/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NI_MMU_PAGESIZE_MASK ((1 << TTE8K) | (1 << TTE64K) | (1 << TTE4M) \ | (1 << TTE256M)) uint_t root_phys_addr_lo_mask = 0xffffffffU; static niagara_mmustat_t *cpu_tstat_va; /* VA of mmustat buffer */ static uint64_t cpu_tstat_pa; /* PA of mmustat buffer */ char cpu_module_name[] = "SUNW,UltraSPARC-T1"; /* * Hypervisor services information for the NIAGARA CPU module */ static boolean_t niagara_hsvc_available = B_TRUE; static uint64_t niagara_sup_minor; /* Supported minor number */ static hsvc_info_t niagara_hsvc = { HSVC_REV_1, NULL, HSVC_GROUP_NIAGARA_CPU, 1, 0, cpu_module_name }; void cpu_setup(void) { extern int mmu_exported_pagesize_mask; extern int cpc_has_overflow_intr; int status; char *ni_isa_set[] = { "sparcv9+vis", "sparcv9+vis2", "sparcv8plus+vis", "sparcv8plus+vis2", NULL }; /* * Negotiate the API version for Niagara specific hypervisor * services. */ status = hsvc_register(&niagara_hsvc, &niagara_sup_minor); if (status != 0) { cmn_err(CE_WARN, "%s: cannot negotiate hypervisor services " "group: 0x%lx major: 0x%lx minor: 0x%lx errno: %d\n", niagara_hsvc.hsvc_modname, niagara_hsvc.hsvc_group, niagara_hsvc.hsvc_major, niagara_hsvc.hsvc_minor, status); niagara_hsvc_available = B_FALSE; } /* * The setup common to all CPU modules is done in cpu_setup_common * routine. */ cpu_setup_common(ni_isa_set); cache |= (CACHE_PTAG | CACHE_IOCOHERENT); if (broken_md_flag) { /* * Turn on the missing bits supported by Niagara CPU in * MMU pagesize mask returned by MD. */ mmu_exported_pagesize_mask |= NI_MMU_PAGESIZE_MASK; } else { if ((mmu_exported_pagesize_mask & DEFAULT_SUN4V_MMU_PAGESIZE_MASK) != DEFAULT_SUN4V_MMU_PAGESIZE_MASK) cmn_err(CE_PANIC, "machine description" " does not have required sun4v page sizes" " 8K, 64K and 4M: MD mask is 0x%x", mmu_exported_pagesize_mask); } cpu_hwcap_flags |= AV_SPARC_ASI_BLK_INIT; /* * Niagara supports a 48-bit subset of the full 64-bit virtual * address space. Virtual addresses between 0x0000800000000000 * and 0xffff.7fff.ffff.ffff inclusive lie within a "VA Hole" * and must never be mapped. In addition, software must not use * pages within 4GB of the VA hole as instruction pages to * avoid problems with prefetching into the VA hole. */ hole_start = (caddr_t)((1ull << (va_bits - 1)) - (1ull << 32)); hole_end = (caddr_t)((0ull - (1ull << (va_bits - 1))) + (1ull << 32)); /* * Niagara has a performance counter overflow interrupt */ cpc_has_overflow_intr = 1; shctx_on = 0; } #define MB(n) ((n) * 1024 * 1024) /* * Set the magic constants of the implementation. */ void cpu_fiximp(struct cpu_node *cpunode) { /* * The Cache node is optional in MD. Therefore in case "Cache" * node does not exists in MD, set the default L2 cache associativity, * size, linesize. */ if (cpunode->ecache_size == 0) cpunode->ecache_size = MB(3); if (cpunode->ecache_linesize == 0) cpunode->ecache_linesize = 64; if (cpunode->ecache_associativity == 0) cpunode->ecache_associativity = 12; } void cpu_map_exec_units(struct cpu *cp) { ASSERT(MUTEX_HELD(&cpu_lock)); /* * The cpu_ipipe and cpu_fpu fields are initialized based on * the execution unit sharing information from the MD. They * default to the CPU id in the absence of such information. */ cp->cpu_m.cpu_ipipe = cpunodes[cp->cpu_id].exec_unit_mapping; if (cp->cpu_m.cpu_ipipe == NO_EU_MAPPING_FOUND) cp->cpu_m.cpu_ipipe = (id_t)(cp->cpu_id); cp->cpu_m.cpu_fpu = cpunodes[cp->cpu_id].fpu_mapping; if (cp->cpu_m.cpu_fpu == NO_EU_MAPPING_FOUND) cp->cpu_m.cpu_fpu = (id_t)(cp->cpu_id); /* * Niagara defines the the core to be at the ipipe level */ cp->cpu_m.cpu_core = cp->cpu_m.cpu_ipipe; /* * Niagara systems just have one chip. Therefore, the chip id * mpipe id are always 0. */ cp->cpu_m.cpu_chip = 0; cp->cpu_m.cpu_mpipe = 0; } void cpu_mutex_delay(void) { /* * Dummy is the thread-private target of the cas. If multiple strands * have the same kernel call stack, dummy could fall at the same VA and * hence the same L2 cache bank. To avoid this, create multiple dummy * words spread across several cache lines. */ struct { long val; long pad[7]; } dummy[4]; long *ptr = &(dummy[CPU->cpu_seqid & 0x03].val); cas_delay(ptr); } static int niagara_cpucnt; void cpu_init_private(struct cpu *cp) { extern void niagara_kstat_init(void); ASSERT(MUTEX_HELD(&cpu_lock)); cpu_map_exec_units(cp); if ((niagara_cpucnt++ == 0) && (niagara_hsvc_available == B_TRUE)) niagara_kstat_init(); mutex_delay = cpu_mutex_delay; } /*ARGSUSED*/ void cpu_uninit_private(struct cpu *cp) { extern void niagara_kstat_fini(void); ASSERT(MUTEX_HELD(&cpu_lock)); if ((--niagara_cpucnt == 0) && (niagara_hsvc_available == B_TRUE)) niagara_kstat_fini(); } /* * On Niagara, any flush will cause all preceding stores to be * synchronized wrt the i$, regardless of address or ASI. In fact, * the address is ignored, so we always flush address 0. */ /*ARGSUSED*/ void dtrace_flush_sec(uintptr_t addr) { doflush(0); } #define IS_FLOAT(i) (((i) & 0x1000000) != 0) #define IS_IBIT_SET(x) (x & 0x2000) #define IS_VIS1(op, op3)(op == 2 && op3 == 0x36) #define IS_PARTIAL_OR_SHORT_FLOAT_LD_ST(op, op3, asi) \ (op == 3 && (op3 == IOP_V8_LDDFA || \ op3 == IOP_V8_STDFA) && asi > ASI_SNFL) int vis1_partial_support(struct regs *rp, k_siginfo_t *siginfo, uint_t *fault) { char *badaddr; int instr; uint_t optype, op3, asi; uint_t ignor; if (!USERMODE(rp->r_tstate)) return (-1); instr = fetch_user_instr((caddr_t)rp->r_pc); optype = (instr >> 30) & 0x3; op3 = (instr >> 19) & 0x3f; ignor = (instr >> 5) & 0xff; if (IS_IBIT_SET(instr)) { asi = (uint32_t)((rp->r_tstate >> TSTATE_ASI_SHIFT) & TSTATE_ASI_MASK); } else { asi = ignor; } if (!IS_VIS1(optype, op3) && !IS_PARTIAL_OR_SHORT_FLOAT_LD_ST(optype, op3, asi)) { return (-1); } switch (simulate_unimp(rp, &badaddr)) { case SIMU_RETRY: break; /* regs are already set up */ /*NOTREACHED*/ case SIMU_SUCCESS: /* * skip the successfully * simulated instruction */ rp->r_pc = rp->r_npc; rp->r_npc += 4; break; /*NOTREACHED*/ case SIMU_FAULT: siginfo->si_signo = SIGSEGV; siginfo->si_code = SEGV_MAPERR; siginfo->si_addr = badaddr; *fault = FLTBOUNDS; break; case SIMU_DZERO: siginfo->si_signo = SIGFPE; siginfo->si_code = FPE_INTDIV; siginfo->si_addr = (caddr_t)rp->r_pc; *fault = FLTIZDIV; break; case SIMU_UNALIGN: siginfo->si_signo = SIGBUS; siginfo->si_code = BUS_ADRALN; siginfo->si_addr = badaddr; *fault = FLTACCESS; break; case SIMU_ILLEGAL: default: siginfo->si_signo = SIGILL; op3 = (instr >> 19) & 0x3F; if ((IS_FLOAT(instr) && (op3 == IOP_V8_STQFA) || (op3 == IOP_V8_STDFA))) siginfo->si_code = ILL_ILLADR; else siginfo->si_code = ILL_ILLOPC; siginfo->si_addr = (caddr_t)rp->r_pc; *fault = FLTILL; break; } return (0); } /* * Trapstat support for Niagara processor */ int cpu_trapstat_conf(int cmd) { size_t len; uint64_t mmustat_pa, hvret; int status = 0; if (niagara_hsvc_available == B_FALSE) return (ENOTSUP); switch (cmd) { case CPU_TSTATCONF_INIT: ASSERT(cpu_tstat_va == NULL); len = (NCPU+1) * sizeof (niagara_mmustat_t); cpu_tstat_va = contig_mem_alloc_align(len, sizeof (niagara_mmustat_t)); if (cpu_tstat_va == NULL) status = EAGAIN; else { bzero(cpu_tstat_va, len); cpu_tstat_pa = va_to_pa(cpu_tstat_va); } break; case CPU_TSTATCONF_FINI: if (cpu_tstat_va) { len = (NCPU+1) * sizeof (niagara_mmustat_t); contig_mem_free(cpu_tstat_va, len); cpu_tstat_va = NULL; cpu_tstat_pa = 0; } break; case CPU_TSTATCONF_ENABLE: hvret = hv_niagara_mmustat_conf((cpu_tstat_pa + (CPU->cpu_id+1) * sizeof (niagara_mmustat_t)), (uint64_t *)&mmustat_pa); if (hvret != H_EOK) status = EINVAL; break; case CPU_TSTATCONF_DISABLE: hvret = hv_niagara_mmustat_conf(0, (uint64_t *)&mmustat_pa); if (hvret != H_EOK) status = EINVAL; break; default: status = EINVAL; break; } return (status); } void cpu_trapstat_data(void *buf, uint_t tstat_pgszs) { niagara_mmustat_t *mmustatp; tstat_pgszdata_t *tstatp = (tstat_pgszdata_t *)buf; int i; if (cpu_tstat_va == NULL) return; mmustatp = &((niagara_mmustat_t *)cpu_tstat_va)[CPU->cpu_id+1]; if (tstat_pgszs > NIAGARA_MMUSTAT_PGSZS) tstat_pgszs = NIAGARA_MMUSTAT_PGSZS; for (i = 0; i < tstat_pgszs; i++, tstatp++) { tstatp->tpgsz_kernel.tmode_itlb.ttlb_tlb.tmiss_count = mmustatp->kitsb[i].tsbhit_count; tstatp->tpgsz_kernel.tmode_itlb.ttlb_tlb.tmiss_time = mmustatp->kitsb[i].tsbhit_time; tstatp->tpgsz_user.tmode_itlb.ttlb_tlb.tmiss_count = mmustatp->uitsb[i].tsbhit_count; tstatp->tpgsz_user.tmode_itlb.ttlb_tlb.tmiss_time = mmustatp->uitsb[i].tsbhit_time; tstatp->tpgsz_kernel.tmode_dtlb.ttlb_tlb.tmiss_count = mmustatp->kdtsb[i].tsbhit_count; tstatp->tpgsz_kernel.tmode_dtlb.ttlb_tlb.tmiss_time = mmustatp->kdtsb[i].tsbhit_time; tstatp->tpgsz_user.tmode_dtlb.ttlb_tlb.tmiss_count = mmustatp->udtsb[i].tsbhit_count; tstatp->tpgsz_user.tmode_dtlb.ttlb_tlb.tmiss_time = mmustatp->udtsb[i].tsbhit_time; } }