAVE_INT32(self, sfmmugp, sf_region_remap_demap);
514 	SAVE_INT32(self, sfmmugp, sf_create_scd);
515 	SAVE_INT32(self, sfmmugp, sf_join_scd);
516 	SAVE_INT32(self, sfmmugp, sf_leave_scd);
517 	SAVE_INT32(self, sfmmugp, sf_destroy_scd);
518 }
519 #endif
520 
521 /*
522  * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h
523  */
524 
525 #ifdef __sparc
526 static void
save_sfmmu_tsbsize_stat(HV * self,kstat_t * kp,int strip_str)527 save_sfmmu_tsbsize_stat(HV *self, kstat_t *kp, int strip_str)
528 {
529 	struct sfmmu_tsbsize_stat *sfmmutp;
530 
531 	/* PERL_ASSERT(kp->ks_ndata == 1); */
532 	PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_tsbsize_stat));
533 	sfmmutp = (struct sfmmu_tsbsize_stat *)(kp->ks_data);
534 
535 	SAVE_INT32(self, sfmmutp, sf_tsbsz_8k);
536 	SAVE_INT32(self, sfmmutp, sf_tsbsz_16k);
537 	SAVE_INT32(self, sfmmutp, sf_tsbsz_32k);
538 	SAVE_INT32(self, sfmmutp, sf_tsbsz_64k);
539 	SAVE_INT32(self, sfmmutp, sf_tsbsz_128k);
540 	SAVE_INT32(self, sfmmutp, sf_tsbsz_256k);
541 	SAVE_INT32(self, sfmmutp, sf_tsbsz_512k);
542 	SAVE_INT32(self, sfmmutp, sf_tsbsz_1m);
543 	SAVE_INT32(self, sfmmutp, sf_tsbsz_2m);
544 	SAVE_INT32(self, sfmmutp, sf_tsbsz_4m);
545 }
546 #endif
547 
548 /*
549  * We need to be able to find the function corresponding to a particular raw
550  * kstat.  To do this we ignore the instance and glue the module and name
551  * together to form a composite key.  We can then use the data in the kstat
552  * structure to find the appropriate function.  We use a perl hash to manage the
553  * lookup, where the key is "module:name" and the value is a pointer to the
554  * appropriate C function.
555  *
556  * Note that some kstats include the instance number as part of the module
557  * and/or name.  This could be construed as a bug.  However, to work around this
558  * we omit any digits from the module and name as we build the table in
559  * build_raw_kstat_lookup(), and we remove any digits from the module and name
560  * when we look up the functions in lookup_raw_kstat_fn()
561  */
562 
563 /*
564  * This function is called when the XS is first dlopen()ed, and builds the
565  * lookup table as described above.
566  */
567 
568 static void
build_raw_kstat_lookup()569 build_raw_kstat_lookup()
570 	{
571 	/* Create new hash */
572 	raw_kstat_lookup = newHV();
573 
574 	SAVE_FNP(raw_kstat_lookup, save_cpu_stat, "cpu_stat:cpu_stat");
575 	SAVE_FNP(raw_kstat_lookup, save_var, "unix:var");
576 	SAVE_FNP(raw_kstat_lookup, save_ncstats, "unix:ncstats");
577 	SAVE_FNP(raw_kstat_lookup, save_sysinfo, "unix:sysinfo");
578 	SAVE_FNP(raw_kstat_lookup, save_vminfo, "unix:vminfo");
579 	SAVE_FNP(raw_kstat_lookup, save_nfs, "nfs:mntinfo");
580 #ifdef __sparc
581 	SAVE_FNP(raw_kstat_lookup, save_sfmmu_global_stat,
582 	    "unix:sfmmu_global_stat");
583 	SAVE_FNP(raw_kstat_lookup, save_sfmmu_tsbsize_stat,
584 	    "unix:sfmmu_tsbsize_stat");
585 #endif
586 }
587 
588 /*
589  * This finds and returns the raw kstat reader function corresponding to the
590  * supplied module and name.  If no matching function exists, 0 is returned.
591  */
592 
lookup_raw_kstat_fn(char * module,char * name)593 static kstat_raw_reader_t lookup_raw_kstat_fn(char *module, char *name)
594 	{
595 	char			key[KSTAT_STRLEN * 2];
596 	register char		*f, *t;
597 	SV			**entry;
598 	kstat_raw_reader_t	fnp;
599 
600 	/* Copy across module & name, removing any digits - see comment above */
601 	for (f = module, t = key; *f != '\0'; f++, t++) {
602 		while (*f != '\0' && isdigit(*f)) { f++; }
603 		*t = *f;
604 	}
605 	*t++ = ':';
606 	for (f = name; *f != '\0'; f++, t++) {
607 		while (*f != '\0' && isdigit(*f)) {
608 			f++;
609 		}
610 	*t = *f;
611 	}
612 	*t = '\0';
613 
614 	/* look up & return the function, or teturn 0 if not found */
615 	if ((entry = hv_fetch(raw_kstat_lookup, key, strlen(key), FALSE)) == 0)
616 	{
617 		fnp = 0;
618 	} else {
619 		fnp = (kstat_raw_reader_t)(uintptr_t)SvIV(*entry);
620 	}
621 	return (fnp);
622 }
623 
624 /*
625  * This module converts the flat list returned by kstat_read() into a perl hash
626  * tree keyed on module, instance, name and statistic.  The following functions
627  * provide code to create the nested hashes, and to iterate over them.
628  */
629 
630 /*
631  * Given module, instance and name keys return a pointer to the hash tied to
632  * the bottommost hash.  If the hash already exists, we just return a pointer
633  * to it, otherwise we create the hash and any others also required above it in
634  * the hierarchy.  The returned tiehash is blessed into the
635  * Sun::Solaris::Kstat::_Stat class, so that the appropriate TIEHASH methods are
636  * called when the bottommost hash is accessed.  If the is_new parameter is
637  * non-null it will be set to TRUE if a new tie has been created, and FALSE if
638  * the tie already existed.
639  */
640 
641 static HV *
get_tie(SV * self,char * module,int instance,char * name,int * is_new)642 get_tie(SV *self, char *module, int instance, char *name, int *is_new)
643 {
644 	char str_inst[11];	/* big enough for up to 10^10 instances */
645 	char *key[3];		/* 3 part key: module, instance, name */
646 	int  k;
647 	int  new;
648 	HV   *hash;
649 	HV   *tie;
650 
651 	/* Create the keys */
652 	(void) snprintf(str_inst, sizeof (str_inst), "%d", instance);
653 	key[0] = module;
654 	key[1] = str_inst;
655 	key[2] = name;
656 
657 	/* Iteratively descend the tree, creating new hashes as required */
658 	hash = (HV *)SvRV(self);
659 	for (k = 0; k < 3; k++) {
660 		SV **entry;
661 
662 		SvREADONLY_off(hash);
663 		entry = hv_fetch(hash, key[k], strlen(key[k]), TRUE);
664 
665 		/* If the entry doesn't exist, create it */
666 		if (! SvOK(*entry)) {
667 			HV *newhash;
668 			SV *rv;
669 
670 			newhash = newHV();
671 			rv = newRV_noinc((SV *)newhash);
672 			sv_setsv(*entry, rv);
673 			SvREFCNT_dec(rv);
674 			if (k < 2) {
675 				SvREADONLY_on(newhash);
676 			}
677 			SvREADONLY_on(*entry);
678 			SvREADONLY_on(hash);
679 			hash = newhash;
680 			new = 1;
681 
682 		/* Otherwise it already existed */
683 		} else {
684 			SvREADONLY_on(hash);
685 			hash = (HV *)SvRV(*entry);
686 			new = 0;
687 		}
688 	}
689 
690 	/* Create and bless a hash for the tie, if necessary */
691 	if (new) {
692 		SV *tieref;
693 		HV *stash;
694 
695 		tie = newHV();
696 		tieref = newRV_noinc((SV *)tie);
697 		stash = gv_stashpv("Sun::Solaris::Kstat::_Stat", TRUE);
698 		sv_bless(tieref, stash);
699 
700 		/* Add TIEHASH magic */
701 		hv_magic(hash, (GV *)tieref, 'P');
702 		SvREFCNT_dec(tieref);
703 		SvREADONLY_on(hash);
704 
705 	/* Otherwise, just find the existing tied hash */
706 	} else {
707 		MAGIC *mg;
708 
709 		mg = mg_find((SV *)hash, 'P');
710 		PERL_ASSERTMSG(mg != 0, "get_tie: lost P magic");
711 		tie = (HV *)SvRV(mg->mg_obj);
712 	}
713 	if (is_new) {
714 		*is_new = new;
715 	}
716 	return (tie);
717 }
718 
719 /*
720  * This is an iterator function used to traverse the hash hierarchy and apply
721  * the passed function to the tied hashes at the bottom of the hierarchy.  If
722  * any of the callback functions return 0, 0 is returned, otherwise 1
723  */
724 
725 static int
apply_to_ties(SV * self,ATTCb_t cb,void * arg)726 apply_to_ties(SV *self, ATTCb_t cb, void *arg)
727 {
728 	HV	*hash1;
729 	HE	*entry1;
730 	int	ret;
731 
732 	hash1 = (HV *)SvRV(self);
733 	hv_iterinit(hash1);
734 	ret = 1;
735 
736 	/* Iterate over each module */
737 	while ((entry1 = hv_iternext(hash1))) {
738 		HV *hash2;
739 		HE *entry2;
740 
741 		hash2 = (HV *)SvRV(hv_iterval(hash1, entry1));
742 		hv_iterinit(hash2);
743 
744 		/* Iterate over each module:instance */
745 		while ((entry2 = hv_iternext(hash2))) {
746 			HV *hash3;
747 			HE *entry3;
748 
749 			hash3 = (HV *)SvRV(hv_iterval(hash2, entry2));
750 			hv_iterinit(hash3);
751 
752 			/* Iterate over each module:instance:name */
753 			while ((entry3 = hv_iternext(hash3))) {
754 				HV    *hash4;
755 				MAGIC *mg;
756 
757 				/* Get the tie */
758 				hash4 = (HV *)SvRV(hv_iterval(hash3, entry3));
759 				mg = mg_find((SV *)hash4, 'P');
760 				PERL_ASSERTMSG(mg != 0,
761 				    "apply_to_ties: lost P magic");
762 
763 				/* Apply the callback */
764 				if (! cb((HV *)SvRV(mg->mg_obj), arg)) {
765 					ret = 0;
766 				}
767 			}
768 		}
769 	}
770 	return (ret);
771 }
772 
773 /*
774  * Mark this HV as valid - used by update() when pruning deleted kstat nodes
775  */
776 
777 static int
set_valid(HV * self,void * arg)778 set_valid(HV *self, void *arg)
779 {
780 	MAGIC *mg;
781 
782 	mg = mg_find((SV *)self, '~');
783 	PERL_ASSERTMSG(mg != 0, "set_valid: lost ~ magic");
784 	((KstatInfo_t *)SvPVX(mg->mg_obj))->valid = (int)(intptr_t)arg;
785 	return (1);
786 }
787 
788 /*
789  * Prune invalid kstat nodes. This is called when kstat_chain_update() detects
790  * that the kstat chain has been updated.  This removes any hash tree entries
791  * that no longer have a corresponding kstat.  If del is non-null it will be
792  * set to the keys of the deleted kstat nodes, if any.  If any entries are
793  * deleted 1 will be retured, otherwise 0
794  */
795 
796 static int
prune_invalid(SV * self,AV * del)797 prune_invalid(SV *self, AV *del)
798 {
799 	HV	*hash1;
800 	HE	*entry1;
801 	STRLEN	klen;
802 	char	*module, *instance, *name, *key;
803 	int	ret;
804 
805 	hash1 = (HV *)SvRV(self);
806 	hv_iterinit(hash1);
807 	ret = 0;
808 
809 	/* Iterate over each module */
810 	while ((entry1 = hv_iternext(hash1))) {
811 		HV *hash2;
812 		HE *entry2;
813 
814 		module = HePV(entry1, PL_na);
815 		hash2 = (HV *)SvRV(hv_iterval(hash1, entry1));
816 		hv_iterinit(hash2);
817 
818 		/* Iterate over each module:instance */
819 		while ((entry2 = hv_iternext(hash2))) {
820 			HV *hash3;
821 			HE *entry3;
822 
823 			instance = HePV(entry2, PL_na);
824 			hash3 = (HV *)SvRV(hv_iterval(hash2, entry2));
825 			hv_iterinit(hash3);
826 
827 			/* Iterate over each module:instance:name */
828 			while ((entry3 = hv_iternext(hash3))) {
829 				HV    *hash4;
830 				MAGIC *mg;
831 				HV    *tie;
832 
833 				name = HePV(entry3, PL_na);
834 				hash4 = (HV *)SvRV(hv_iterval(hash3, entry3));
835 				mg = mg_find((SV *)hash4, 'P');
836 				PERL_ASSERTMSG(mg != 0,
837 				    "prune_invalid: lost P magic");
838 				tie = (HV *)SvRV(mg->mg_obj);
839 				mg = mg_find((SV *)tie, '~');
840 				PERL_ASSERTMSG(mg != 0,
841 				    "prune_invalid: lost ~ magic");
842 
843 				/* If this is marked as invalid, prune it */
844 				if (((KstatInfo_t *)SvPVX(
845 				    (SV *)mg->mg_obj))->valid == FALSE) {
846 					SvREADONLY_off(hash3);
847 					key = HePV(entry3, klen);
848 					hv_delete(hash3, key, klen, G_DISCARD);
849 					SvREADONLY_on(hash3);
850 					if (del) {
851 						av_push(del,
852 						    newSVpvf("%s:%s:%s",
853 						    module, instance, name));
854 					}
855 					ret = 1;
856 				}
857 			}
858 
859 			/* If the module:instance:name hash is empty prune it */
860 			if (HvKEYS(hash3) == 0) {
861 				SvREADONLY_off(hash2);
862 				key = HePV(entry2, klen);
863 				hv_delete(hash2, key, klen, G_DISCARD);
864 				SvREADONLY_on(hash2);
865 			}
866 		}
867 		/* If the module:instance hash is empty prune it */
868 		if (HvKEYS(hash2) == 0) {
869 			SvREADONLY_off(hash1);
870 			key = HePV(entry1, klen);
871 			hv_delete(hash1, key, klen, G_DISCARD);
872 			SvREADONLY_on(hash1);
873 		}
874 	}
875 	return (ret);
876 }
877 
878 /*
879  * Named kstats are returned as a list of key/values.  This function converts
880  * such a list into the equivalent perl datatypes, and stores them in the passed
881  * hash.
882  */
883 
884 static void
save_named(HV * self,kstat_t * kp,int strip_str)885 save_named(HV *self, kstat_t *kp, int strip_str)
886 {
887 	kstat_named_t	*knp;
888 	int		n;
889 	SV*		value;
890 
891 	for (n = kp->ks_ndata, knp = KSTAT_NAMED_PTR(kp); n > 0; n--, knp++) {
892 		switch (knp->data_type) {
893 		case KSTAT_DATA_CHAR:
894 			value = newSVpv(knp->value.c, strip_str ?
895 			    strlen(knp->value.c) : sizeof (knp->value.c));
896 			break;
897 		case KSTAT_DATA_INT32:
898 			value = newSViv(knp->value.i32);
899 			break;
900 		case KSTAT_DATA_UINT32:
901 			value = NEW_UV(knp->value.ui32);
902 			break;
903 		case KSTAT_DATA_INT64:
904 			value = NEW_UV(knp->value.i64);
905 			break;
906 		case KSTAT_DATA_UINT64:
907 			value = NEW_UV(knp->value.ui64);
908 			break;
909 		case KSTAT_DATA_STRING:
910 			if (KSTAT_NAMED_STR_PTR(knp) == NULL)
911 				value = newSVpv("null", sizeof ("null") - 1);
912 			else
913 				value = newSVpv(KSTAT_NAMED_STR_PTR(knp),
914 						KSTAT_NAMED_STR_BUFLEN(knp) -1);
915 			break;
916 		default:
917 			PERL_ASSERTMSG(0, "kstat_read: invalid data type");
918 			continue;
919 		}
920 		hv_store(self, knp->name, strlen(knp->name), value, 0);
921 	}
922 }
923 
924 /*
925  * Save kstat interrupt statistics
926  */
927 
928 static void
save_intr(HV * self,kstat_t * kp,int strip_str)929 save_intr(HV *self, kstat_t *kp, int strip_str)
930 {
931 	kstat_intr_t	*kintrp;
932 	int		i;
933 	static char	*intr_names[] =
934 	    { "hard", "soft", "watchdog", "spurious", "multiple_service" };
935 
936 	PERL_ASSERT(kp->ks_ndata == 1);
937 	PERL_ASSERT(kp->ks_data_size == sizeof (kstat_intr_t));
938 	kintrp = KSTAT_INTR_PTR(kp);
939 
940 	for (i = 0; i < KSTAT_NUM_INTRS; i++) {
941 		hv_store(self, intr_names[i], strlen(intr_names[i]),
942 		    NEW_UV(kintrp->intrs[i]), 0);
943 	}
944 }
945 
946 /*
947  * Save IO statistics
948  */
949 
950 static void
save_io(HV * self,kstat_t * kp,int strip_str)951 save_io(HV *self, kstat_t *kp, int strip_str)
952 {
953 	kstat_io_t *kiop;
954 
955 	PERL_ASSERT(kp->ks_ndata == 1);
956 	PERL_ASSERT(kp->ks_data_size == sizeof (kstat_io_t));
957 	kiop = KSTAT_IO_PTR(kp);
958 	SAVE_UINT64(self, kiop, nread);
959 	SAVE_UINT64(self, kiop, nwritten);
960 	SAVE_UINT32(self, kiop, reads);
961 	SAVE_UINT32(self, kiop, writes);
962 	SAVE_HRTIME(self, kiop, wtime);
963 	SAVE_HRTIME(self, kiop, wlentime);
964 	SAVE_HRTIME(self, kiop, wlastupdate);
965 	SAVE_HRTIME(self, kiop, rtime);
966 	SAVE_HRTIME(self, kiop, rlentime);
967 	SAVE_HRTIME(self, kiop, rlastupdate);
968 	SAVE_UINT32(self, kiop, wcnt);
969 	SAVE_UINT32(self, kiop, rcnt);
970 }
971 
972 /*
973  * Save timer statistics
974  */
975 
976 static void
save_timer(HV * self,kstat_t * kp,int strip_str)977 save_timer(HV *self, kstat_t *kp, int strip_str)
978 {
979 	kstat_timer_t *ktimerp;
980 
981 	PERL_ASSERT(kp->ks_ndata == 1);
982 	PERL_ASSERT(kp->ks_data_size == sizeof (kstat_timer_t));
983 	ktimerp = KSTAT_TIMER_PTR(kp);
984 	SAVE_STRING(self, ktimerp, name, strip_str);
985 	SAVE_UINT64(self, ktimerp, num_events);
986 	SAVE_HRTIME(self, ktimerp, elapsed_time);
987 	SAVE_HRTIME(self, ktimerp, min_time);
988 	SAVE_HRTIME(self, ktimerp, max_time);
989 	SAVE_HRTIME(self, ktimerp, start_time);
990 	SAVE_HRTIME(self, ktimerp, stop_time);
991 }
992 
993 /*
994  * Read kstats and copy into the supplied perl hash structure.  If refresh is
995  * true, this function is being called as part of the update() method.  In this
996  * case it is only necessary to read the kstats if they have previously been
997  * accessed (kip->read == TRUE).  If refresh is false, this function is being
998  * called prior to returning a value to the caller. In this case, it is only
999  * necessary to read the kstats if they have not previously been read.  If the
1000  * kstat_read() fails, 0 is returned, otherwise 1
1001  */
1002 
1003 static int
read_kstats(HV * self,int refresh)1004 read_kstats(HV *self, int refresh)
1005 {
1006 	MAGIC			*mg;
1007 	KstatInfo_t		*kip;
1008 	kstat_raw_reader_t	fnp;
1009 
1010 	/* Find the MAGIC KstatInfo_t data structure */
1011 	mg = mg_find((SV *)self, '~');
1012 	PERL_ASSERTMSG(mg != 0, "read_kstats: lost ~ magic");
1013 	kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1014 
1015 	/* Return early if we don't need to actually read the kstats */
1016 	if ((refresh && ! kip->read) || (! refresh && kip->read)) {
1017 		return (1);
1018 	}
1019 
1020 	/* Read the kstats and return 0 if this fails */
1021 	if (kstat_read(kip->kstat_ctl, kip->kstat, NULL) < 0) {
1022 		return (0);
1023 	}
1024 
1025 	/* Save the read data */
1026 	hv_store(self, "snaptime", 8, NEW_HRTIME(kip->kstat->ks_snaptime), 0);
1027 	switch (kip->kstat->ks_type) {
1028 		case KSTAT_TYPE_RAW:
1029 			if ((fnp = lookup_raw_kstat_fn(kip->kstat->ks_module,
1030 			    kip->kstat->ks_name)) != 0) {
1031 				fnp(self, kip->kstat, kip->strip_str);
1032 			}
1033 			break;
1034 		case KSTAT_TYPE_NAMED:
1035 			save_named(self, kip->kstat, kip->strip_str);
1036 			break;
1037 		case KSTAT_TYPE_INTR:
1038 			save_intr(self, kip->kstat, kip->strip_str);
1039 			break;
1040 		case KSTAT_TYPE_IO:
1041 			save_io(self, kip->kstat, kip->strip_str);
1042 			break;
1043 		case KSTAT_TYPE_TIMER:
1044 			save_timer(self, kip->kstat, kip->strip_str);
1045 			break;
1046 		default:
1047 			PERL_ASSERTMSG(0, "read_kstats: illegal kstat type");
1048 			break;
1049 	}
1050 	kip->read = TRUE;
1051 	return (1);
1052 }
1053 
1054 static int
read_kstats_wrap(HV * self,void * ptr)1055 read_kstats_wrap(HV *self, void *ptr)
1056 {
1057 	int refresh = (intptr_t)ptr;
1058 
1059 	return (read_kstats(self, refresh));
1060 }
1061 
1062 /*
1063  * The XS code exported to perl is below here.  Note that the XS preprocessor
1064  * has its own commenting syntax, so all comments from this point on are in
1065  * that form.
1066  */
1067 
1068 /* The following XS methods are the ABI of the Sun::Solaris::Kstat package */
1069 
1070 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat
1071 PROTOTYPES: ENABLE
1072 
1073  # Create the raw kstat to store function lookup table on load
1074 BOOT:
1075 	build_raw_kstat_lookup();
1076 
1077  #
1078  # The Sun::Solaris::Kstat constructor.  This builds the nested
1079  # name::instance::module hash structure, but doesn't actually read the
1080  # underlying kstats.  This is done on demand by the TIEHASH methods in
1081  # Sun::Solaris::Kstat::_Stat
1082  #
1083 
1084 SV*
1085 new(class, ...)
1086 	char *class;
1087 PREINIT:
1088 	HV		*stash;
1089 	kstat_ctl_t	*kc;
1090 	SV		*kcsv;
1091 	kstat_t		*kp;
1092 	KstatInfo_t	kstatinfo;
1093 	int		sp, strip_str;
1094 CODE:
1095 	/* Check we have an even number of arguments, excluding the class */
1096 	sp = 1;
1097 	if (((items - sp) % 2) != 0) {
1098 		croak(DEBUG_ID ": new: invalid number of arguments");
1099 	}
1100 
1101 	/* Process any (name => value) arguments */
1102 	strip_str = 0;
1103 	while (sp < items) {
1104 		SV *name, *value;
1105 
1106 		name = ST(sp);
1107 		sp++;
1108 		value = ST(sp);
1109 		sp++;
1110 		if (strcmp(SvPVX(name), "strip_strings") == 0) {
1111 			strip_str = SvTRUE(value);
1112 		} else {
1113 			croak(DEBUG_ID ": new: invalid parameter name '%s'",
1114 			    SvPVX(name));
1115 		}
1116 	}
1117 
1118 	/* Open the kstats handle */
1119 	if ((kc = kstat_open()) == 0) {
1120 		XSRETURN_UNDEF;
1121 	}
1122 
1123 	/* Create a blessed hash ref */
1124 	RETVAL = (SV *)newRV_noinc((SV *)newHV());
1125 	stash = gv_stashpv(class, TRUE);
1126 	sv_bless(RETVAL, stash);
1127 
1128 	/* Create a place to save the KstatInfo_t structure */
1129 	kcsv = newSVpv((char *)&kc, sizeof (kc));
1130 	sv_magic(SvRV(RETVAL), kcsv, '~', 0, 0);
1131 	SvREFCNT_dec(kcsv);
1132 
1133 	/* Initialise the KstatsInfo_t structure */
1134 	kstatinfo.read = FALSE;
1135 	kstatinfo.valid = TRUE;
1136 	kstatinfo.strip_str = strip_str;
1137 	kstatinfo.kstat_ctl = kc;
1138 
1139 	/* Scan the kstat chain, building hash entries for the kstats */
1140 	for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) {
1141 		HV *tie;
1142 		SV *kstatsv;
1143 
1144 		/* Don't bother storing the kstat headers */
1145 		if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
1146 			continue;
1147 		}
1148 
1149 		/* Don't bother storing raw stats we don't understand */
1150 		if (kp->ks_type == KSTAT_TYPE_RAW &&
1151 		    lookup_raw_kstat_fn(kp->ks_module, kp->ks_name) == 0) {
1152 #ifdef REPORT_UNKNOWN
1153 			(void) fprintf(stderr,
1154 			    "Unknown kstat type %s:%d:%s - %d of size %d\n",
1155 			    kp->ks_module, kp->ks_instance, kp->ks_name,
1156 			    kp->ks_ndata, kp->ks_data_size);
1157 #endif
1158 			continue;
1159 		}
1160 
1161 		/* Create a 3-layer hash hierarchy - module.instance.name */
1162 		tie = get_tie(RETVAL, kp->ks_module, kp->ks_instance,
1163 		    kp->ks_name, 0);
1164 
1165 		/* Save the data necessary to read the kstat info on demand */
1166 		hv_store(tie, "class", 5, newSVpv(kp->ks_class, 0), 0);
1167 		hv_store(tie, "crtime", 6, NEW_HRTIME(kp->ks_crtime), 0);
1168 		kstatinfo.kstat = kp;
1169 		kstatsv = newSVpv((char *)&kstatinfo, sizeof (kstatinfo));
1170 		sv_magic((SV *)tie, kstatsv, '~', 0, 0);
1171 		SvREFCNT_dec(kstatsv);
1172 	}
1173 	SvREADONLY_on(SvRV(RETVAL));
1174 	/* SvREADONLY_on(RETVAL); */
1175 OUTPUT:
1176 	RETVAL
1177 
1178  #
1179  # Update the perl hash structure so that it is in line with the kernel kstats
1180  # data.  Only kstats athat have previously been accessed are read,
1181  #
1182 
1183  # Scalar context: true/false
1184  # Array context: (\@added, \@deleted)
1185 void
1186 update(self)
1187 	SV* self;
1188 PREINIT:
1189 	MAGIC		*mg;
1190 	kstat_ctl_t	*kc;
1191 	kstat_t		*kp;
1192 	int		ret;
1193 	AV		*add, *del;
1194 PPCODE:
1195 	/* Find the hidden KstatInfo_t structure */
1196 	mg = mg_find(SvRV(self), '~');
1197 	PERL_ASSERTMSG(mg != 0, "update: lost ~ magic");
1198 	kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj);
1199 
1200 	/* Update the kstat chain, and return immediately on error. */
1201 	if ((ret = kstat_chain_update(kc)) == -1) {
1202 		if (GIMME_V == G_ARRAY) {
1203 			EXTEND(SP, 2);
1204 			PUSHs(sv_newmortal());
1205 			PUSHs(sv_newmortal());
1206 		} else {
1207 			EXTEND(SP, 1);
1208 			PUSHs(sv_2mortal(newSViv(ret)));
1209 		}
1210 	}
1211 
1212 	/* Create the arrays to be returned if in an array context */
1213 	if (GIMME_V == G_ARRAY) {
1214 		add = newAV();
1215 		del = newAV();
1216 	} else {
1217 		add = 0;
1218 		del = 0;
1219 	}
1220 
1221 	/*
1222 	 * If the kstat chain hasn't changed we can just reread any stats
1223 	 * that have already been read
1224 	 */
1225 	if (ret == 0) {
1226 		if (! apply_to_ties(self, read_kstats_wrap, (void *)TRUE)) {
1227 			if (GIMME_V == G_ARRAY) {
1228 				EXTEND(SP, 2);
1229 				PUSHs(sv_2mortal(newRV_noinc((SV *)add)));
1230 				PUSHs(sv_2mortal(newRV_noinc((SV *)del)));
1231 			} else {
1232 				EXTEND(SP, 1);
1233 				PUSHs(sv_2mortal(newSViv(-1)));
1234 			}
1235 		}
1236 
1237 	/*
1238 	 * Otherwise we have to update the Perl structure so that it is in
1239 	 * agreement with the new kstat chain.  We do this in such a way as to
1240 	 * retain all the existing structures, just adding or deleting the
1241 	 * bare minimum.
1242 	 */
1243 	} else {
1244 		KstatInfo_t	kstatinfo;
1245 
1246 		/*
1247 		 * Step 1: set the 'invalid' flag on each entry
1248 		 */
1249 		apply_to_ties(self, &set_valid, (void *)FALSE);
1250 
1251 		/*
1252 		 * Step 2: Set the 'valid' flag on all entries still in the
1253 		 * kernel kstat chain
1254 		 */
1255 		kstatinfo.read		= FALSE;
1256 		kstatinfo.valid		= TRUE;
1257 		kstatinfo.kstat_ctl	= kc;
1258 		for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) {
1259 			int	new;
1260 			HV	*tie;
1261 
1262 			/* Don't bother storing the kstat headers or types */
1263 			if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
1264 				continue;
1265 			}
1266 
1267 			/* Don't bother storing raw stats we don't understand */
1268 			if (kp->ks_type == KSTAT_TYPE_RAW &&
1269 			    lookup_raw_kstat_fn(kp->ks_module, kp->ks_name)
1270 			    == 0) {
1271 #ifdef REPORT_UNKNOWN
1272 				(void) printf("Unknown kstat type %s:%d:%s "
1273 				    "- %d of size %d\n", kp->ks_module,
1274 				    kp->ks_instance, kp->ks_name,
1275 				    kp->ks_ndata, kp->ks_data_size);
1276 #endif
1277 				continue;
1278 			}
1279 
1280 			/* Find the tied hash associated with the kstat entry */
1281 			tie = get_tie(self, kp->ks_module, kp->ks_instance,
1282 			    kp->ks_name, &new);
1283 
1284 			/* If newly created store the associated kstat info */
1285 			if (new) {
1286 				SV *kstatsv;
1287 
1288 				/*
1289 				 * Save the data necessary to read the kstat
1290 				 * info on demand
1291 				 */
1292 				hv_store(tie, "class", 5,
1293 				    newSVpv(kp->ks_class, 0), 0);
1294 				hv_store(tie, "crtime", 6,
1295 				    NEW_HRTIME(kp->ks_crtime), 0);
1296 				kstatinfo.kstat = kp;
1297 				kstatsv = newSVpv((char *)&kstatinfo,
1298 				    sizeof (kstatinfo));
1299 				sv_magic((SV *)tie, kstatsv, '~', 0, 0);
1300 				SvREFCNT_dec(kstatsv);
1301 
1302 				/* Save the key on the add list, if required */
1303 				if (GIMME_V == G_ARRAY) {
1304 					av_push(add, newSVpvf("%s:%d:%s",
1305 					    kp->ks_module, kp->ks_instance,
1306 					    kp->ks_name));
1307 				}
1308 
1309 			/* If the stats already exist, just update them */
1310 			} else {
1311 				MAGIC *mg;
1312 				KstatInfo_t *kip;
1313 
1314 				/* Find the hidden KstatInfo_t */
1315 				mg = mg_find((SV *)tie, '~');
1316 				PERL_ASSERTMSG(mg != 0, "update: lost ~ magic");
1317 				kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1318 
1319 				/* Mark the tie as valid */
1320 				kip->valid = TRUE;
1321 
1322 				/* Re-save the kstat_t pointer.  If the kstat
1323 				 * has been deleted and re-added since the last
1324 				 * update, the address of the kstat structure
1325 				 * will have changed, even though the kstat will
1326 				 * still live at the same place in the perl
1327 				 * hash tree structure.
1328 				 */
1329 				kip->kstat = kp;
1330 
1331 				/* Reread the stats, if read previously */
1332 				read_kstats(tie, TRUE);
1333 			}
1334 		}
1335 
1336 		/*
1337 		 *Step 3: Delete any entries still marked as 'invalid'
1338 		 */
1339 		ret = prune_invalid(self, del);
1340 
1341 	}
1342 	if (GIMME_V == G_ARRAY) {
1343 		EXTEND(SP, 2);
1344 		PUSHs(sv_2mortal(newRV_noinc((SV *)add)));
1345 		PUSHs(sv_2mortal(newRV_noinc((SV *)del)));
1346 	} else {
1347 		EXTEND(SP, 1);
1348 		PUSHs(sv_2mortal(newSViv(ret)));
1349 	}
1350 
1351 
1352  #
1353  # Destructor.  Closes the kstat connection
1354  #
1355 
1356 void
1357 DESTROY(self)
1358 	SV *self;
1359 PREINIT:
1360 	MAGIC		*mg;
1361 	kstat_ctl_t	*kc;
1362 CODE:
1363 	mg = mg_find(SvRV(self), '~');
1364 	PERL_ASSERTMSG(mg != 0, "DESTROY: lost ~ magic");
1365 	kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj);
1366 	if (kstat_close(kc) != 0) {
1367 		croak(DEBUG_ID ": kstat_close: failed");
1368 	}
1369 
1370  #
1371  # The following XS methods implement the TIEHASH mechanism used to update the
1372  # kstats hash structure.  These are blessed into a package that isn't
1373  # visible to callers of the Sun::Solaris::Kstat module
1374  #
1375 
1376 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat::_Stat
1377 PROTOTYPES: ENABLE
1378 
1379  #
1380  # If a value has already been read, return it.  Otherwise read the appropriate
1381  # kstat and then return the value
1382  #
1383 
1384 SV*
1385 FETCH(self, key)
1386 	SV* self;
1387 	SV* key;
1388 PREINIT:
1389 	char	*k;
1390 	STRLEN	klen;
1391 	SV	**value;
1392 CODE:
1393 	self = SvRV(self);
1394 	k = SvPV(key, klen);
1395 	if (strNE(k, "class") && strNE(k, "crtime")) {
1396 		read_kstats((HV *)self, FALSE);
1397 	}
1398 	value = hv_fetch((HV *)self, k, klen, FALSE);
1399 	if (value) {
1400 		RETVAL = *value; SvREFCNT_inc(RETVAL);
1401 	} else {
1402 		RETVAL = &PL_sv_undef;
1403 	}
1404 OUTPUT:
1405 	RETVAL
1406 
1407  #
1408  # Save the passed value into the kstat hash.  Read the appropriate kstat first,
1409  # if necessary.  Note that this DOES NOT update the underlying kernel kstat
1410  # structure.
1411  #
1412 
1413 SV*
1414 STORE(self, key, value)
1415 	SV* self;
1416 	SV* key;
1417 	SV* value;
1418 PREINIT:
1419 	char	*k;
1420 	STRLEN	klen;
1421 CODE:
1422 	self = SvRV(self);
1423 	k = SvPV(key, klen);
1424 	if (strNE(k, "class") && strNE(k, "crtime")) {
1425 		read_kstats((HV *)self, FALSE);
1426 	}
1427 	SvREFCNT_inc(value);
1428 	RETVAL = *(hv_store((HV *)self, k, klen, value, 0));
1429 	SvREFCNT_inc(RETVAL);
1430 OUTPUT:
1431 	RETVAL
1432 
1433  #
1434  # Check for the existence of the passed key.  Read the kstat first if necessary
1435  #
1436 
1437 bool
1438 EXISTS(self, key)
1439 	SV* self;
1440 	SV* key;
1441 PREINIT:
1442 	char *k;
1443 CODE:
1444 	self = SvRV(self);
1445 	k = SvPV(key, PL_na);
1446 	if (strNE(k, "class") && strNE(k, "crtime")) {
1447 		read_kstats((HV *)self, FALSE);
1448 	}
1449 	RETVAL = hv_exists_ent((HV *)self, key, 0);
1450 OUTPUT:
1451 	RETVAL
1452 
1453 
1454  #
1455  # Hash iterator initialisation.  Read the kstats if necessary.
1456  #
1457 
1458 SV*
1459 FIRSTKEY(self)
1460 	SV* self;
1461 PREINIT:
1462 	HE *he;
1463 PPCODE:
1464 	self = SvRV(self);
1465 	read_kstats((HV *)self, FALSE);
1466 	hv_iterinit((HV *)self);
1467 	if ((he = hv_iternext((HV *)self))) {
1468 		EXTEND(SP, 1);
1469 		PUSHs(hv_iterkeysv(he));
1470 	}
1471 
1472  #
1473  # Return hash iterator next value.  Read the kstats if necessary.
1474  #
1475 
1476 SV*
1477 NEXTKEY(self, lastkey)
1478 	SV* self;
1479 	SV* lastkey;
1480 PREINIT:
1481 	HE *he;
1482 PPCODE:
1483 	self = SvRV(self);
1484 	if ((he = hv_iternext((HV *)self))) {
1485 		EXTEND(SP, 1);
1486 		PUSHs(hv_iterkeysv(he));
1487 	}
1488 
1489 
1490  #
1491  # Delete the specified hash entry.
1492  #
1493 
1494 SV*
1495 DELETE(self, key)
1496 	SV *self;
1497 	SV *key;
1498 CODE:
1499 	self = SvRV(self);
1500 	RETVAL = hv_delete_ent((HV *)self, key, 0, 0);
1501 	if (RETVAL) {
1502 		SvREFCNT_inc(RETVAL);
1503 	} else {
1504 		RETVAL = &PL_sv_undef;
1505 	}
1506 OUTPUT:
1507 	RETVAL
1508 
1509  #
1510  # Clear the entire hash.  This will stop any update() calls rereading this
1511  # kstat until it is accessed again.
1512  #
1513 
1514 void
1515 CLEAR(self)
1516 	SV* self;
1517 PREINIT:
1518 	MAGIC   *mg;
1519 	KstatInfo_t *kip;
1520 CODE:
1521 	self = SvRV(self);
1522 	hv_clear((HV *)self);
1523 	mg = mg_find(self, '~');
1524 	PERL_ASSERTMSG(mg != 0, "CLEAR: lost ~ magic");
1525 	kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1526 	kip->read  = FALSE;
1527 	kip->valid = TRUE;
1528 	hv_store((HV *)self, "class", 5, newSVpv(kip->kstat->ks_class, 0), 0);
1529 	hv_store((HV *)self, "crtime", 6, NEW_HRTIME(kip->kstat->ks_crtime), 0);
1530