/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include /* for modload() */ #include #include #include #include #include #include #include #include /* I2C Stuff */ #include int (*p2get_mem_unum)(int, uint64_t, char *, int, int *); /* Daktari Keyswitch Information */ #define DAK_KEY_POLL_PORT 3 #define DAK_KEY_POLL_BIT 2 #define DAK_KEY_POLL_INTVL 10 static boolean_t key_locked_bit; static clock_t keypoll_timeout_hz; /* * Table that maps memory slices to a specific memnode. */ int slice_to_memnode[DAK_MAX_SLICE]; /* * For software memory interleaving support. */ static void update_mem_bounds(int, int, int, uint64_t, uint64_t); static uint64_t slice_table[DAK_SBD_SLOTS][DAK_CPUS_PER_BOARD][DAK_BANKS_PER_MC][2]; #define SLICE_PA 0 #define SLICE_SPAN 1 int (*daktari_ssc050_get_port_bit) (dev_info_t *, int, int, uint8_t *, int); extern void (*abort_seq_handler)(); static int daktari_dev_search(dev_info_t *, void *); static void keyswitch_poll(void *); static void daktari_abort_seq_handler(char *msg); void startup_platform(void) { /* * Disable an active h/w watchdog timer * upon exit to OBP. */ extern int disable_watchdog_on_exit; disable_watchdog_on_exit = 1; } int set_platform_tsb_spares() { return (0); } #pragma weak mmu_init_large_pages void set_platform_defaults(void) { extern void mmu_init_large_pages(size_t); if ((mmu_page_sizes == max_mmu_page_sizes) && (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) { if (&mmu_init_large_pages) mmu_init_large_pages(mmu_ism_pagesize); } } void load_platform_modules(void) { if (modload("misc", "pcihp") < 0) { cmn_err(CE_NOTE, "pcihp driver failed to load"); } if (modload("drv", "pmc") < 0) { cmn_err(CE_NOTE, "pmc driver failed to load"); } } void load_platform_drivers(void) { char **drv; dev_info_t *keysw_dip; static char *boot_time_drivers[] = { "hpc3130", "todds1287", "mc-us3", "ssc050", "pcisch", NULL }; for (drv = boot_time_drivers; *drv; drv++) { if (i_ddi_attach_hw_nodes(*drv) != DDI_SUCCESS) cmn_err(CE_WARN, "Failed to install \"%s\" driver.", *drv); } /* * mc-us3 & ssc050 must stay loaded for plat_get_mem_unum() * and keyswitch_poll() */ (void) ddi_hold_driver(ddi_name_to_major("mc-us3")); (void) ddi_hold_driver(ddi_name_to_major("ssc050")); /* Gain access into the ssc050_get_port function */ daktari_ssc050_get_port_bit = (int (*) (dev_info_t *, int, int, uint8_t *, int)) modgetsymvalue("ssc050_get_port_bit", 0); if (daktari_ssc050_get_port_bit == NULL) { cmn_err(CE_WARN, "cannot find ssc050_get_port_bit"); return; } ddi_walk_devs(ddi_root_node(), daktari_dev_search, (void *)&keysw_dip); ASSERT(keysw_dip != NULL); /* * prevent detach of i2c-ssc050 */ e_ddi_hold_devi(keysw_dip); keypoll_timeout_hz = drv_usectohz(10 * MICROSEC); keyswitch_poll(keysw_dip); abort_seq_handler = daktari_abort_seq_handler; } static int daktari_dev_search(dev_info_t *dip, void *arg) { char *compatible = NULL; /* Search tree for "i2c-ssc050" */ int *dev_regs; /* Info about where the device is. */ uint_t len; int err; if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "compatible", &compatible) != DDI_PROP_SUCCESS) return (DDI_WALK_CONTINUE); if (strcmp(compatible, "i2c-ssc050") == 0) { ddi_prop_free(compatible); err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg", &dev_regs, &len); if (err != DDI_PROP_SUCCESS) { return (DDI_WALK_CONTINUE); } /* * regs[0] contains the bus number and regs[1] * contains the device address of the i2c device. * 0x82 is the device address of the i2c device * from which the key switch position is read. */ if (dev_regs[0] == 0 && dev_regs[1] == 0x82) { *((dev_info_t **)arg) = dip; ddi_prop_free(dev_regs); return (DDI_WALK_TERMINATE); } ddi_prop_free(dev_regs); } else { ddi_prop_free(compatible); } return (DDI_WALK_CONTINUE); } static void keyswitch_poll(void *arg) { dev_info_t *dip = arg; uchar_t port_byte; int port = DAK_KEY_POLL_PORT; int bit = DAK_KEY_POLL_BIT; int err; err = daktari_ssc050_get_port_bit(dip, port, bit, &port_byte, I2C_NOSLEEP); if (err != 0) { cmn_err(CE_WARN, "keyswitch polling disabled: " "errno=%d while reading ssc050", err); return; } key_locked_bit = (boolean_t)((port_byte & 0x1)); (void) timeout(keyswitch_poll, (caddr_t)dip, keypoll_timeout_hz); } static void daktari_abort_seq_handler(char *msg) { if (key_locked_bit == 0) cmn_err(CE_CONT, "KEY in LOCKED position, " "ignoring debug enter sequence"); else { debug_enter(msg); } } int plat_cpu_poweron(struct cpu *cp) { _NOTE(ARGUNUSED(cp)) return (ENOTSUP); } int plat_cpu_poweroff(struct cpu *cp) { _NOTE(ARGUNUSED(cp)) return (ENOTSUP); } /* * Given a pfn, return the board and beginning/end of the page's * memory controller's address range. */ static int plat_discover_slice(pfn_t pfn, pfn_t *first, pfn_t *last) { int bd, cpu, bank; for (bd = 0; bd < DAK_SBD_SLOTS; bd++) { for (cpu = 0; cpu < DAK_CPUS_PER_BOARD; cpu++) { for (bank = 0; bank < DAK_BANKS_PER_MC; bank++) { uint64_t *slice = slice_table[bd][cpu][bank]; uint64_t base = btop(slice[SLICE_PA]); uint64_t len = btop(slice[SLICE_SPAN]); if (len && pfn >= base && pfn < (base + len)) { *first = base; *last = base + len - 1; return (bd); } } } } panic("plat_discover_slice: no slice for pfn 0x%lx\n", pfn); /* NOTREACHED */ } /*ARGSUSED*/ void plat_freelist_process(int mnode) {} /* * Called for each board/cpu/PA range detected in plat_fill_mc(). */ static void update_mem_bounds(int boardid, int cpuid, int bankid, uint64_t base, uint64_t size) { uint64_t end; int mnode; slice_table[boardid][cpuid][bankid][SLICE_PA] = base; slice_table[boardid][cpuid][bankid][SLICE_SPAN] = size; end = base + size - 1; /* * First see if this board already has a memnode associated * with it. If not, see if this slice has a memnode. This * covers the cases where a single slice covers multiple * boards (cross-board interleaving) and where a single * board has multiple slices (1+GB DIMMs). */ if ((mnode = plat_lgrphand_to_mem_node(boardid)) == -1) { if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1) mnode = mem_node_alloc(); ASSERT(mnode >= 0); ASSERT(mnode < MAX_MEM_NODES); plat_assign_lgrphand_to_mem_node(boardid, mnode); } base = P2ALIGN(base, (1ul << PA_SLICE_SHIFT)); while (base < end) { slice_to_memnode[PA_2_SLICE(base)] = mnode; base += (1ul << PA_SLICE_SHIFT); } } /* * Dynamically detect memory slices in the system by decoding * the cpu memory decoder registers at boot time. */ void plat_fill_mc(pnode_t nodeid) { uint64_t mc_addr, saf_addr; uint64_t mc_decode[DAK_BANKS_PER_MC]; uint64_t base, size; uint64_t saf_mask; uint64_t offset; uint32_t regs[4]; int len; int local_mc; int portid; int boardid; int cpuid; int i; if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) || (portid == -1)) return; /* * Decode the board number from the MC portid. Assumes * portid == safari agentid. */ boardid = DAK_GETSLOT(portid); cpuid = DAK_GETSID(portid); /* * The "reg" property returns 4 32-bit values. The first two are * combined to form a 64-bit address. The second two are for a * 64-bit size, but we don't actually need to look at that value. */ len = prom_getproplen(nodeid, "reg"); if (len != (sizeof (uint32_t) * 4)) { prom_printf("Warning: malformed 'reg' property\n"); return; } if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0) return; mc_addr = ((uint64_t)regs[0]) << 32; mc_addr |= (uint64_t)regs[1]; /* * Figure out whether the memory controller we are examining * belongs to this CPU or a different one. */ saf_addr = lddsafaddr(8); saf_mask = (uint64_t)SAF_MASK; if ((mc_addr & saf_mask) == saf_addr) local_mc = 1; else local_mc = 0; for (i = 0; i < DAK_BANKS_PER_MC; i++) { /* * Memory decode masks are at offsets 0x10 - 0x28. */ offset = 0x10 + (i << 3); /* * If the memory controller is local to this CPU, we use * the special ASI to read the decode registers. * Otherwise, we load the values from a magic address in * I/O space. */ if (local_mc) mc_decode[i] = lddmcdecode(offset); else mc_decode[i] = lddphysio(mc_addr | offset); /* * If the upper bit is set, we have a valid mask */ if ((int64_t)mc_decode[i] < 0) { /* * The memory decode register is a bitmask field, * so we can decode that into both a base and * a span. */ base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT; size = MC_UK2SPAN(mc_decode[i]); update_mem_bounds(boardid, cpuid, i, base, size); } } } /* * This routine is run midway through the boot process. By the time we get * here, we know about all the active CPU boards in the system, and we have * extracted information about each board's memory from the memory * controllers. We have also figured out which ranges of memory will be * assigned to which memnodes, so we walk the slice table to build the table * of memnodes. */ /* ARGSUSED */ void plat_build_mem_nodes(prom_memlist_t *list, size_t nelems) { int slice; pfn_t basepfn; pgcnt_t npgs; mem_node_pfn_shift = PFN_SLICE_SHIFT; mem_node_physalign = (1ull << PA_SLICE_SHIFT); npgs = 1ull << PFN_SLICE_SHIFT; for (slice = 0; slice < DAK_MAX_SLICE; slice++) { if (slice_to_memnode[slice] == -1) continue; basepfn = (uint64_t)slice << PFN_SLICE_SHIFT; mem_node_add_slice(basepfn, basepfn + npgs - 1); } } /* * Daktari support for lgroups. * * On Daktari, an lgroup platform handle == slot number. * * Mappings between lgroup handles and memnodes are managed * in addition to mappings between memory slices and memnodes * to support cross-board interleaving as well as multiple * slices per board (e.g. >1GB DIMMs). The initial mapping * of memnodes to lgroup handles is determined at boot time. */ int plat_pfn_to_mem_node(pfn_t pfn) { return (slice_to_memnode[PFN_2_SLICE(pfn)]); } /* * Return the platform handle for the lgroup containing the given CPU * * For Daktari, lgroup platform handle == slot number */ lgrp_handle_t plat_lgrp_cpu_to_hand(processorid_t id) { return (DAK_GETSLOT(id)); } /* * Platform specific lgroup initialization */ void plat_lgrp_init(void) { int i; /* * Initialize lookup tables to invalid values so we catch * any illegal use of them. */ for (i = 0; i < DAK_MAX_SLICE; i++) { slice_to_memnode[i] = -1; } } /* * Return latency between "from" and "to" lgroups * * This latency number can only be used for relative comparison * between lgroups on the running system, cannot be used across platforms, * and may not reflect the actual latency. It is platform and implementation * specific, so platform gets to decide its value. It would be nice if the * number was at least proportional to make comparisons more meaningful though. * NOTE: The numbers below are supposed to be load latencies for uncached * memory divided by 10. */ int plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to) { /* * Return min remote latency when there are more than two lgroups * (root and child) and getting latency between two different lgroups * or root is involved */ if (lgrp_optimizations() && (from != to || from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) return (21); else return (19); } /* * No platform drivers on this platform */ char *platform_module_list[] = { (char *)0 }; /*ARGSUSED*/ void plat_tod_fault(enum tod_fault_type tod_bad) { } /*ARGSUSED*/ int plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id, int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp) { if (flt_in_memory && (p2get_mem_unum != NULL)) return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8), buf, buflen, lenp)); else return (ENOTSUP); } /* * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3 * driver giving each platform the opportunity to add platform * specific label information to the unum for ECC error logging purposes. */ void plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm) { _NOTE(ARGUNUSED(bank, dimm)) char board = DAK_GETSLOT_LABEL(mcid); char old_unum[UNUM_NAMLEN]; (void) strcpy(old_unum, unum); (void) snprintf(unum, UNUM_NAMLEN, "Slot %c: %s", board, old_unum); } int plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp) { char board = DAK_GETSLOT_LABEL(cpuid); if (snprintf(buf, buflen, "Slot %c", board) >= buflen) { return (ENOSPC); } else { *lenp = strlen(buf); return (0); } } /* * The zuluvm module required a dmv interrupt for each installed * Zulu/XVR-4000 board. The following has not been updated during the * removal of zuluvm and therefore it may be suboptimal. */ void plat_dmv_params(uint_t *hwint, uint_t *swint) { *hwint = 0; *swint = DAK_SBD_SLOTS - 1; }