1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Mike Olson.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)bt_split.c	8.10 (Berkeley) 1/9/95";
39 #endif /* LIBC_SCCS and not lint */
40 
41 #include <sys/types.h>
42 
43 #include <limits.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 
48 #include "db-int.h"
49 #include "btree.h"
50 
51 static int	 bt_broot __P((BTREE *, PAGE *, PAGE *, PAGE *));
52 static PAGE	*bt_page
53 		    __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
54 static int	 bt_preserve __P((BTREE *, db_pgno_t));
55 static PAGE	*bt_psplit
56 		    __P((BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t));
57 static PAGE	*bt_root
58 		    __P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
59 static int	 bt_rroot __P((BTREE *, PAGE *, PAGE *, PAGE *));
60 static recno_t	 rec_total __P((PAGE *));
61 
62 #ifdef STATISTICS
63 u_long	bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
64 #endif
65 
66 /*
67  * __BT_SPLIT -- Split the tree.
68  *
69  * Parameters:
70  *	t:	tree
71  *	sp:	page to split
72  *	key:	key to insert
73  *	data:	data to insert
74  *	flags:	BIGKEY/BIGDATA flags
75  *	ilen:	insert length
76  *	skip:	index to leave open
77  *
78  * Returns:
79  *	RET_ERROR, RET_SUCCESS
80  */
81 int
__bt_split(t,sp,key,data,flags,ilen,argskip)82 __bt_split(t, sp, key, data, flags, ilen, argskip)
83 	BTREE *t;
84 	PAGE *sp;
85 	const DBT *key, *data;
86 	int flags;
87 	size_t ilen;
88 	u_int32_t argskip;
89 {
90 	BINTERNAL *bi;
91 	BLEAF *bl, *tbl;
92 	DBT a, b;
93 	EPGNO *parent;
94 	PAGE *h, *l, *r, *lchild, *rchild;
95 	indx_t nxtindex;
96 	u_int16_t skip;
97 	u_int32_t n, nbytes, nksize;
98 	int parentsplit;
99 	char *dest;
100 
101 	/*
102 	 * Split the page into two pages, l and r.  The split routines return
103 	 * a pointer to the page into which the key should be inserted and with
104 	 * skip set to the offset which should be used.  Additionally, l and r
105 	 * are pinned.
106 	 */
107 	skip = argskip;
108 	h = sp->pgno == P_ROOT ?
109 	    bt_root(t, sp, &l, &r, &skip, ilen) :
110 	    bt_page(t, sp, &l, &r, &skip, ilen);
111 	if (h == NULL)
112 		return (RET_ERROR);
113 
114 	/*
115 	 * Insert the new key/data pair into the leaf page.  (Key inserts
116 	 * always cause a leaf page to split first.)
117 	 */
118 	h->linp[skip] = h->upper -= ilen;
119 	dest = (char *)h + h->upper;
120 	if (F_ISSET(t, R_RECNO))
121 		WR_RLEAF(dest, data, flags)
122 	else
123 		WR_BLEAF(dest, key, data, flags)
124 
125 	/* If the root page was split, make it look right. */
126 	if (sp->pgno == P_ROOT &&
127 	    (F_ISSET(t, R_RECNO) ?
128 	    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
129 		goto err2;
130 
131 	/*
132 	 * Now we walk the parent page stack -- a LIFO stack of the pages that
133 	 * were traversed when we searched for the page that split.  Each stack
134 	 * entry is a page number and a page index offset.  The offset is for
135 	 * the page traversed on the search.  We've just split a page, so we
136 	 * have to insert a new key into the parent page.
137 	 *
138 	 * If the insert into the parent page causes it to split, may have to
139 	 * continue splitting all the way up the tree.  We stop if the root
140 	 * splits or the page inserted into didn't have to split to hold the
141 	 * new key.  Some algorithms replace the key for the old page as well
142 	 * as the new page.  We don't, as there's no reason to believe that the
143 	 * first key on the old page is any better than the key we have, and,
144 	 * in the case of a key being placed at index 0 causing the split, the
145 	 * key is unavailable.
146 	 *
147 	 * There are a maximum of 5 pages pinned at any time.  We keep the left
148 	 * and right pages pinned while working on the parent.   The 5 are the
149 	 * two children, left parent and right parent (when the parent splits)
150 	 * and the root page or the overflow key page when calling bt_preserve.
151 	 * This code must make sure that all pins are released other than the
152 	 * root page or overflow page which is unlocked elsewhere.
153 	 */
154 	while ((parent = BT_POP(t)) != NULL) {
155 		lchild = l;
156 		rchild = r;
157 
158 		/* Get the parent page. */
159 		if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
160 			goto err2;
161 
162 	 	/*
163 		 * The new key goes ONE AFTER the index, because the split
164 		 * was to the right.
165 		 */
166 		skip = parent->index + 1;
167 
168 		/*
169 		 * Calculate the space needed on the parent page.
170 		 *
171 		 * Prefix trees: space hack when inserting into BINTERNAL
172 		 * pages.  Retain only what's needed to distinguish between
173 		 * the new entry and the LAST entry on the page to its left.
174 		 * If the keys compare equal, retain the entire key.  Note,
175 		 * we don't touch overflow keys, and the entire key must be
176 		 * retained for the next-to-left most key on the leftmost
177 		 * page of each level, or the search will fail.  Applicable
178 		 * ONLY to internal pages that have leaf pages as children.
179 		 * Further reduction of the key between pairs of internal
180 		 * pages loses too much information.
181 		 */
182 		switch (rchild->flags & P_TYPE) {
183 		case P_BINTERNAL:
184 			bi = GETBINTERNAL(rchild, 0);
185 			nbytes = NBINTERNAL(bi->ksize);
186 			break;
187 		case P_BLEAF:
188 			bl = GETBLEAF(rchild, 0);
189 			nbytes = NBINTERNAL(bl->ksize);
190 			if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
191 			    (h->prevpg != P_INVALID || skip > 1)) {
192 				tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
193 				a.size = tbl->ksize;
194 				a.data = tbl->bytes;
195 				b.size = bl->ksize;
196 				b.data = bl->bytes;
197 				nksize = t->bt_pfx(&a, &b);
198 				n = NBINTERNAL(nksize);
199 				if (n < nbytes) {
200 #ifdef STATISTICS
201 					bt_pfxsaved += nbytes - n;
202 #endif
203 					nbytes = n;
204 				} else
205 					nksize = 0;
206 			} else
207 				nksize = 0;
208 			break;
209 		case P_RINTERNAL:
210 		case P_RLEAF:
211 			nbytes = NRINTERNAL;
212 			break;
213 		default:
214 			abort();
215 		}
216 
217 		/* Split the parent page if necessary or shift the indices. */
218 		if (h->upper - h->lower < nbytes + sizeof(indx_t)) {
219 			sp = h;
220 			h = h->pgno == P_ROOT ?
221 			    bt_root(t, h, &l, &r, &skip, nbytes) :
222 			    bt_page(t, h, &l, &r, &skip, nbytes);
223 			if (h == NULL)
224 				goto err1;
225 			parentsplit = 1;
226 		} else {
227 			if (skip < (nxtindex = NEXTINDEX(h)))
228 				memmove(h->linp + skip + 1, h->linp + skip,
229 				    (nxtindex - skip) * sizeof(indx_t));
230 			h->lower += sizeof(indx_t);
231 			parentsplit = 0;
232 		}
233 
234 		/* Insert the key into the parent page. */
235 		switch (rchild->flags & P_TYPE) {
236 		case P_BINTERNAL:
237 			h->linp[skip] = h->upper -= nbytes;
238 			dest = (char *)h + h->linp[skip];
239 			memmove(dest, bi, nbytes);
240 			((BINTERNAL *)dest)->pgno = rchild->pgno;
241 			break;
242 		case P_BLEAF:
243 			h->linp[skip] = h->upper -= nbytes;
244 			dest = (char *)h + h->linp[skip];
245 			WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
246 			    rchild->pgno, bl->flags & P_BIGKEY);
247 			memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
248 			if (bl->flags & P_BIGKEY &&
249 			    bt_preserve(t, *(db_pgno_t *)bl->bytes) == RET_ERROR)
250 				goto err1;
251 			break;
252 		case P_RINTERNAL:
253 			/*
254 			 * Update the left page count.  If split
255 			 * added at index 0, fix the correct page.
256 			 */
257 			if (skip > 0)
258 				dest = (char *)h + h->linp[skip - 1];
259 			else
260 				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
261 			((RINTERNAL *)dest)->nrecs = rec_total(lchild);
262 			((RINTERNAL *)dest)->pgno = lchild->pgno;
263 
264 			/* Update the right page count. */
265 			h->linp[skip] = h->upper -= nbytes;
266 			dest = (char *)h + h->linp[skip];
267 			((RINTERNAL *)dest)->nrecs = rec_total(rchild);
268 			((RINTERNAL *)dest)->pgno = rchild->pgno;
269 			break;
270 		case P_RLEAF:
271 			/*
272 			 * Update the left page count.  If split
273 			 * added at index 0, fix the correct page.
274 			 */
275 			if (skip > 0)
276 				dest = (char *)h + h->linp[skip - 1];
277 			else
278 				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
279 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
280 			((RINTERNAL *)dest)->pgno = lchild->pgno;
281 
282 			/* Update the right page count. */
283 			h->linp[skip] = h->upper -= nbytes;
284 			dest = (char *)h + h->linp[skip];
285 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
286 			((RINTERNAL *)dest)->pgno = rchild->pgno;
287 			break;
288 		default:
289 			abort();
290 		}
291 
292 		/* Unpin the held pages. */
293 		if (!parentsplit) {
294 			mpool_put(t->bt_mp, h, MPOOL_DIRTY);
295 			break;
296 		}
297 
298 		/* If the root page was split, make it look right. */
299 		if (sp->pgno == P_ROOT &&
300 		    (F_ISSET(t, R_RECNO) ?
301 		    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
302 			goto err1;
303 
304 		mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
305 		mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
306 	}
307 
308 	/* Unpin the held pages. */
309 	mpool_put(t->bt_mp, l, MPOOL_DIRTY);
310 	mpool_put(t->bt_mp, r, MPOOL_DIRTY);
311 
312 	/* Clear any pages left on the stack. */
313 	return (RET_SUCCESS);
314 
315 	/*
316 	 * If something fails in the above loop we were already walking back
317 	 * up the tree and the tree is now inconsistent.  Nothing much we can
318 	 * do about it but release any memory we're holding.
319 	 */
320 err1:	mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
321 	mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
322 
323 err2:	mpool_put(t->bt_mp, l, 0);
324 	mpool_put(t->bt_mp, r, 0);
325 	__dbpanic(t->bt_dbp);
326 	return (RET_ERROR);
327 }
328 
329 /*
330  * BT_PAGE -- Split a non-root page of a btree.
331  *
332  * Parameters:
333  *	t:	tree
334  *	h:	root page
335  *	lp:	pointer to left page pointer
336  *	rp:	pointer to right page pointer
337  *	skip:	pointer to index to leave open
338  *	ilen:	insert length
339  *
340  * Returns:
341  *	Pointer to page in which to insert or NULL on error.
342  */
343 static PAGE *
bt_page(t,h,lp,rp,skip,ilen)344 bt_page(t, h, lp, rp, skip, ilen)
345 	BTREE *t;
346 	PAGE *h, **lp, **rp;
347 	indx_t *skip;
348 	size_t ilen;
349 {
350 	PAGE *l, *r, *tp;
351 	db_pgno_t npg;
352 
353 #ifdef STATISTICS
354 	++bt_split;
355 #endif
356 	/* Put the new right page for the split into place. */
357 	if ((r = __bt_new(t, &npg)) == NULL)
358 		return (NULL);
359 	r->pgno = npg;
360 	r->lower = BTDATAOFF;
361 	r->upper = t->bt_psize;
362 	r->nextpg = h->nextpg;
363 	r->prevpg = h->pgno;
364 	r->flags = h->flags & P_TYPE;
365 
366 	/*
367 	 * If we're splitting the last page on a level because we're appending
368 	 * a key to it (skip is NEXTINDEX()), it's likely that the data is
369 	 * sorted.  Adding an empty page on the side of the level is less work
370 	 * and can push the fill factor much higher than normal.  If we're
371 	 * wrong it's no big deal, we'll just do the split the right way next
372 	 * time.  It may look like it's equally easy to do a similar hack for
373 	 * reverse sorted data, that is, split the tree left, but it's not.
374 	 * Don't even try.
375 	 */
376 	if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
377 #ifdef STATISTICS
378 		++bt_sortsplit;
379 #endif
380 		h->nextpg = r->pgno;
381 		r->lower = BTDATAOFF + sizeof(indx_t);
382 		*skip = 0;
383 		*lp = h;
384 		*rp = r;
385 		return (r);
386 	}
387 
388 	/* Put the new left page for the split into place. */
389 	if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) {
390 		mpool_put(t->bt_mp, r, 0);
391 		return (NULL);
392 	}
393 #ifdef PURIFY
394 	memset(l, 0xff, t->bt_psize);
395 #endif
396 	l->pgno = h->pgno;
397 	l->nextpg = r->pgno;
398 	l->prevpg = h->prevpg;
399 	l->lower = BTDATAOFF;
400 	l->upper = t->bt_psize;
401 	l->flags = h->flags & P_TYPE;
402 
403 	/* Fix up the previous pointer of the page after the split page. */
404 	if (h->nextpg != P_INVALID) {
405 		if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
406 			free(l);
407 			/* XXX mpool_free(t->bt_mp, r->pgno); */
408 			return (NULL);
409 		}
410 		tp->prevpg = r->pgno;
411 		mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
412 	}
413 
414 	/*
415 	 * Split right.  The key/data pairs aren't sorted in the btree page so
416 	 * it's simpler to copy the data from the split page onto two new pages
417 	 * instead of copying half the data to the right page and compacting
418 	 * the left page in place.  Since the left page can't change, we have
419 	 * to swap the original and the allocated left page after the split.
420 	 */
421 	tp = bt_psplit(t, h, l, r, skip, ilen);
422 
423 	/* Move the new left page onto the old left page. */
424 	memmove(h, l, t->bt_psize);
425 	if (tp == l)
426 		tp = h;
427 	free(l);
428 
429 	*lp = h;
430 	*rp = r;
431 	return (tp);
432 }
433 
434 /*
435  * BT_ROOT -- Split the root page of a btree.
436  *
437  * Parameters:
438  *	t:	tree
439  *	h:	root page
440  *	lp:	pointer to left page pointer
441  *	rp:	pointer to right page pointer
442  *	skip:	pointer to index to leave open
443  *	ilen:	insert length
444  *
445  * Returns:
446  *	Pointer to page in which to insert or NULL on error.
447  */
448 static PAGE *
bt_root(t,h,lp,rp,skip,ilen)449 bt_root(t, h, lp, rp, skip, ilen)
450 	BTREE *t;
451 	PAGE *h, **lp, **rp;
452 	indx_t *skip;
453 	size_t ilen;
454 {
455 	PAGE *l, *r, *tp;
456 	db_pgno_t lnpg, rnpg;
457 
458 #ifdef STATISTICS
459 	++bt_split;
460 	++bt_rootsplit;
461 #endif
462 	/* Put the new left and right pages for the split into place. */
463 	if ((l = __bt_new(t, &lnpg)) == NULL ||
464 	    (r = __bt_new(t, &rnpg)) == NULL)
465 		return (NULL);
466 	l->pgno = lnpg;
467 	r->pgno = rnpg;
468 	l->nextpg = r->pgno;
469 	r->prevpg = l->pgno;
470 	l->prevpg = r->nextpg = P_INVALID;
471 	l->lower = r->lower = BTDATAOFF;
472 	l->upper = r->upper = t->bt_psize;
473 	l->flags = r->flags = h->flags & P_TYPE;
474 
475 	/* Split the root page. */
476 	tp = bt_psplit(t, h, l, r, skip, ilen);
477 
478 	*lp = l;
479 	*rp = r;
480 	return (tp);
481 }
482 
483 /*
484  * BT_RROOT -- Fix up the recno root page after it has been split.
485  *
486  * Parameters:
487  *	t:	tree
488  *	h:	root page
489  *	l:	left page
490  *	r:	right page
491  *
492  * Returns:
493  *	RET_ERROR, RET_SUCCESS
494  */
495 static int
bt_rroot(t,h,l,r)496 bt_rroot(t, h, l, r)
497 	BTREE *t;
498 	PAGE *h, *l, *r;
499 {
500 	char *dest;
501 
502 	/* Insert the left and right keys, set the header information. */
503 	h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
504 	dest = (char *)h + h->upper;
505 	WR_RINTERNAL(dest,
506 	    l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
507 
508 	h->linp[1] = h->upper -= NRINTERNAL;
509 	dest = (char *)h + h->upper;
510 	WR_RINTERNAL(dest,
511 	    r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
512 
513 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
514 
515 	/* Unpin the root page, set to recno internal page. */
516 	h->flags &= ~P_TYPE;
517 	h->flags |= P_RINTERNAL;
518 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
519 
520 	return (RET_SUCCESS);
521 }
522 
523 /*
524  * BT_BROOT -- Fix up the btree root page after it has been split.
525  *
526  * Parameters:
527  *	t:	tree
528  *	h:	root page
529  *	l:	left page
530  *	r:	right page
531  *
532  * Returns:
533  *	RET_ERROR, RET_SUCCESS
534  */
535 static int
bt_broot(t,h,l,r)536 bt_broot(t, h, l, r)
537 	BTREE *t;
538 	PAGE *h, *l, *r;
539 {
540 	BINTERNAL *bi;
541 	BLEAF *bl;
542 	u_int32_t nbytes;
543 	char *dest;
544 
545 	/*
546 	 * If the root page was a leaf page, change it into an internal page.
547 	 * We copy the key we split on (but not the key's data, in the case of
548 	 * a leaf page) to the new root page.
549 	 *
550 	 * The btree comparison code guarantees that the left-most key on any
551 	 * level of the tree is never used, so it doesn't need to be filled in.
552 	 */
553 	nbytes = NBINTERNAL(0);
554 	h->linp[0] = h->upper = t->bt_psize - nbytes;
555 	dest = (char *)h + h->upper;
556 	WR_BINTERNAL(dest, 0, l->pgno, 0);
557 
558 	switch (h->flags & P_TYPE) {
559 	case P_BLEAF:
560 		bl = GETBLEAF(r, 0);
561 		nbytes = NBINTERNAL(bl->ksize);
562 		h->linp[1] = h->upper -= nbytes;
563 		dest = (char *)h + h->upper;
564 		WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
565 		memmove(dest, bl->bytes, bl->ksize);
566 
567 		/*
568 		 * If the key is on an overflow page, mark the overflow chain
569 		 * so it isn't deleted when the leaf copy of the key is deleted.
570 		 */
571 		if (bl->flags & P_BIGKEY &&
572 		    bt_preserve(t, *(db_pgno_t *)bl->bytes) == RET_ERROR)
573 			return (RET_ERROR);
574 		break;
575 	case P_BINTERNAL:
576 		bi = GETBINTERNAL(r, 0);
577 		nbytes = NBINTERNAL(bi->ksize);
578 		h->linp[1] = h->upper -= nbytes;
579 		dest = (char *)h + h->upper;
580 		memmove(dest, bi, nbytes);
581 		((BINTERNAL *)dest)->pgno = r->pgno;
582 		break;
583 	default:
584 		abort();
585 	}
586 
587 	/* There are two keys on the page. */
588 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
589 
590 	/* Unpin the root page, set to btree internal page. */
591 	h->flags &= ~P_TYPE;
592 	h->flags |= P_BINTERNAL;
593 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
594 
595 	return (RET_SUCCESS);
596 }
597 
598 /*
599  * BT_PSPLIT -- Do the real work of splitting the page.
600  *
601  * Parameters:
602  *	t:	tree
603  *	h:	page to be split
604  *	l:	page to put lower half of data
605  *	r:	page to put upper half of data
606  *	pskip:	pointer to index to leave open
607  *	ilen:	insert length
608  *
609  * Returns:
610  *	Pointer to page in which to insert.
611  */
612 static PAGE *
bt_psplit(t,h,l,r,pskip,ilen)613 bt_psplit(t, h, l, r, pskip, ilen)
614 	BTREE *t;
615 	PAGE *h, *l, *r;
616 	indx_t *pskip;
617 	size_t ilen;
618 {
619 	BINTERNAL *bi;
620 	BLEAF *bl;
621 	CURSOR *c;
622 	RLEAF *rl;
623 	PAGE *rval;
624 	void *src;
625 	indx_t full, half, nxt, off, skip, top, used;
626 	u_int32_t nbytes;
627 	int bigkeycnt, isbigkey;
628 
629 	/*
630 	 * Split the data to the left and right pages.  Leave the skip index
631 	 * open.  Additionally, make some effort not to split on an overflow
632 	 * key.  This makes internal page processing faster and can save
633 	 * space as overflow keys used by internal pages are never deleted.
634 	 */
635 	bigkeycnt = 0;
636 	skip = *pskip;
637 	full = t->bt_psize - BTDATAOFF;
638 	half = full / 2;
639 	used = 0;
640 	for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
641 		if (skip == off) {
642 			nbytes = ilen;
643 			isbigkey = 0;		/* XXX: not really known. */
644 		} else
645 			switch (h->flags & P_TYPE) {
646 			case P_BINTERNAL:
647 				src = bi = GETBINTERNAL(h, nxt);
648 				nbytes = NBINTERNAL(bi->ksize);
649 				isbigkey = bi->flags & P_BIGKEY;
650 				break;
651 			case P_BLEAF:
652 				src = bl = GETBLEAF(h, nxt);
653 				nbytes = NBLEAF(bl);
654 				isbigkey = bl->flags & P_BIGKEY;
655 				break;
656 			case P_RINTERNAL:
657 				src = GETRINTERNAL(h, nxt);
658 				nbytes = NRINTERNAL;
659 				isbigkey = 0;
660 				break;
661 			case P_RLEAF:
662 				src = rl = GETRLEAF(h, nxt);
663 				nbytes = NRLEAF(rl);
664 				isbigkey = 0;
665 				break;
666 			default:
667 				abort();
668 			}
669 
670 		/*
671 		 * If the key/data pairs are substantial fractions of the max
672 		 * possible size for the page, it's possible to get situations
673 		 * where we decide to try and copy too much onto the left page.
674 		 * Make sure that doesn't happen.
675 		 */
676 		if ((skip <= off && used + nbytes + sizeof(indx_t) >= full)
677 		    || nxt == top - 1) {
678 			--off;
679 			break;
680 		}
681 
682 		/* Copy the key/data pair, if not the skipped index. */
683 		if (skip != off) {
684 			++nxt;
685 
686 			l->linp[off] = l->upper -= nbytes;
687 			memmove((char *)l + l->upper, src, nbytes);
688 		}
689 
690 		used += nbytes + sizeof(indx_t);
691 		if (used >= half) {
692 			if (!isbigkey || bigkeycnt == 3)
693 				break;
694 			else
695 				++bigkeycnt;
696 		}
697 	}
698 
699 	/*
700 	 * Off is the last offset that's valid for the left page.
701 	 * Nxt is the first offset to be placed on the right page.
702 	 */
703 	l->lower += (off + 1) * sizeof(indx_t);
704 
705 	/*
706 	 * If splitting the page that the cursor was on, the cursor has to be
707 	 * adjusted to point to the same record as before the split.  If the
708 	 * cursor is at or past the skipped slot, the cursor is incremented by
709 	 * one.  If the cursor is on the right page, it is decremented by the
710 	 * number of records split to the left page.
711 	 */
712 	c = &t->bt_cursor;
713 	if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
714 		if (c->pg.index >= skip)
715 			++c->pg.index;
716 		if (c->pg.index < nxt)			/* Left page. */
717 			c->pg.pgno = l->pgno;
718 		else {					/* Right page. */
719 			c->pg.pgno = r->pgno;
720 			c->pg.index -= nxt;
721 		}
722 	}
723 
724 	/*
725 	 * If the skipped index was on the left page, just return that page.
726 	 * Otherwise, adjust the skip index to reflect the new position on
727 	 * the right page.
728 	 */
729 	if (skip <= off) {
730 		/*
731 		 * If we get here then 'skip' is in the left page.  We do
732 		 * not want to mix this with the right page, so we assign
733 		 * an unrealistic value (-1).
734 		 */
735 		skip = (indx_t)-1;
736 		rval = l;
737 	} else {
738 		rval = r;
739 		*pskip -= nxt;
740 	}
741 
742 	for (off = 0; nxt < top; ++off) {
743 		if (skip == nxt) {
744 			++off;
745 			/*
746 			 * Assign 'skip' an unrealistic value (-1) to ensure
747 			 * it is not matched again.
748 			 */
749 			skip = (indx_t)-1;
750 		}
751 		switch (h->flags & P_TYPE) {
752 		case P_BINTERNAL:
753 			src = bi = GETBINTERNAL(h, nxt);
754 			nbytes = NBINTERNAL(bi->ksize);
755 			break;
756 		case P_BLEAF:
757 			src = bl = GETBLEAF(h, nxt);
758 			nbytes = NBLEAF(bl);
759 			break;
760 		case P_RINTERNAL:
761 			src = GETRINTERNAL(h, nxt);
762 			nbytes = NRINTERNAL;
763 			break;
764 		case P_RLEAF:
765 			src = rl = GETRLEAF(h, nxt);
766 			nbytes = NRLEAF(rl);
767 			break;
768 		default:
769 			abort();
770 		}
771 		++nxt;
772 		r->linp[off] = r->upper -= nbytes;
773 		memmove((char *)r + r->upper, src, nbytes);
774 	}
775 	r->lower += off * sizeof(indx_t);
776 
777 	/* If the key is being appended to the page, adjust the index. */
778 	if (skip == top)
779 		r->lower += sizeof(indx_t);
780 
781 	return (rval);
782 }
783 
784 /*
785  * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
786  *
787  * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
788  * record that references them gets deleted.  Chains pointed to by internal
789  * pages never get deleted.  This routine marks a chain as pointed to by an
790  * internal page.
791  *
792  * Parameters:
793  *	t:	tree
794  *	pg:	page number of first page in the chain.
795  *
796  * Returns:
797  *	RET_SUCCESS, RET_ERROR.
798  */
799 static int
bt_preserve(t,pg)800 bt_preserve(t, pg)
801 	BTREE *t;
802 	db_pgno_t pg;
803 {
804 	PAGE *h;
805 
806 	if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
807 		return (RET_ERROR);
808 	h->flags |= P_PRESERVE;
809 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
810 	return (RET_SUCCESS);
811 }
812 
813 /*
814  * REC_TOTAL -- Return the number of recno entries below a page.
815  *
816  * Parameters:
817  *	h:	page
818  *
819  * Returns:
820  *	The number of recno entries below a page.
821  *
822  * XXX
823  * These values could be set by the bt_psplit routine.  The problem is that the
824  * entry has to be popped off of the stack etc. or the values have to be passed
825  * all the way back to bt_split/bt_rroot and it's not very clean.
826  */
827 static recno_t
rec_total(h)828 rec_total(h)
829 	PAGE *h;
830 {
831 	recno_t recs;
832 	indx_t nxt, top;
833 
834 	for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
835 		recs += GETRINTERNAL(h, nxt)->nrecs;
836 	return (recs);
837 }
838