/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include uint_t cpu_impl_dual_pgsz = 0; /* * Structure for the 8 byte ecache data dump and the associated AFSR state. * There will be 8 of these structures used to dump an ecache line (64 bytes). */ typedef struct sf_ec_data_elm { uint64_t ec_d8; uint64_t ec_afsr; } ec_data_t; /* * Define spitfire (Ultra I/II) specific asynchronous error structure */ typedef struct spitfire_async_flt { struct async_flt cmn_asyncflt; /* common - see sun4u/sys/async.h */ ushort_t flt_type; /* types of faults - cpu specific */ ec_data_t flt_ec_data[8]; /* for E$ or mem dump/state */ uint64_t flt_ec_tag; /* E$ tag info */ int flt_ec_lcnt; /* number of bad E$ lines */ ushort_t flt_sdbh; /* UDBH reg */ ushort_t flt_sdbl; /* UDBL reg */ } spitf_async_flt; /* * Prototypes for support routines in spitfire_asm.s: */ extern void flush_ecache(uint64_t physaddr, size_t size, size_t linesize); extern uint64_t get_lsu(void); extern void set_lsu(uint64_t ncc); extern void get_ecache_dtag(uint32_t ecache_idx, uint64_t *data, uint64_t *tag, uint64_t *oafsr, uint64_t *acc_afsr); extern uint64_t check_ecache_line(uint32_t id, uint64_t *acc_afsr); extern uint64_t get_ecache_tag(uint32_t id, uint64_t *nafsr, uint64_t *acc_afsr); extern uint64_t read_and_clear_afsr(); extern void write_ec_tag_parity(uint32_t id); extern void write_hb_ec_tag_parity(uint32_t id); /* * Spitfire module routines: */ static void cpu_async_log_err(void *flt); /*PRINTFLIKE6*/ static void cpu_aflt_log(int ce_code, int tagnum, spitf_async_flt *spflt, uint_t logflags, const char *endstr, const char *fmt, ...); static void cpu_read_paddr(struct async_flt *aflt, short verbose, short ce_err); static void cpu_ce_log_status(spitf_async_flt *spf_flt, char *unum); static void cpu_log_ecmem_info(spitf_async_flt *spf_flt); static void log_ce_err(struct async_flt *aflt, char *unum); static void log_ue_err(struct async_flt *aflt, char *unum); static void check_misc_err(spitf_async_flt *spf_flt); static ushort_t ecc_gen(uint_t high_bytes, uint_t low_bytes); static int check_ecc(struct async_flt *aflt); static uint_t get_cpu_status(uint64_t arg); static uint64_t clear_errors(spitf_async_flt *spf_flt, uint64_t *acc_afsr); static void scan_ecache(uint64_t *afar, ec_data_t *data, uint64_t *tag, int *m, uint64_t *afsr); static void ecache_kstat_init(struct cpu *cp); static void ecache_scrub_log(ec_data_t *ec_data, uint64_t ec_tag, uint64_t paddr, int mpb, uint64_t); static uint64_t ecache_scrub_misc_err(int, uint64_t); static void ecache_scrub_tag_err(uint64_t, uchar_t, uint32_t); static void ecache_page_retire(void *); static int ecc_kstat_update(kstat_t *ksp, int rw); static int ce_count_unum(int status, int len, char *unum); static void add_leaky_bucket_timeout(void); static int synd_to_synd_code(int synd_status, ushort_t synd); extern uint_t read_all_memscrub; extern void memscrub_run(void); static uchar_t isus2i; /* set if sabre */ static uchar_t isus2e; /* set if hummingbird */ /* * Default ecache mask and shift settings for Spitfire. If we detect a * different CPU implementation, we will modify these values at boot time. */ static uint64_t cpu_ec_tag_mask = S_ECTAG_MASK; static uint64_t cpu_ec_state_mask = S_ECSTATE_MASK; static uint64_t cpu_ec_par_mask = S_ECPAR_MASK; static int cpu_ec_par_shift = S_ECPAR_SHIFT; static int cpu_ec_tag_shift = S_ECTAG_SHIFT; static int cpu_ec_state_shift = S_ECSTATE_SHIFT; static uchar_t cpu_ec_state_exl = S_ECSTATE_EXL; static uchar_t cpu_ec_state_mod = S_ECSTATE_MOD; static uchar_t cpu_ec_state_shr = S_ECSTATE_SHR; static uchar_t cpu_ec_state_own = S_ECSTATE_OWN; /* * Default ecache state bits for Spitfire. These individual bits indicate if * the given line is in any of the valid or modified states, respectively. * Again, we modify these at boot if we detect a different CPU. */ static uchar_t cpu_ec_state_valid = S_ECSTATE_VALID; static uchar_t cpu_ec_state_dirty = S_ECSTATE_DIRTY; static uchar_t cpu_ec_parity = S_EC_PARITY; static uchar_t cpu_ec_state_parity = S_ECSTATE_PARITY; /* * This table is used to determine which bit(s) is(are) bad when an ECC * error occurrs. The array is indexed an 8-bit syndrome. The entries * of this array have the following semantics: * * 00-63 The number of the bad bit, when only one bit is bad. * 64 ECC bit C0 is bad. * 65 ECC bit C1 is bad. * 66 ECC bit C2 is bad. * 67 ECC bit C3 is bad. * 68 ECC bit C4 is bad. * 69 ECC bit C5 is bad. * 70 ECC bit C6 is bad. * 71 ECC bit C7 is bad. * 72 Two bits are bad. * 73 Three bits are bad. * 74 Four bits are bad. * 75 More than Four bits are bad. * 76 NO bits are bad. * Based on "Galaxy Memory Subsystem SPECIFICATION" rev 0.6, pg. 28. */ #define C0 64 #define C1 65 #define C2 66 #define C3 67 #define C4 68 #define C5 69 #define C6 70 #define C7 71 #define M2 72 #define M3 73 #define M4 74 #define MX 75 #define NA 76 #define SYND_IS_SINGLE_BIT_DATA(synd_code) ((synd_code >= 0) && \ (synd_code < C0)) #define SYND_IS_SINGLE_BIT_CHK(synd_code) ((synd_code >= C0) && \ (synd_code <= C7)) static char ecc_syndrome_tab[] = { NA, C0, C1, M2, C2, M2, M2, M3, C3, M2, M2, M3, M2, M3, M3, M4, C4, M2, M2, 32, M2, 57, MX, M2, M2, 37, 49, M2, 40, M2, M2, 44, C5, M2, M2, 33, M2, 61, 4, M2, M2, MX, 53, M2, 45, M2, M2, 41, M2, 0, 1, M2, 10, M2, M2, MX, 15, M2, M2, MX, M2, M3, M3, M2, C6, M2, M2, 42, M2, 59, 39, M2, M2, MX, 51, M2, 34, M2, M2, 46, M2, 25, 29, M2, 27, M4, M2, MX, 31, M2, M4, MX, M2, MX, MX, M2, M2, MX, 36, M2, 7, M2, M2, 54, MX, M2, M2, 62, M2, 48, 56, M2, M3, M2, M2, MX, M2, MX, 22, M2, M2, 18, MX, M2, M3, M2, M2, MX, C7, M2, M2, 47, M2, 63, MX, M2, M2, 6, 55, M2, 35, M2, M2, 43, M2, 5, MX, M2, MX, M2, M2, 50, 38, M2, M2, 58, M2, 52, 60, M2, M2, 17, 21, M2, 19, M4, M2, MX, 23, M2, M4, MX, M2, MX, MX, M2, M3, M2, M2, MX, M2, MX, 30, M2, M2, 26, MX, M2, M3, M2, M2, MX, M2, 8, 13, M2, 2, M2, M2, M3, 3, M2, M2, M3, M2, MX, MX, M2, M3, M2, M2, M3, M2, MX, 16, M2, M2, 20, MX, M2, MX, M2, M2, MX, M3, M2, M2, M3, M2, MX, 24, M2, M2, 28, MX, M2, MX, M2, M2, MX, M4, 12, 9, M2, 14, M2, M2, MX, 11, M2, M2, MX, M2, MX, MX, M4 }; #define SYND_TBL_SIZE 256 /* * Hack for determining UDBH/UDBL, for later cpu-specific error reporting. * Cannot use bit 3 in afar, because it is a valid bit on a Sabre/Hummingbird. */ #define UDBL_REG 0x8000 #define UDBL(synd) ((synd & UDBL_REG) >> 15) #define SYND(synd) (synd & 0x7FFF) /* * These error types are specific to Spitfire and are used internally for the * spitfire fault structure flt_type field. */ #define CPU_UE_ERR 0 /* uncorrectable errors - UEs */ #define CPU_EDP_LDP_ERR 1 /* LDP or EDP parity error */ #define CPU_WP_ERR 2 /* WP parity error */ #define CPU_BTO_BERR_ERR 3 /* bus timeout errors */ #define CPU_PANIC_CP_ERR 4 /* cp error from panic polling */ #define CPU_TRAPPING_CP_ERR 5 /* for sabre/hbird only, cp error */ #define CPU_BADLINE_CI_ERR 6 /* E$ clean_bad line when idle */ #define CPU_BADLINE_CB_ERR 7 /* E$ clean_bad line when busy */ #define CPU_BADLINE_DI_ERR 8 /* E$ dirty_bad line when idle */ #define CPU_BADLINE_DB_ERR 9 /* E$ dirty_bad line when busy */ #define CPU_ORPHAN_CP_ERR 10 /* Orphan CP error */ #define CPU_ECACHE_ADDR_PAR_ERR 11 /* Ecache Address parity error */ #define CPU_ECACHE_STATE_ERR 12 /* Ecache state error */ #define CPU_ECACHE_ETP_ETS_ERR 13 /* ETP set but ETS is zero */ #define CPU_ECACHE_TAG_ERR 14 /* Scrub the E$ tag, if state clean */ #define CPU_ADDITIONAL_ERR 15 /* Additional errors occurred */ /* * Macro to access the "Spitfire cpu private" data structure. */ #define CPU_PRIVATE_PTR(cp, x) (&(((spitfire_private_t *)CPU_PRIVATE(cp))->x)) /* * set to 0 to disable automatic retiring of pages on * DIMMs that have excessive soft errors */ int automatic_page_removal = 1; /* * Heuristic for figuring out which module to replace. * Relative likelihood that this P_SYND indicates that this module is bad. * We call it a "score", though, not a relative likelihood. * * Step 1. * Assign a score to each byte of P_SYND according to the following rules: * If no bits on (0x00) or all bits on (0xFF), then give it a 5. * If one bit on, give it a 95. * If seven bits on, give it a 10. * If two bits on: * in different nybbles, a 90 * in same nybble, but unaligned, 85 * in same nybble and as an aligned pair, 80 * If six bits on, look at the bits that are off: * in same nybble and as an aligned pair, 15 * in same nybble, but unaligned, 20 * in different nybbles, a 25 * If three bits on: * in diferent nybbles, no aligned pairs, 75 * in diferent nybbles, one aligned pair, 70 * in the same nybble, 65 * If five bits on, look at the bits that are off: * in the same nybble, 30 * in diferent nybbles, one aligned pair, 35 * in diferent nybbles, no aligned pairs, 40 * If four bits on: * all in one nybble, 45 * as two aligned pairs, 50 * one aligned pair, 55 * no aligned pairs, 60 * * Step 2: * Take the higher of the two scores (one for each byte) as the score * for the module. * * Print the score for each module, and field service should replace the * module with the highest score. */ /* * In the table below, the first row/column comment indicates the * number of bits on in that nybble; the second row/column comment is * the hex digit. */ static int p_synd_score_table[256] = { /* 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 */ /* 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F */ /* 0 0 */ 5, 95, 95, 80, 95, 85, 85, 65, 95, 85, 85, 65, 80, 65, 65, 45, /* 1 1 */ 95, 90, 90, 70, 90, 75, 75, 55, 90, 75, 75, 55, 70, 55, 55, 30, /* 1 2 */ 95, 90, 90, 70, 90, 75, 75, 55, 90, 75, 75, 55, 70, 55, 55, 30, /* 2 3 */ 80, 70, 70, 50, 70, 55, 55, 35, 70, 55, 55, 35, 50, 35, 35, 15, /* 1 4 */ 95, 90, 90, 70, 90, 75, 75, 55, 90, 75, 75, 55, 70, 55, 55, 30, /* 2 5 */ 85, 75, 75, 55, 75, 60, 60, 40, 75, 60, 60, 40, 55, 40, 40, 20, /* 2 6 */ 85, 75, 75, 55, 75, 60, 60, 40, 75, 60, 60, 40, 55, 40, 40, 20, /* 3 7 */ 65, 55, 55, 35, 55, 40, 40, 25, 55, 40, 40, 25, 35, 25, 25, 10, /* 1 8 */ 95, 90, 90, 70, 90, 75, 75, 55, 90, 75, 75, 55, 70, 55, 55, 30, /* 2 9 */ 85, 75, 75, 55, 75, 60, 60, 40, 75, 60, 60, 40, 55, 40, 40, 20, /* 2 A */ 85, 75, 75, 55, 75, 60, 60, 40, 75, 60, 60, 40, 55, 40, 40, 20, /* 3 B */ 65, 55, 55, 35, 55, 40, 40, 25, 55, 40, 40, 25, 35, 25, 25, 10, /* 2 C */ 80, 70, 70, 50, 70, 55, 55, 35, 70, 55, 55, 35, 50, 35, 35, 15, /* 3 D */ 65, 55, 55, 35, 55, 40, 40, 25, 55, 40, 40, 25, 35, 25, 25, 10, /* 3 E */ 65, 55, 55, 35, 55, 40, 40, 25, 55, 40, 40, 25, 35, 25, 25, 10, /* 4 F */ 45, 30, 30, 15, 30, 20, 20, 10, 30, 20, 20, 10, 15, 10, 10, 5, }; int ecc_psynd_score(ushort_t p_synd) { int i, j, a, b; i = p_synd & 0xFF; j = (p_synd >> 8) & 0xFF; a = p_synd_score_table[i]; b = p_synd_score_table[j]; return (a > b ? a : b); } /* * Async Fault Logging * * To ease identifying, reading, and filtering async fault log messages, the * label [AFT#] is now prepended to each async fault message. These messages * and the logging rules are implemented by cpu_aflt_log(), below. * * [AFT0] - Tag for log messages that are associated with corrected ECC errors. * This includes both corrected ECC memory and ecache faults. * * [AFT1] - Tag for log messages that are not ECC corrected (i.e. everything * else except CE errors) with a priority of 1 (highest). This tag * is also used for panic messages that result from an async fault. * * [AFT2] - These are lower priority diagnostic messages for uncorrected ECC * [AFT3] or parity errors. For example, AFT2 is used for the actual dump * of the E-$ data and tags. * * In a non-DEBUG kernel, AFT > 1 logs will be sent to the system log but not * printed on the console. To send all AFT logs to both the log and the * console, set aft_verbose = 1. */ #define CPU_FLTCPU 0x0001 /* print flt_inst as a CPU id */ #define CPU_SPACE 0x0002 /* print flt_status (data or instr) */ #define CPU_ERRID 0x0004 /* print flt_id */ #define CPU_TL 0x0008 /* print flt_tl */ #define CPU_ERRID_FIRST 0x0010 /* print flt_id first in message */ #define CPU_AFSR 0x0020 /* print flt_stat as decoded %afsr */ #define CPU_AFAR 0x0040 /* print flt_addr as %afar */ #define CPU_AF_PSYND 0x0080 /* print flt_stat %afsr.PSYND */ #define CPU_AF_ETS 0x0100 /* print flt_stat %afsr.ETS */ #define CPU_UDBH 0x0200 /* print flt_sdbh and syndrome */ #define CPU_UDBL 0x0400 /* print flt_sdbl and syndrome */ #define CPU_FAULTPC 0x0800 /* print flt_pc */ #define CPU_SYND 0x1000 /* print flt_synd and unum */ #define CMN_LFLAGS (CPU_FLTCPU | CPU_SPACE | CPU_ERRID | CPU_TL | \ CPU_AFSR | CPU_AFAR | CPU_AF_PSYND | \ CPU_AF_ETS | CPU_UDBH | CPU_UDBL | \ CPU_FAULTPC) #define UE_LFLAGS (CMN_LFLAGS | CPU_SYND) #define CE_LFLAGS (UE_LFLAGS & ~CPU_UDBH & ~CPU_UDBL & ~CPU_TL & \ ~CPU_SPACE) #define PARERR_LFLAGS (CMN_LFLAGS) #define WP_LFLAGS (CMN_LFLAGS & ~CPU_SPACE & ~CPU_TL) #define CP_LFLAGS (CMN_LFLAGS & ~CPU_SPACE & ~CPU_TL & \ ~CPU_FLTCPU & ~CPU_FAULTPC) #define BERRTO_LFLAGS (CMN_LFLAGS) #define NO_LFLAGS (0) #define AFSR_FMTSTR0 "\020\1ME" #define AFSR_FMTSTR1 "\020\040PRIV\037ISAP\036ETP\035IVUE\034TO" \ "\033BERR\032LDP\031CP\030WP\027EDP\026UE\025CE" #define UDB_FMTSTR "\020\012UE\011CE" /* * Save the cache bootup state for use when internal * caches are to be re-enabled after an error occurs. */ uint64_t cache_boot_state = 0; /* * PA[31:0] represent Displacement in UPA configuration space. */ uint_t root_phys_addr_lo_mask = 0xffffffff; /* * Spitfire legacy globals */ int itlb_entries; int dtlb_entries; void cpu_setup(void) { extern int page_retire_messages; extern int page_retire_first_ue; extern int at_flags; #if defined(SF_ERRATA_57) extern caddr_t errata57_limit; #endif cache |= (CACHE_VAC | CACHE_PTAG | CACHE_IOCOHERENT); at_flags = EF_SPARC_32PLUS | EF_SPARC_SUN_US1; /* * Spitfire isn't currently FMA-aware, so we have to enable the * page retirement messages. We also change the default policy * for UE retirement to allow clearing of transient errors. */ page_retire_messages = 1; page_retire_first_ue = 0; /* * save the cache bootup state. */ cache_boot_state = get_lsu() & (LSU_IC | LSU_DC); if (use_page_coloring) { do_pg_coloring = 1; } /* * Tune pp_slots to use up to 1/8th of the tlb entries. */ pp_slots = MIN(8, MAXPP_SLOTS); /* * Block stores invalidate all pages of the d$ so pagecopy * et. al. do not need virtual translations with virtual * coloring taken into consideration. */ pp_consistent_coloring = 0; isa_list = "sparcv9+vis sparcv9 " "sparcv8plus+vis sparcv8plus " "sparcv8 sparcv8-fsmuld sparcv7 sparc"; cpu_hwcap_flags = AV_SPARC_VIS; /* * On Spitfire, there's a hole in the address space * that we must never map (the hardware only support 44-bits of * virtual address). Later CPUs are expected to have wider * supported address ranges. * * See address map on p23 of the UltraSPARC 1 user's manual. */ hole_start = (caddr_t)0x80000000000ull; hole_end = (caddr_t)0xfffff80000000000ull; /* * A spitfire call bug requires us to be a further 4Gbytes of * firewall from the spec. * * See Spitfire Errata #21 */ hole_start = (caddr_t)((uintptr_t)hole_start - (1ul << 32)); hole_end = (caddr_t)((uintptr_t)hole_end + (1ul << 32)); /* * The kpm mapping window. * kpm_size: * The size of a single kpm range. * The overall size will be: kpm_size * vac_colors. * kpm_vbase: * The virtual start address of the kpm range within the kernel * virtual address space. kpm_vbase has to be kpm_size aligned. */ kpm_size = (size_t)(2ull * 1024 * 1024 * 1024 * 1024); /* 2TB */ kpm_size_shift = 41; kpm_vbase = (caddr_t)0xfffffa0000000000ull; /* 16EB - 6TB */ /* * All UltraSPARC platforms should use small kpm page as default, as * the KPM large page VAC conflict code has no value to maintain. The * new generation of SPARC no longer have VAC conflict issue. */ kpm_smallpages = 1; #if defined(SF_ERRATA_57) errata57_limit = (caddr_t)0x80000000ul; #endif /* * Disable text by default. * Note that the other defaults are set in sun4u/vm/mach_vm_dep.c. */ max_utext_lpsize = MMU_PAGESIZE; } static int getintprop(pnode_t node, char *name, int deflt) { int value; switch (prom_getproplen(node, name)) { case 0: value = 1; /* boolean properties */ break; case sizeof (int): (void) prom_getprop(node, name, (caddr_t)&value); break; default: value = deflt; break; } return (value); } /* * Set the magic constants of the implementation. */ void cpu_fiximp(pnode_t dnode) { extern int vac_size, vac_shift; extern uint_t vac_mask; extern int dcache_line_mask; int i, a; static struct { char *name; int *var; } prop[] = { "dcache-size", &dcache_size, "dcache-line-size", &dcache_linesize, "icache-size", &icache_size, "icache-line-size", &icache_linesize, "ecache-size", &ecache_size, "ecache-line-size", &ecache_alignsize, "ecache-associativity", &ecache_associativity, "#itlb-entries", &itlb_entries, "#dtlb-entries", &dtlb_entries, }; for (i = 0; i < sizeof (prop) / sizeof (prop[0]); i++) { if ((a = getintprop(dnode, prop[i].name, -1)) != -1) { *prop[i].var = a; } } ecache_setsize = ecache_size / ecache_associativity; vac_size = S_VAC_SIZE; vac_mask = MMU_PAGEMASK & (vac_size - 1); i = 0; a = vac_size; while (a >>= 1) ++i; vac_shift = i; shm_alignment = vac_size; vac = 1; dcache_line_mask = (dcache_size - 1) & ~(dcache_linesize - 1); /* * UltraSPARC I & II have ecache sizes running * as follows: .25 MB, .5 MB, 1 MB, 2 MB, 4 MB * and 8 MB. Adjust the copyin/copyout limits * according to the cache size. The magic number * of VIS_COPY_THRESHOLD comes from the copyin/copyout code * and its floor of VIS_COPY_THRESHOLD bytes before it will use * VIS instructions. * * We assume that all CPUs on the system have the same size * ecache. We're also called very early in the game. * /etc/system will be parsed *after* we're called so * these values can be overwritten. */ hw_copy_limit_1 = VIS_COPY_THRESHOLD; if (ecache_size <= 524288) { hw_copy_limit_2 = VIS_COPY_THRESHOLD; hw_copy_limit_4 = VIS_COPY_THRESHOLD; hw_copy_limit_8 = VIS_COPY_THRESHOLD; } else if (ecache_size == 1048576) { hw_copy_limit_2 = 1024; hw_copy_limit_4 = 1280; hw_copy_limit_8 = 1536; } else if (ecache_size == 2097152) { hw_copy_limit_2 = 1536; hw_copy_limit_4 = 2048; hw_copy_limit_8 = 2560; } else if (ecache_size == 4194304) { hw_copy_limit_2 = 2048; hw_copy_limit_4 = 2560; hw_copy_limit_8 = 3072; } else { hw_copy_limit_2 = 2560; hw_copy_limit_4 = 3072; hw_copy_limit_8 = 3584; } } /* * Called by setcpudelay */ void cpu_init_tick_freq(void) { /* * Determine the cpu frequency by calling * tod_get_cpufrequency. Use an approximate freqency * value computed by the prom if the tod module * is not initialized and loaded yet. */ if (tod_ops.tod_get_cpufrequency != NULL) { mutex_enter(&tod_lock); sys_tick_freq = tod_ops.tod_get_cpufrequency(); mutex_exit(&tod_lock); } else { #if defined(HUMMINGBIRD) /* * the hummingbird version of %stick is used as the basis for * low level timing; this provides an independent constant-rate * clock for general system use, and frees power mgmt to set * various cpu clock speeds. */ if (system_clock_freq == 0) cmn_err(CE_PANIC, "invalid system_clock_freq 0x%lx", system_clock_freq); sys_tick_freq = system_clock_freq; #else /* SPITFIRE */ sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq; #endif } } void shipit(int upaid); extern uint64_t xc_tick_limit; extern uint64_t xc_tick_jump_limit; #ifdef SEND_MONDO_STATS uint64_t x_early[NCPU][64]; #endif /* * Note: A version of this function is used by the debugger via the KDI, * and must be kept in sync with this version. Any changes made to this * function to support new chips or to accomodate errata must also be included * in the KDI-specific version. See spitfire_kdi.c. */ void send_one_mondo(int cpuid) { uint64_t idsr, starttick, endtick; int upaid, busy, nack; uint64_t tick, tick_prev; ulong_t ticks; CPU_STATS_ADDQ(CPU, sys, xcalls, 1); upaid = CPUID_TO_UPAID(cpuid); tick = starttick = gettick(); shipit(upaid); endtick = starttick + xc_tick_limit; busy = nack = 0; for (;;) { idsr = getidsr(); if (idsr == 0) break; /* * When we detect an irregular tick jump, we adjust * the timer window to the current tick value. */ tick_prev = tick; tick = gettick(); ticks = tick - tick_prev; if (ticks > xc_tick_jump_limit) { endtick = tick + xc_tick_limit; } else if (tick > endtick) { if (panic_quiesce) return; cmn_err(CE_PANIC, "send mondo timeout (target 0x%x) [%d NACK %d " "BUSY]", upaid, nack, busy); } if (idsr & IDSR_BUSY) { busy++; continue; } drv_usecwait(1); shipit(upaid); nack++; busy = 0; } #ifdef SEND_MONDO_STATS x_early[getprocessorid()][highbit(gettick() - starttick) - 1]++; #endif } void send_mondo_set(cpuset_t set) { int i; for (i = 0; i < NCPU; i++) if (CPU_IN_SET(set, i)) { send_one_mondo(i); CPUSET_DEL(set, i); if (CPUSET_ISNULL(set)) break; } } void syncfpu(void) { } /* * Determine the size of the CPU module's error structure in bytes. This is * called once during boot to initialize the error queues. */ int cpu_aflt_size(void) { /* * We need to determine whether this is a sabre, Hummingbird or a * Spitfire/Blackbird impl and set the appropriate state variables for * ecache tag manipulation. We can't do this in cpu_setup() as it is * too early in the boot flow and the cpunodes are not initialized. * This routine will be called once after cpunodes[] is ready, so do * it here. */ if (cpunodes[CPU->cpu_id].implementation == SABRE_IMPL) { isus2i = 1; cpu_ec_tag_mask = SB_ECTAG_MASK; cpu_ec_state_mask = SB_ECSTATE_MASK; cpu_ec_par_mask = SB_ECPAR_MASK; cpu_ec_par_shift = SB_ECPAR_SHIFT; cpu_ec_tag_shift = SB_ECTAG_SHIFT; cpu_ec_state_shift = SB_ECSTATE_SHIFT; cpu_ec_state_exl = SB_ECSTATE_EXL; cpu_ec_state_mod = SB_ECSTATE_MOD; /* These states do not exist in sabre - set to 0xFF */ cpu_ec_state_shr = 0xFF; cpu_ec_state_own = 0xFF; cpu_ec_state_valid = SB_ECSTATE_VALID; cpu_ec_state_dirty = SB_ECSTATE_DIRTY; cpu_ec_state_parity = SB_ECSTATE_PARITY; cpu_ec_parity = SB_EC_PARITY; } else if (cpunodes[CPU->cpu_id].implementation == HUMMBRD_IMPL) { isus2e = 1; cpu_ec_tag_mask = HB_ECTAG_MASK; cpu_ec_state_mask = HB_ECSTATE_MASK; cpu_ec_par_mask = HB_ECPAR_MASK; cpu_ec_par_shift = HB_ECPAR_SHIFT; cpu_ec_tag_shift = HB_ECTAG_SHIFT; cpu_ec_state_shift = HB_ECSTATE_SHIFT; cpu_ec_state_exl = HB_ECSTATE_EXL; cpu_ec_state_mod = HB_ECSTATE_MOD; /* These states do not exist in hummingbird - set to 0xFF */ cpu_ec_state_shr = 0xFF; cpu_ec_state_own = 0xFF; cpu_ec_state_valid = HB_ECSTATE_VALID; cpu_ec_state_dirty = HB_ECSTATE_DIRTY; cpu_ec_state_parity = HB_ECSTATE_PARITY; cpu_ec_parity = HB_EC_PARITY; } return (sizeof (spitf_async_flt)); } /* * Correctable ecc error trap handler */ /*ARGSUSED*/ void cpu_ce_error(struct regs *rp, ulong_t p_afar, ulong_t p_afsr, uint_t p_afsr_high, uint_t p_afar_high) { ushort_t sdbh, sdbl; ushort_t e_syndh, e_syndl; spitf_async_flt spf_flt; struct async_flt *ecc; int queue = 1; uint64_t t_afar = p_afar; uint64_t t_afsr = p_afsr; /* * Note: the Spitfire data buffer error registers * (upper and lower halves) are or'ed into the upper * word of the afsr by ce_err(). */ sdbh = (ushort_t)((t_afsr >> 33) & 0x3FF); sdbl = (ushort_t)((t_afsr >> 43) & 0x3FF); e_syndh = (uchar_t)(sdbh & (uint_t)P_DER_E_SYND); e_syndl = (uchar_t)(sdbl & (uint_t)P_DER_E_SYND); t_afsr &= S_AFSR_MASK; t_afar &= SABRE_AFAR_PA; /* must use Sabre AFAR mask */ /* Setup the async fault structure */ bzero(&spf_flt, sizeof (spitf_async_flt)); ecc = (struct async_flt *)&spf_flt; ecc->flt_id = gethrtime_waitfree(); ecc->flt_stat = t_afsr; ecc->flt_addr = t_afar; ecc->flt_status = ECC_C_TRAP; ecc->flt_bus_id = getprocessorid(); ecc->flt_inst = CPU->cpu_id; ecc->flt_pc = (caddr_t)rp->r_pc; ecc->flt_func = log_ce_err; ecc->flt_in_memory = (pf_is_memory(ecc->flt_addr >> MMU_PAGESHIFT)) ? 1: 0; spf_flt.flt_sdbh = sdbh; spf_flt.flt_sdbl = sdbl; /* * Check for fatal conditions. */ check_misc_err(&spf_flt); /* * Pananoid checks for valid AFSR and UDBs */ if ((t_afsr & P_AFSR_CE) == 0) { cpu_aflt_log(CE_PANIC, 1, &spf_flt, CMN_LFLAGS, "** Panic due to CE bit not set in the AFSR", " Corrected Memory Error on"); } /* * We want to skip logging only if ALL the following * conditions are true: * * 1. There is only one error * 2. That error is a correctable memory error * 3. The error is caused by the memory scrubber (in which case * the error will have occurred under on_trap protection) * 4. The error is on a retired page * * Note: OT_DATA_EC is used places other than the memory scrubber. * However, none of those errors should occur on a retired page. */ if ((ecc->flt_stat & (S_AFSR_ALL_ERRS & ~P_AFSR_ME)) == P_AFSR_CE && curthread->t_ontrap != NULL) { if (curthread->t_ontrap->ot_prot & OT_DATA_EC) { if (page_retire_check(ecc->flt_addr, NULL) == 0) { queue = 0; } } } if (((sdbh & P_DER_CE) == 0) && ((sdbl & P_DER_CE) == 0)) { cpu_aflt_log(CE_PANIC, 1, &spf_flt, CMN_LFLAGS, "** Panic due to CE bits not set in the UDBs", " Corrected Memory Error on"); } if ((sdbh >> 8) & 1) { ecc->flt_synd = e_syndh; ce_scrub(ecc); if (queue) { cpu_errorq_dispatch(FM_EREPORT_CPU_USII_CE, ecc, sizeof (*ecc), ce_queue, ERRORQ_ASYNC); } } if ((sdbl >> 8) & 1) { ecc->flt_addr = t_afar | 0x8; /* Sabres do not have a UDBL */ ecc->flt_synd = e_syndl | UDBL_REG; ce_scrub(ecc); if (queue) { cpu_errorq_dispatch(FM_EREPORT_CPU_USII_CE, ecc, sizeof (*ecc), ce_queue, ERRORQ_ASYNC); } } /* * Re-enable all error trapping (CEEN currently cleared). */ clr_datapath(); set_asyncflt(P_AFSR_CE); set_error_enable(EER_ENABLE); } /* * Cpu specific CE logging routine */ static void log_ce_err(struct async_flt *aflt, char *unum) { spitf_async_flt spf_flt; if ((aflt->flt_stat & P_AFSR_CE) && (ce_verbose_memory == 0)) { return; } spf_flt.cmn_asyncflt = *aflt; cpu_aflt_log(CE_CONT, 0, &spf_flt, CE_LFLAGS, unum, " Corrected Memory Error detected by"); } /* * Spitfire does not perform any further CE classification refinement */ /*ARGSUSED*/ int ce_scrub_xdiag_recirc(struct async_flt *ecc, errorq_t *eqp, errorq_elem_t *eqep, size_t afltoffset) { return (0); } char * flt_to_error_type(struct async_flt *aflt) { if (aflt->flt_status & ECC_INTERMITTENT) return (ERR_TYPE_DESC_INTERMITTENT); if (aflt->flt_status & ECC_PERSISTENT) return (ERR_TYPE_DESC_PERSISTENT); if (aflt->flt_status & ECC_STICKY) return (ERR_TYPE_DESC_STICKY); return (ERR_TYPE_DESC_UNKNOWN); } /* * Called by correctable ecc error logging code to print out * the stick/persistent/intermittent status of the error. */ static void cpu_ce_log_status(spitf_async_flt *spf_flt, char *unum) { ushort_t status; char *status1_str = "Memory"; char *status2_str = "Intermittent"; struct async_flt *aflt = (struct async_flt *)spf_flt; status = aflt->flt_status; if (status & ECC_ECACHE) status1_str = "Ecache"; if (status & ECC_STICKY) status2_str = "Sticky"; else if (status & ECC_PERSISTENT) status2_str = "Persistent"; cpu_aflt_log(CE_CONT, 0, spf_flt, CPU_ERRID_FIRST, NULL, " Corrected %s Error on %s is %s", status1_str, unum, status2_str); } /* * check for a valid ce syndrome, then call the * displacement flush scrubbing code, and then check the afsr to see if * the error was persistent or intermittent. Reread the afar/afsr to see * if the error was not scrubbed successfully, and is therefore sticky. */ /*ARGSUSED1*/ void cpu_ce_scrub_mem_err(struct async_flt *ecc, boolean_t triedcpulogout) { uint64_t eer, afsr; ushort_t status; ASSERT(getpil() > LOCK_LEVEL); /* * It is possible that the flt_addr is not a valid * physical address. To deal with this, we disable * NCEEN while we scrub that address. If this causes * a TIMEOUT/BERR, we know this is an invalid * memory location. */ kpreempt_disable(); eer = get_error_enable(); if (eer & (EER_CEEN | EER_NCEEN)) set_error_enable(eer & ~(EER_CEEN | EER_NCEEN)); /* * To check if the error detected by IO is persistent, sticky or * intermittent. */ if (ecc->flt_status & ECC_IOBUS) { ecc->flt_stat = P_AFSR_CE; } scrubphys(P2ALIGN(ecc->flt_addr, 64), cpunodes[CPU->cpu_id].ecache_size); get_asyncflt(&afsr); if (afsr & (P_AFSR_TO | P_AFSR_BERR)) { /* * Must ensure that we don't get the TIMEOUT/BERR * when we reenable NCEEN, so we clear the AFSR. */ set_asyncflt(afsr & (P_AFSR_TO | P_AFSR_BERR)); if (eer & (EER_CEEN | EER_NCEEN)) set_error_enable(eer); kpreempt_enable(); return; } if (eer & EER_NCEEN) set_error_enable(eer & ~EER_CEEN); /* * Check and clear any ECC errors from the scrub. If the scrub did * not trip over the error, mark it intermittent. If the scrub did * trip the error again and it did not scrub away, mark it sticky. * Otherwise mark it persistent. */ if (check_ecc(ecc) != 0) { cpu_read_paddr(ecc, 0, 1); if (check_ecc(ecc) != 0) status = ECC_STICKY; else status = ECC_PERSISTENT; } else status = ECC_INTERMITTENT; if (eer & (EER_CEEN | EER_NCEEN)) set_error_enable(eer); kpreempt_enable(); ecc->flt_status &= ~(ECC_INTERMITTENT | ECC_PERSISTENT | ECC_STICKY); ecc->flt_status |= status; } /* * get the syndrome and unum, and then call the routines * to check the other cpus and iobuses, and then do the error logging. */ /*ARGSUSED1*/ void cpu_ce_log_err(struct async_flt *ecc, errorq_elem_t *eqep) { char unum[UNUM_NAMLEN]; int len = 0; int ce_verbose = 0; int err; ASSERT(ecc->flt_func != NULL); /* Get the unum string for logging purposes */ (void) cpu_get_mem_unum_aflt(AFLT_STAT_VALID, ecc, unum, UNUM_NAMLEN, &len); /* Call specific error logging routine */ (void) (*ecc->flt_func)(ecc, unum); /* * Count errors per unum. * Non-memory errors are all counted via a special unum string. */ if ((err = ce_count_unum(ecc->flt_status, len, unum)) != PR_OK && automatic_page_removal) { (void) page_retire(ecc->flt_addr, err); } if (ecc->flt_panic) { ce_verbose = 1; } else if ((ecc->flt_class == BUS_FAULT) || (ecc->flt_stat & P_AFSR_CE)) { ce_verbose = (ce_verbose_memory > 0); } else { ce_verbose = 1; } if (ce_verbose) { spitf_async_flt sflt; int synd_code; sflt.cmn_asyncflt = *ecc; /* for cpu_aflt_log() */ cpu_ce_log_status(&sflt, unum); synd_code = synd_to_synd_code(AFLT_STAT_VALID, SYND(ecc->flt_synd)); if (SYND_IS_SINGLE_BIT_DATA(synd_code)) { cpu_aflt_log(CE_CONT, 0, &sflt, CPU_ERRID_FIRST, NULL, " ECC Data Bit %2d was in error " "and corrected", synd_code); } else if (SYND_IS_SINGLE_BIT_CHK(synd_code)) { cpu_aflt_log(CE_CONT, 0, &sflt, CPU_ERRID_FIRST, NULL, " ECC Check Bit %2d was in error " "and corrected", synd_code - C0); } else { /* * These are UE errors - we shouldn't be getting CE * traps for these; handle them in case of bad h/w. */ switch (synd_code) { case M2: cpu_aflt_log(CE_CONT, 0, &sflt, CPU_ERRID_FIRST, NULL, " Two ECC Bits were in error"); break; case M3: cpu_aflt_log(CE_CONT, 0, &sflt, CPU_ERRID_FIRST, NULL, " Three ECC Bits were in error"); break; case M4: cpu_aflt_log(CE_CONT, 0, &sflt, CPU_ERRID_FIRST, NULL, " Four ECC Bits were in error"); break; case MX: cpu_aflt_log(CE_CONT, 0, &sflt, CPU_ERRID_FIRST, NULL, " More than Four ECC bits were " "in error"); break; default: cpu_aflt_log(CE_CONT, 0, &sflt, CPU_ERRID_FIRST, NULL, " Unknown fault syndrome %d", synd_code); break; } } } /* Display entire cache line, if valid address */ if (ce_show_data && ecc->flt_addr != AFLT_INV_ADDR) read_ecc_data(ecc, 1, 1); } /* * We route all errors through a single switch statement. */ void cpu_ue_log_err(struct async_flt *aflt) { switch (aflt->flt_class) { case CPU_FAULT: cpu_async_log_err(aflt); break; case BUS_FAULT: bus_async_log_err(aflt); break; default: cmn_err(CE_WARN, "discarding async error 0x%p with invalid " "fault class (0x%x)", (void *)aflt, aflt->flt_class); break; } } /* Values for action variable in cpu_async_error() */ #define ACTION_NONE 0 #define ACTION_TRAMPOLINE 1 #define ACTION_AST_FLAGS 2 /* * Access error trap handler for asynchronous cpu errors. This routine is * called to handle a data or instruction access error. All fatal errors are * completely handled by this routine (by panicking). Non fatal error logging * is queued for later processing either via AST or softint at a lower PIL. * In case of panic, the error log queue will also be processed as part of the * panic flow to ensure all errors are logged. This routine is called with all * errors disabled at PIL15. The AFSR bits are cleared and the UDBL and UDBH * error bits are also cleared. The hardware has also disabled the I and * D-caches for us, so we must re-enable them before returning. * * A summary of the handling of tl=0 UE/LDP/EDP/TO/BERR/WP/CP: * * _______________________________________________________________ * | Privileged tl0 | Unprivileged | * | Protected | Unprotected | Protected | Unprotected | * |on_trap|lofault| | | | * -------------|-------|-------+---------------+---------------+-------------| * | | | | | | * UE/LDP/EDP | L,T,p | L,R,p | L,P | n/a | L,R,p | * | | | | | | * TO/BERR | T | S | L,P | n/a | S | * | | | | | | * WP | L,M,p | L,M,p | L,M,p | n/a | L,M,p | * | | | | | | * CP (IIi/IIe) | L,P | L,P | L,P | n/a | L,P | * ____________________________________________________________________________ * * * Action codes: * * L - log * M - kick off memscrubber if flt_in_memory * P - panic * p - panic if US-IIi or US-IIe (Sabre); overrides R and M * R - i) if aft_panic is set, panic * ii) otherwise, send hwerr event to contract and SIGKILL to process * S - send SIGBUS to process * T - trampoline * * Special cases: * * 1) if aft_testfatal is set, all faults result in a panic regardless * of type (even WP), protection (even on_trap), or privilege. */ /*ARGSUSED*/ void cpu_async_error(struct regs *rp, ulong_t p_afar, ulong_t p_afsr, uint_t p_afsr_high, uint_t p_afar_high) { ushort_t sdbh, sdbl, ttype, tl; spitf_async_flt spf_flt; struct async_flt *aflt; char pr_reason[28]; uint64_t oafsr; uint64_t acc_afsr = 0; /* accumulated afsr */ int action = ACTION_NONE; uint64_t t_afar = p_afar; uint64_t t_afsr = p_afsr; int expected = DDI_FM_ERR_UNEXPECTED; ddi_acc_hdl_t *hp; /* * We need to look at p_flag to determine if the thread detected an * error while dumping core. We can't grab p_lock here, but it's ok * because we just need a consistent snapshot and we know that everyone * else will store a consistent set of bits while holding p_lock. We * don't have to worry about a race because SDOCORE is set once prior * to doing i/o from the process's address space and is never cleared. */ uint_t pflag = ttoproc(curthread)->p_flag; pr_reason[0] = '\0'; /* * Note: the Spitfire data buffer error registers * (upper and lower halves) are or'ed into the upper * word of the afsr by async_err() if P_AFSR_UE is set. */ sdbh = (ushort_t)((t_afsr >> 33) & 0x3FF); sdbl = (ushort_t)((t_afsr >> 43) & 0x3FF); /* * Grab the ttype encoded in <63:53> of the saved * afsr passed from async_err() */ ttype = (ushort_t)((t_afsr >> 53) & 0x1FF); tl = (ushort_t)(t_afsr >> 62); t_afsr &= S_AFSR_MASK; t_afar &= SABRE_AFAR_PA; /* must use Sabre AFAR mask */ /* * Initialize most of the common and CPU-specific structure. We derive * aflt->flt_priv from %tstate, instead of from the AFSR.PRIV bit. The * initial setting of aflt->flt_panic is based on TL: we must panic if * the error occurred at TL > 0. We also set flt_panic if the test/demo * tuneable aft_testfatal is set (not the default). */ bzero(&spf_flt, sizeof (spitf_async_flt)); aflt = (struct async_flt *)&spf_flt; aflt->flt_id = gethrtime_waitfree(); aflt->flt_stat = t_afsr; aflt->flt_addr = t_afar; aflt->flt_bus_id = getprocessorid(); aflt->flt_inst = CPU->cpu_id; aflt->flt_pc = (caddr_t)rp->r_pc; aflt->flt_prot = AFLT_PROT_NONE; aflt->flt_class = CPU_FAULT; aflt->flt_priv = (rp->r_tstate & TSTATE_PRIV) ? 1 : 0; aflt->flt_tl = (uchar_t)tl; aflt->flt_panic = (tl != 0 || aft_testfatal != 0); aflt->flt_core = (pflag & SDOCORE) ? 1 : 0; /* * Set flt_status based on the trap type. If we end up here as the * result of a UE detected by the CE handling code, leave status 0. */ switch (ttype) { case T_DATA_ERROR: aflt->flt_status = ECC_D_TRAP; break; case T_INSTR_ERROR: aflt->flt_status = ECC_I_TRAP; break; } spf_flt.flt_sdbh = sdbh; spf_flt.flt_sdbl = sdbl; /* * Check for fatal async errors. */ check_misc_err(&spf_flt); /* * If the trap occurred in privileged mode at TL=0, we need to check to * see if we were executing in the kernel under on_trap() or t_lofault * protection. If so, modify the saved registers so that we return * from the trap to the appropriate trampoline routine. */ if (aflt->flt_priv && tl == 0) { if (curthread->t_ontrap != NULL) { on_trap_data_t *otp = curthread->t_ontrap; if (otp->ot_prot & OT_DATA_EC) { aflt->flt_prot = AFLT_PROT_EC; otp->ot_trap |= OT_DATA_EC; rp->r_pc = otp->ot_trampoline; rp->r_npc = rp->r_pc + 4; action = ACTION_TRAMPOLINE; } if ((t_afsr & (P_AFSR_TO | P_AFSR_BERR)) && (otp->ot_prot & OT_DATA_ACCESS)) { aflt->flt_prot = AFLT_PROT_ACCESS; otp->ot_trap |= OT_DATA_ACCESS; rp->r_pc = otp->ot_trampoline; rp->r_npc = rp->r_pc + 4; action = ACTION_TRAMPOLINE; /* * for peeks and caut_gets errors are expected */ hp = (ddi_acc_hdl_t *)otp->ot_handle; if (!hp) expected = DDI_FM_ERR_PEEK; else if (hp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) expected = DDI_FM_ERR_EXPECTED; } } else if (curthread->t_lofault) { aflt->flt_prot = AFLT_PROT_COPY; rp->r_g1 = EFAULT; rp->r_pc = curthread->t_lofault; rp->r_npc = rp->r_pc + 4; action = ACTION_TRAMPOLINE; } } /* * Determine if this error needs to be treated as fatal. Note that * multiple errors detected upon entry to this trap handler does not * necessarily warrant a panic. We only want to panic if the trap * happened in privileged mode and not under t_ontrap or t_lofault * protection. The exception is WP: if we *only* get WP, it is not * fatal even if the trap occurred in privileged mode, except on Sabre. * * aft_panic, if set, effectively makes us treat usermode * UE/EDP/LDP faults as if they were privileged - so we we will * panic instead of sending a contract event. A lofault-protected * fault will normally follow the contract event; if aft_panic is * set this will be changed to a panic. * * For usermode BERR/BTO errors, eg from processes performing device * control through mapped device memory, we need only deliver * a SIGBUS to the offending process. * * Some additional flt_panic reasons (eg, WP on Sabre) will be * checked later; for now we implement the common reasons. */ if (aflt->flt_prot == AFLT_PROT_NONE) { /* * Beware - multiple bits may be set in AFSR */ if (t_afsr & (P_AFSR_UE | P_AFSR_LDP | P_AFSR_EDP)) { if (aflt->flt_priv || aft_panic) aflt->flt_panic = 1; } if (t_afsr & (P_AFSR_TO | P_AFSR_BERR)) { if (aflt->flt_priv) aflt->flt_panic = 1; } } else if (aflt->flt_prot == AFLT_PROT_COPY && aft_panic) { aflt->flt_panic = 1; } /* * UE/BERR/TO: Call our bus nexus friends to check for * IO errors that may have resulted in this trap. */ if (t_afsr & (P_AFSR_TO | P_AFSR_BERR | P_AFSR_UE)) { cpu_run_bus_error_handlers(aflt, expected); } /* * Handle UE: If the UE is in memory, we need to flush the bad line from * the E-cache. We also need to query the bus nexus for fatal errors. * For sabre, we will panic on UEs. Attempts to do diagnostic read on * caches may introduce more parity errors (especially when the module * is bad) and in sabre there is no guarantee that such errors * (if introduced) are written back as poisoned data. */ if (t_afsr & P_AFSR_UE) { int i; (void) strcat(pr_reason, "UE "); spf_flt.flt_type = CPU_UE_ERR; aflt->flt_in_memory = (pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT)) ? 1: 0; /* * With UE, we have the PA of the fault. * Let do a diagnostic read to get the ecache * data and tag info of the bad line for logging. */ if (aflt->flt_in_memory) { uint32_t ec_set_size; uchar_t state; uint32_t ecache_idx; uint64_t faultpa = P2ALIGN(aflt->flt_addr, 64); /* touch the line to put it in ecache */ acc_afsr |= read_and_clear_afsr(); (void) lddphys(faultpa); acc_afsr |= (read_and_clear_afsr() & ~(P_AFSR_EDP | P_AFSR_UE)); ec_set_size = cpunodes[CPU->cpu_id].ecache_size / ecache_associativity; for (i = 0; i < ecache_associativity; i++) { ecache_idx = i * ec_set_size + (aflt->flt_addr % ec_set_size); get_ecache_dtag(P2ALIGN(ecache_idx, 64), (uint64_t *)&spf_flt.flt_ec_data[0], &spf_flt.flt_ec_tag, &oafsr, &acc_afsr); acc_afsr |= oafsr; state = (uchar_t)((spf_flt.flt_ec_tag & cpu_ec_state_mask) >> cpu_ec_state_shift); if ((state & cpu_ec_state_valid) && ((spf_flt.flt_ec_tag & cpu_ec_tag_mask) == ((uint64_t)aflt->flt_addr >> cpu_ec_tag_shift))) break; } /* * Check to see if the ecache tag is valid for the * fault PA. In the very unlikely event where the * line could be victimized, no ecache info will be * available. If this is the case, capture the line * from memory instead. */ if ((state & cpu_ec_state_valid) == 0 || (spf_flt.flt_ec_tag & cpu_ec_tag_mask) != ((uint64_t)aflt->flt_addr >> cpu_ec_tag_shift)) { for (i = 0; i < 8; i++, faultpa += 8) { ec_data_t *ecdptr; ecdptr = &spf_flt.flt_ec_data[i]; acc_afsr |= read_and_clear_afsr(); ecdptr->ec_d8 = lddphys(faultpa); acc_afsr |= (read_and_clear_afsr() & ~(P_AFSR_EDP | P_AFSR_UE)); ecdptr->ec_afsr = 0; /* null afsr value */ } /* * Mark tag invalid to indicate mem dump * when we print out the info. */ spf_flt.flt_ec_tag = AFLT_INV_ADDR; } spf_flt.flt_ec_lcnt = 1; /* * Flush out the bad line */ flushecacheline(P2ALIGN(aflt->flt_addr, 64), cpunodes[CPU->cpu_id].ecache_size); acc_afsr |= clear_errors(NULL, NULL); } /* * Ask our bus nexus friends if they have any fatal errors. If * so, they will log appropriate error messages and panic as a * result. We then queue an event for each UDB that reports a * UE. Each UE reported in a UDB will have its own log message. * * Note from kbn: In the case where there are multiple UEs * (ME bit is set) - the AFAR address is only accurate to * the 16-byte granularity. One cannot tell whether the AFAR * belongs to the UDBH or UDBL syndromes. In this case, we * always report the AFAR address to be 16-byte aligned. * * If we're on a Sabre, there is no SDBL, but it will always * read as zero, so the sdbl test below will safely fail. */ if (bus_func_invoke(BF_TYPE_UE) == BF_FATAL || isus2i || isus2e) aflt->flt_panic = 1; if (sdbh & P_DER_UE) { aflt->flt_synd = sdbh & P_DER_E_SYND; cpu_errorq_dispatch(FM_EREPORT_CPU_USII_UE, (void *)&spf_flt, sizeof (spf_flt), ue_queue, aflt->flt_panic); } if (sdbl & P_DER_UE) { aflt->flt_synd = sdbl & P_DER_E_SYND; aflt->flt_synd |= UDBL_REG; /* indicates UDBL */ if (!(aflt->flt_stat & P_AFSR_ME)) aflt->flt_addr |= 0x8; cpu_errorq_dispatch(FM_EREPORT_CPU_USII_UE, (void *)&spf_flt, sizeof (spf_flt), ue_queue, aflt->flt_panic); } /* * We got a UE and are panicking, save the fault PA in a known * location so that the platform specific panic code can check * for copyback errors. */ if (aflt->flt_panic && aflt->flt_in_memory) { panic_aflt = *aflt; } } /* * Handle EDP and LDP: Locate the line with bad parity and enqueue an * async error for logging. For Sabre, we panic on EDP or LDP. */ if (t_afsr & (P_AFSR_EDP | P_AFSR_LDP)) { spf_flt.flt_type = CPU_EDP_LDP_ERR; if (t_afsr & P_AFSR_EDP) (void) strcat(pr_reason, "EDP "); if (t_afsr & P_AFSR_LDP) (void) strcat(pr_reason, "LDP "); /* * Here we have no PA to work with. * Scan each line in the ecache to look for * the one with bad parity. */ aflt->flt_addr = AFLT_INV_ADDR; scan_ecache(&aflt->flt_addr, &spf_flt.flt_ec_data[0], &spf_flt.flt_ec_tag, &spf_flt.flt_ec_lcnt, &oafsr); acc_afsr |= (oafsr & ~P_AFSR_WP); /* * If we found a bad PA, update the state to indicate if it is * memory or I/O space. This code will be important if we ever * support cacheable frame buffers. */ if (aflt->flt_addr != AFLT_INV_ADDR) { aflt->flt_in_memory = (pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT)) ? 1 : 0; } if (isus2i || isus2e) aflt->flt_panic = 1; cpu_errorq_dispatch((t_afsr & P_AFSR_EDP) ? FM_EREPORT_CPU_USII_EDP : FM_EREPORT_CPU_USII_LDP, (void *)&spf_flt, sizeof (spf_flt), ue_queue, aflt->flt_panic); } /* * Timeout and bus error handling. There are two cases to consider: * * (1) If we are in the kernel protected by ddi_peek or ddi_poke,we * have already modified the saved registers so that we will return * from the trap to the appropriate trampoline routine; otherwise panic. * * (2) In user mode, we can simply use our AST mechanism to deliver * a SIGBUS. We do not log the occurence - processes performing * device control would generate lots of uninteresting messages. */ if (t_afsr & (P_AFSR_TO | P_AFSR_BERR)) { if (t_afsr & P_AFSR_TO) (void) strcat(pr_reason, "BTO "); if (t_afsr & P_AFSR_BERR) (void) strcat(pr_reason, "BERR "); spf_flt.flt_type = CPU_BTO_BERR_ERR; if (aflt->flt_priv && aflt->flt_prot == AFLT_PROT_NONE) { cpu_errorq_dispatch((t_afsr & P_AFSR_TO) ? FM_EREPORT_CPU_USII_TO : FM_EREPORT_CPU_USII_BERR, (void *)&spf_flt, sizeof (spf_flt), ue_queue, aflt->flt_panic); } } /* * Handle WP: WP happens when the ecache is victimized and a parity * error was detected on a writeback. The data in question will be * poisoned as a UE will be written back. The PA is not logged and * it is possible that it doesn't belong to the trapped thread. The * WP trap is not fatal, but it could be fatal to someone that * subsequently accesses the toxic page. We set read_all_memscrub * to force the memscrubber to read all of memory when it awakens. * For Sabre/Hummingbird, WP is fatal because the HW doesn't write a * UE back to poison the data. */ if (t_afsr & P_AFSR_WP) { (void) strcat(pr_reason, "WP "); if (isus2i || isus2e) { aflt->flt_panic = 1; } else { read_all_memscrub = 1; } spf_flt.flt_type = CPU_WP_ERR; cpu_errorq_dispatch(FM_EREPORT_CPU_USII_WP, (void *)&spf_flt, sizeof (spf_flt), ue_queue, aflt->flt_panic); } /* * Handle trapping CP error: In Sabre/Hummingbird, parity error in * the ecache on a copyout due to a PCI DMA read is signaled as a CP. * This is fatal. */ if (t_afsr & P_AFSR_CP) { if (isus2i || isus2e) { (void) strcat(pr_reason, "CP "); aflt->flt_panic = 1; spf_flt.flt_type = CPU_TRAPPING_CP_ERR; cpu_errorq_dispatch(FM_EREPORT_CPU_USII_CP, (void *)&spf_flt, sizeof (spf_flt), ue_queue, aflt->flt_panic); } else { /* * Orphan CP: Happens due to signal integrity problem * on a CPU, where a CP is reported, without reporting * its associated UE. This is handled by locating the * bad parity line and would kick off the memscrubber * to find the UE if in memory or in another's cache. */ spf_flt.flt_type = CPU_ORPHAN_CP_ERR; (void) strcat(pr_reason, "ORPHAN_CP "); /* * Here we have no PA to work with. * Scan each line in the ecache to look for * the one with bad parity. */ aflt->flt_addr = AFLT_INV_ADDR; scan_ecache(&aflt->flt_addr, &spf_flt.flt_ec_data[0], &spf_flt.flt_ec_tag, &spf_flt.flt_ec_lcnt, &oafsr); acc_afsr |= oafsr; /* * If we found a bad PA, update the state to indicate * if it is memory or I/O space. */ if (aflt->flt_addr != AFLT_INV_ADDR) { aflt->flt_in_memory = (pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT)) ? 1 : 0; } read_all_memscrub = 1; cpu_errorq_dispatch(FM_EREPORT_CPU_USII_CP, (void *)&spf_flt, sizeof (spf_flt), ue_queue, aflt->flt_panic); } } /* * If we queued an error other than WP or CP and we are going to return * from the trap and the error was in user mode or inside of a * copy routine, set AST flag so the queue will be drained before * returning to user mode. * * For UE/LDP/EDP, the AST processing will SIGKILL the process * and send an event to its process contract. * * For BERR/BTO, the AST processing will SIGBUS the process. There * will have been no error queued in this case. */ if ((t_afsr & (P_AFSR_UE | P_AFSR_LDP | P_AFSR_EDP | P_AFSR_BERR | P_AFSR_TO)) && (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY)) { int pcb_flag = 0; if (t_afsr & (P_AFSR_UE | P_AFSR_LDP | P_AFSR_EDP)) pcb_flag |= ASYNC_HWERR; if (t_afsr & P_AFSR_BERR) pcb_flag |= ASYNC_BERR; if (t_afsr & P_AFSR_TO) pcb_flag |= ASYNC_BTO; ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag; aston(curthread); action = ACTION_AST_FLAGS; } /* * In response to a deferred error, we must do one of three things: * (1) set the AST flags, (2) trampoline, or (3) panic. action is * set in cases (1) and (2) - check that either action is set or * (3) is true. * * On II, the WP writes poisoned data back to memory, which will * cause a UE and a panic or reboot when read. In this case, we * don't need to panic at this time. On IIi and IIe, * aflt->flt_panic is already set above. */ ASSERT((aflt->flt_panic != 0) || (action != ACTION_NONE) || (t_afsr & P_AFSR_WP)); /* * Make a final sanity check to make sure we did not get any more async * errors and accumulate the afsr. */ flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size * 2, cpunodes[CPU->cpu_id].ecache_linesize); (void) clear_errors(&spf_flt, NULL); /* * Take care of a special case: If there is a UE in the ecache flush * area, we'll see it in flush_ecache(). This will trigger the * CPU_ADDITIONAL_ERRORS case below. * * This could occur if the original error was a UE in the flush area, * or if the original error was an E$ error that was flushed out of * the E$ in scan_ecache(). * * If it's at the same address that we're already logging, then it's * probably one of these cases. Clear the bit so we don't trip over * it on the additional errors case, which could cause an unnecessary * panic. */ if ((aflt->flt_stat & P_AFSR_UE) && aflt->flt_addr == t_afar) acc_afsr |= aflt->flt_stat & ~P_AFSR_UE; else acc_afsr |= aflt->flt_stat; /* * Check the acumulated afsr for the important bits. * Make sure the spf_flt.flt_type value is set, and * enque an error. */ if (acc_afsr & (P_AFSR_LEVEL1 | P_AFSR_IVUE | P_AFSR_ETP | P_AFSR_ISAP)) { if (acc_afsr & (P_AFSR_UE | P_AFSR_EDP | P_AFSR_LDP | P_AFSR_BERR | P_AFSR_TO | P_AFSR_IVUE | P_AFSR_ETP | P_AFSR_ISAP)) aflt->flt_panic = 1; spf_flt.flt_type = CPU_ADDITIONAL_ERR; aflt->flt_stat = acc_afsr; cpu_errorq_dispatch(FM_EREPORT_CPU_USII_UNKNOWN, (void *)&spf_flt, sizeof (spf_flt), ue_queue, aflt->flt_panic); } /* * If aflt->flt_panic is set at this point, we need to panic as the * result of a trap at TL > 0, or an error we determined to be fatal. * We've already enqueued the error in one of the if-clauses above, * and it will be dequeued and logged as part of the panic flow. */ if (aflt->flt_panic) { cpu_aflt_log(CE_PANIC, 1, &spf_flt, CPU_ERRID_FIRST, "See previous message(s) for details", " %sError(s)", pr_reason); } /* * Before returning, we must re-enable errors, and * reset the caches to their boot-up state. */ set_lsu(get_lsu() | cache_boot_state); set_error_enable(EER_ENABLE); } /* * Check for miscellaneous fatal errors and call CE_PANIC if any are seen. * This routine is shared by the CE and UE handling code. */ static void check_misc_err(spitf_async_flt *spf_flt) { struct async_flt *aflt = (struct async_flt *)spf_flt; char *fatal_str = NULL; /* * The ISAP and ETP errors are supposed to cause a POR * from the system, so in theory we never, ever see these messages. * ISAP, ETP and IVUE are considered to be fatal. */ if (aflt->flt_stat & P_AFSR_ISAP) fatal_str = " System Address Parity Error on"; else if (aflt->flt_stat & P_AFSR_ETP) fatal_str = " Ecache Tag Parity Error on"; else if (aflt->flt_stat & P_AFSR_IVUE) fatal_str = " Interrupt Vector Uncorrectable Error on"; if (fatal_str != NULL) { cpu_aflt_log(CE_PANIC, 1, spf_flt, CMN_LFLAGS, NULL, fatal_str); } } /* * Routine to convert a syndrome into a syndrome code. */ static int synd_to_synd_code(int synd_status, ushort_t synd) { if (synd_status != AFLT_STAT_VALID) return (-1); /* * Use the 8-bit syndrome to index the ecc_syndrome_tab * to get the code indicating which bit(s) is(are) bad. */ if ((synd == 0) || (synd >= SYND_TBL_SIZE)) return (-1); else return (ecc_syndrome_tab[synd]); } /* ARGSUSED */ int cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) { return (ENOTSUP); } /* ARGSUSED */ int cpu_get_mem_offset(uint64_t flt_addr, uint64_t *offp) { return (ENOTSUP); } /* ARGSUSED */ int cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) { return (ENOTSUP); } /* * Routine to return a string identifying the physical name * associated with a memory/cache error. */ /* ARGSUSED */ int cpu_get_mem_unum(int synd_status, ushort_t synd, uint64_t afsr, uint64_t afar, int cpuid, int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp) { short synd_code; int ret; if (flt_in_memory) { synd_code = synd_to_synd_code(synd_status, synd); if (synd_code == -1) { ret = EINVAL; } else if (prom_get_unum(synd_code, P2ALIGN(afar, 8), buf, buflen, lenp) != 0) { ret = EIO; } else if (*lenp <= 1) { ret = EINVAL; } else { ret = 0; } } else { ret = ENOTSUP; } if (ret != 0) { buf[0] = '\0'; *lenp = 0; } return (ret); } /* * Wrapper for cpu_get_mem_unum() routine that takes an * async_flt struct rather than explicit arguments. */ int cpu_get_mem_unum_aflt(int synd_status, struct async_flt *aflt, char *buf, int buflen, int *lenp) { return (cpu_get_mem_unum(synd_status, SYND(aflt->flt_synd), aflt->flt_stat, aflt->flt_addr, aflt->flt_bus_id, aflt->flt_in_memory, aflt->flt_status, buf, buflen, lenp)); } /* * This routine is a more generic interface to cpu_get_mem_unum(), * that may be used by other modules (e.g. mm). */ int cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar, char *buf, int buflen, int *lenp) { int synd_status, flt_in_memory, ret; char unum[UNUM_NAMLEN]; /* * Check for an invalid address. */ if (afar == (uint64_t)-1) return (ENXIO); if (synd == (uint64_t)-1) synd_status = AFLT_STAT_INVALID; else synd_status = AFLT_STAT_VALID; flt_in_memory = (pf_is_memory(afar >> MMU_PAGESHIFT)) ? 1 : 0; if ((ret = cpu_get_mem_unum(synd_status, (ushort_t)synd, *afsr, afar, CPU->cpu_id, flt_in_memory, 0, unum, UNUM_NAMLEN, lenp)) != 0) return (ret); if (*lenp >= buflen) return (ENAMETOOLONG); (void) strncpy(buf, unum, buflen); return (0); } /* * Routine to return memory information associated * with a physical address and syndrome. */ /* ARGSUSED */ int cpu_get_mem_info(uint64_t synd, uint64_t afar, uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep, int *segsp, int *banksp, int *mcidp) { return (ENOTSUP); } /* * Routine to return a string identifying the physical * name associated with a cpuid. */ /* ARGSUSED */ int cpu_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp) { return (ENOTSUP); } /* * This routine returns the size of the kernel's FRU name buffer. */ size_t cpu_get_name_bufsize() { return (UNUM_NAMLEN); } /* * Cpu specific log func for UEs. */ static void log_ue_err(struct async_flt *aflt, char *unum) { spitf_async_flt *spf_flt = (spitf_async_flt *)aflt; int len = 0; #ifdef DEBUG int afsr_priv = (aflt->flt_stat & P_AFSR_PRIV) ? 1 : 0; /* * Paranoid Check for priv mismatch * Only applicable for UEs */ if (afsr_priv != aflt->flt_priv) { /* * The priv bits in %tstate and %afsr did not match; we expect * this to be very rare, so flag it with a message. */ cpu_aflt_log(CE_WARN, 2, spf_flt, CPU_ERRID_FIRST, NULL, ": PRIV bit in TSTATE and AFSR mismatched; " "TSTATE.PRIV=%d used", (aflt->flt_priv) ? 1 : 0); /* update saved afsr to reflect the correct priv */ aflt->flt_stat &= ~P_AFSR_PRIV; if (aflt->flt_priv) aflt->flt_stat |= P_AFSR_PRIV; } #endif /* DEBUG */ (void) cpu_get_mem_unum_aflt(AFLT_STAT_VALID, aflt, unum, UNUM_NAMLEN, &len); cpu_aflt_log(CE_WARN, 1, spf_flt, UE_LFLAGS, unum, " Uncorrectable Memory Error on"); if (SYND(aflt->flt_synd) == 0x3) { cpu_aflt_log(CE_WARN, 1, spf_flt, CPU_ERRID_FIRST, NULL, " Syndrome 0x3 indicates that this may not be a " "memory module problem"); } if (aflt->flt_in_memory) cpu_log_ecmem_info(spf_flt); } /* * The cpu_async_log_err() function is called via the ue_drain() function to * handle logging for CPU events that are dequeued. As such, it can be invoked * from softint context, from AST processing in the trap() flow, or from the * panic flow. We decode the CPU-specific data, and log appropriate messages. */ static void cpu_async_log_err(void *flt) { spitf_async_flt *spf_flt = (spitf_async_flt *)flt; struct async_flt *aflt = (struct async_flt *)flt; char unum[UNUM_NAMLEN]; char *space; char *ecache_scrub_logstr = NULL; switch (spf_flt->flt_type) { case CPU_UE_ERR: /* * We want to skip logging only if ALL the following * conditions are true: * * 1. We are not panicking * 2. There is only one error * 3. That error is a memory error * 4. The error is caused by the memory scrubber (in * which case the error will have occurred under * on_trap protection) * 5. The error is on a retired page * * Note 1: AFLT_PROT_EC is used places other than the memory * scrubber. However, none of those errors should occur * on a retired page. * * Note 2: In the CE case, these errors are discarded before * the errorq. In the UE case, we must wait until now -- * softcall() grabs a mutex, which we can't do at a high PIL. */ if (!panicstr && (aflt->flt_stat & S_AFSR_ALL_ERRS) == P_AFSR_UE && aflt->flt_prot == AFLT_PROT_EC) { if (page_retire_check(aflt->flt_addr, NULL) == 0) { /* Zero the address to clear the error */ softcall(ecc_page_zero, (void *)aflt->flt_addr); return; } } /* * Log the UE and check for causes of this UE error that * don't cause a trap (Copyback error). cpu_async_error() * has already checked the i/o buses for us. */ log_ue_err(aflt, unum); if (aflt->flt_in_memory) cpu_check_allcpus(aflt); break; case CPU_EDP_LDP_ERR: if (aflt->flt_stat & P_AFSR_EDP) cpu_aflt_log(CE_WARN, 1, spf_flt, PARERR_LFLAGS, NULL, " EDP event on"); if (aflt->flt_stat & P_AFSR_LDP) cpu_aflt_log(CE_WARN, 1, spf_flt, PARERR_LFLAGS, NULL, " LDP event on"); /* Log ecache info if exist */ if (spf_flt->flt_ec_lcnt > 0) { cpu_log_ecmem_info(spf_flt); cpu_aflt_log(CE_CONT, 2, spf_flt, CPU_ERRID_FIRST, NULL, " AFAR was derived from E$Tag"); } else { cpu_aflt_log(CE_CONT, 2, spf_flt, CPU_ERRID_FIRST, NULL, " No error found in ecache (No fault " "PA available)"); } break; case CPU_WP_ERR: /* * If the memscrub thread hasn't yet read * all of memory, as we requested in the * trap handler, then give it a kick to * make sure it does. */ if (!isus2i && !isus2e && read_all_memscrub) memscrub_run(); cpu_aflt_log(CE_WARN, 1, spf_flt, WP_LFLAGS, NULL, " WP event on"); return; case CPU_BTO_BERR_ERR: /* * A bus timeout or error occurred that was in user mode or not * in a protected kernel code region. */ if (aflt->flt_stat & P_AFSR_BERR) { cpu_aflt_log(CE_WARN, aflt->flt_panic ? 1 : 2, spf_flt, BERRTO_LFLAGS, NULL, " Bus Error on System Bus in %s mode from", aflt->flt_priv ? "privileged" : "user"); } if (aflt->flt_stat & P_AFSR_TO) { cpu_aflt_log(CE_WARN, aflt->flt_panic ? 1 : 2, spf_flt, BERRTO_LFLAGS, NULL, " Timeout on System Bus in %s mode from", aflt->flt_priv ? "privileged" : "user"); } return; case CPU_PANIC_CP_ERR: /* * Process the Copyback (CP) error info (if any) obtained from * polling all the cpus in the panic flow. This case is only * entered if we are panicking. */ ASSERT(panicstr != NULL); ASSERT(aflt->flt_id == panic_aflt.flt_id); /* See which space - this info may not exist */ if (panic_aflt.flt_status & ECC_D_TRAP) space = "Data "; else if (panic_aflt.flt_status & ECC_I_TRAP) space = "Instruction "; else space = ""; cpu_aflt_log(CE_WARN, 1, spf_flt, CP_LFLAGS, NULL, " AFAR was derived from UE report," " CP event on CPU%d (caused %saccess error on %s%d)", aflt->flt_inst, space, (panic_aflt.flt_status & ECC_IOBUS) ? "IOBUS" : "CPU", panic_aflt.flt_bus_id); if (spf_flt->flt_ec_lcnt > 0) cpu_log_ecmem_info(spf_flt); else cpu_aflt_log(CE_WARN, 2, spf_flt, CPU_ERRID_FIRST, NULL, " No cache dump available"); return; case CPU_TRAPPING_CP_ERR: /* * For sabre only. This is a copyback ecache parity error due * to a PCI DMA read. We should be panicking if we get here. */ ASSERT(panicstr != NULL); cpu_aflt_log(CE_WARN, 1, spf_flt, CP_LFLAGS, NULL, " AFAR was derived from UE report," " CP event on CPU%d (caused Data access error " "on PCIBus)", aflt->flt_inst); return; /* * We log the ecache lines of the following states, * clean_bad_idle, clean_bad_busy, dirty_bad_idle and * dirty_bad_busy if ecache_scrub_verbose is set and panic * in addition to logging if ecache_scrub_panic is set. */ case CPU_BADLINE_CI_ERR: ecache_scrub_logstr = "CBI"; /* FALLTHRU */ case CPU_BADLINE_CB_ERR: if (ecache_scrub_logstr == NULL) ecache_scrub_logstr = "CBB"; /* FALLTHRU */ case CPU_BADLINE_DI_ERR: if (ecache_scrub_logstr == NULL) ecache_scrub_logstr = "DBI"; /* FALLTHRU */ case CPU_BADLINE_DB_ERR: if (ecache_scrub_logstr == NULL) ecache_scrub_logstr = "DBB"; cpu_aflt_log(CE_NOTE, 2, spf_flt, (CPU_ERRID_FIRST | CPU_FLTCPU), NULL, " %s event on", ecache_scrub_logstr); cpu_log_ecmem_info(spf_flt); return; case CPU_ORPHAN_CP_ERR: /* * Orphan CPs, where the CP bit is set, but when a CPU * doesn't report a UE. */ if (read_all_memscrub) memscrub_run(); cpu_aflt_log(CE_NOTE, 2, spf_flt, (CP_LFLAGS | CPU_FLTCPU), NULL, " Orphan CP event on"); /* Log ecache info if exist */ if (spf_flt->flt_ec_lcnt > 0) cpu_log_ecmem_info(spf_flt); else cpu_aflt_log(CE_NOTE, 2, spf_flt, (CP_LFLAGS | CPU_FLTCPU), NULL, " No error found in ecache (No fault " "PA available"); return; case CPU_ECACHE_ADDR_PAR_ERR: cpu_aflt_log(CE_WARN, 1, spf_flt, PARERR_LFLAGS, NULL, " E$ Tag Address Parity error on"); cpu_log_ecmem_info(spf_flt); return; case CPU_ECACHE_STATE_ERR: cpu_aflt_log(CE_WARN, 1, spf_flt, PARERR_LFLAGS, NULL, " E$ Tag State Parity error on"); cpu_log_ecmem_info(spf_flt); return; case CPU_ECACHE_TAG_ERR: cpu_aflt_log(CE_WARN, 1, spf_flt, PARERR_LFLAGS, NULL, " E$ Tag scrub event on"); cpu_log_ecmem_info(spf_flt); return; case CPU_ECACHE_ETP_ETS_ERR: cpu_aflt_log(CE_WARN, 1, spf_flt, PARERR_LFLAGS, NULL, " AFSR.ETP is set and AFSR.ETS is zero on"); cpu_log_ecmem_info(spf_flt); return; case CPU_ADDITIONAL_ERR: cpu_aflt_log(CE_WARN, 1, spf_flt, CMN_LFLAGS & ~CPU_SPACE, NULL, " Additional errors detected during error processing on"); return; default: cmn_err(CE_WARN, "cpu_async_log_err: fault %p has unknown " "fault type %x", (void *)spf_flt, spf_flt->flt_type); return; } /* ... fall through from the UE, EDP, or LDP cases */ if (aflt->flt_addr != AFLT_INV_ADDR && aflt->flt_in_memory) { if (!panicstr) { (void) page_retire(aflt->flt_addr, PR_UE); } else { /* * Clear UEs on panic so that we don't * get haunted by them during panic or * after reboot */ clearphys(P2ALIGN(aflt->flt_addr, 64), cpunodes[CPU->cpu_id].ecache_size, cpunodes[CPU->cpu_id].ecache_linesize); (void) clear_errors(NULL, NULL); } } /* * Log final recover message */ if (!panicstr) { if (!aflt->flt_priv) { cpu_aflt_log(CE_CONT, 3, spf_flt, CPU_ERRID_FIRST, NULL, " Above Error is in User Mode" "\n and is fatal: " "will SIGKILL process and notify contract"); } else if (aflt->flt_prot == AFLT_PROT_COPY && aflt->flt_core) { cpu_aflt_log(CE_CONT, 3, spf_flt, CPU_ERRID_FIRST, NULL, " Above Error detected while dumping core;" "\n core file will be truncated"); } else if (aflt->flt_prot == AFLT_PROT_COPY) { cpu_aflt_log(CE_CONT, 3, spf_flt, CPU_ERRID_FIRST, NULL, " Above Error is due to Kernel access" "\n to User space and is fatal: " "will SIGKILL process and notify contract"); } else if (aflt->flt_prot == AFLT_PROT_EC) { cpu_aflt_log(CE_CONT, 3, spf_flt, CPU_ERRID_FIRST, NULL, " Above Error detected by protected Kernel code" "\n that will try to clear error from system"); } } } /* * Check all cpus for non-trapping UE-causing errors * In Ultra I/II, we look for copyback errors (CPs) */ void cpu_check_allcpus(struct async_flt *aflt) { spitf_async_flt cp; spitf_async_flt *spf_cpflt = &cp; struct async_flt *cpflt = (struct async_flt *)&cp; int pix; cpflt->flt_id = aflt->flt_id; cpflt->flt_addr = aflt->flt_addr; for (pix = 0; pix < NCPU; pix++) { if (CPU_XCALL_READY(pix)) { xc_one(pix, (xcfunc_t *)get_cpu_status, (uint64_t)cpflt, 0); if (cpflt->flt_stat & P_AFSR_CP) { char *space; /* See which space - this info may not exist */ if (aflt->flt_status & ECC_D_TRAP) space = "Data "; else if (aflt->flt_status & ECC_I_TRAP) space = "Instruction "; else space = ""; cpu_aflt_log(CE_WARN, 1, spf_cpflt, CP_LFLAGS, NULL, " AFAR was derived from UE report," " CP event on CPU%d (caused %saccess " "error on %s%d)", pix, space, (aflt->flt_status & ECC_IOBUS) ? "IOBUS" : "CPU", aflt->flt_bus_id); if (spf_cpflt->flt_ec_lcnt > 0) cpu_log_ecmem_info(spf_cpflt); else cpu_aflt_log(CE_WARN, 2, spf_cpflt, CPU_ERRID_FIRST, NULL, " No cache dump available"); } } } } #ifdef DEBUG int test_mp_cp = 0; #endif /* * Cross-call callback routine to tell a CPU to read its own %afsr to check * for copyback errors and capture relevant information. */ static uint_t get_cpu_status(uint64_t arg) { struct async_flt *aflt = (struct async_flt *)arg; spitf_async_flt *spf_flt = (spitf_async_flt *)arg; uint64_t afsr; uint32_t ec_idx; uint64_t sdbh, sdbl; int i; uint32_t ec_set_size; uchar_t valid; ec_data_t ec_data[8]; uint64_t ec_tag, flt_addr_tag, oafsr; uint64_t *acc_afsr = NULL; get_asyncflt(&afsr); if (CPU_PRIVATE(CPU) != NULL) { acc_afsr = CPU_PRIVATE_PTR(CPU, sfpr_scrub_afsr); afsr |= *acc_afsr; *acc_afsr = 0; } #ifdef DEBUG if (test_mp_cp) afsr |= P_AFSR_CP; #endif aflt->flt_stat = afsr; if (afsr & P_AFSR_CP) { /* * Capture the UDBs */ get_udb_errors(&sdbh, &sdbl); spf_flt->flt_sdbh = (ushort_t)(sdbh & 0x3FF); spf_flt->flt_sdbl = (ushort_t)(sdbl & 0x3FF); /* * Clear CP bit before capturing ecache data * and AFSR info. */ set_asyncflt(P_AFSR_CP); /* * See if we can capture the ecache line for the * fault PA. * * Return a valid matching ecache line, if any. * Otherwise, return the first matching ecache * line marked invalid. */ flt_addr_tag = aflt->flt_addr >> cpu_ec_tag_shift; ec_set_size = cpunodes[CPU->cpu_id].ecache_size / ecache_associativity; spf_flt->flt_ec_lcnt = 0; for (i = 0, ec_idx = (aflt->flt_addr % ec_set_size); i < ecache_associativity; i++, ec_idx += ec_set_size) { get_ecache_dtag(P2ALIGN(ec_idx, 64), (uint64_t *)&ec_data[0], &ec_tag, &oafsr, acc_afsr); if ((ec_tag & cpu_ec_tag_mask) != flt_addr_tag) continue; valid = cpu_ec_state_valid & (uchar_t)((ec_tag & cpu_ec_state_mask) >> cpu_ec_state_shift); if (valid || spf_flt->flt_ec_lcnt == 0) { spf_flt->flt_ec_tag = ec_tag; bcopy(&ec_data, &spf_flt->flt_ec_data, sizeof (ec_data)); spf_flt->flt_ec_lcnt = 1; if (valid) break; } } } return (0); } /* * CPU-module callback for the non-panicking CPUs. This routine is invoked * from panic_idle() as part of the other CPUs stopping themselves when a * panic occurs. We need to be VERY careful what we do here, since panicstr * is NOT set yet and we cannot blow through locks. If panic_aflt is set * (panic_aflt.flt_id is non-zero), we need to read our %afsr to look for * CP error information. */ void cpu_async_panic_callb(void) { spitf_async_flt cp; struct async_flt *aflt = (struct async_flt *)&cp; uint64_t *scrub_afsr; if (panic_aflt.flt_id != 0) { aflt->flt_addr = panic_aflt.flt_addr; (void) get_cpu_status((uint64_t)aflt); if (CPU_PRIVATE(CPU) != NULL) { scrub_afsr = CPU_PRIVATE_PTR(CPU, sfpr_scrub_afsr); if (*scrub_afsr & P_AFSR_CP) { aflt->flt_stat |= *scrub_afsr; *scrub_afsr = 0; } } if (aflt->flt_stat & P_AFSR_CP) { aflt->flt_id = panic_aflt.flt_id; aflt->flt_panic = 1; aflt->flt_inst = CPU->cpu_id; aflt->flt_class = CPU_FAULT; cp.flt_type = CPU_PANIC_CP_ERR; cpu_errorq_dispatch(FM_EREPORT_CPU_USII_CP, (void *)&cp, sizeof (cp), ue_queue, aflt->flt_panic); } } } /* * Turn off all cpu error detection, normally only used for panics. */ void cpu_disable_errors(void) { xt_all(set_error_enable_tl1, EER_DISABLE, EER_SET_ABSOLUTE); } /* * Enable errors. */ void cpu_enable_errors(void) { xt_all(set_error_enable_tl1, EER_ENABLE, EER_SET_ABSOLUTE); } static void cpu_read_paddr(struct async_flt *ecc, short verbose, short ce_err) { uint64_t aligned_addr = P2ALIGN(ecc->flt_addr, 8); int i, loop = 1; ushort_t ecc_0; uint64_t paddr; uint64_t data; if (verbose) loop = 8; for (i = 0; i < loop; i++) { paddr = aligned_addr + (i * 8); data = lddphys(paddr); if (verbose) { if (ce_err) { ecc_0 = ecc_gen((uint32_t)(data>>32), (uint32_t)data); cpu_aflt_log(CE_CONT, 0, NULL, NO_LFLAGS, NULL, " Paddr 0x%" PRIx64 ", " "Data 0x%08x.%08x, ECC 0x%x", paddr, (uint32_t)(data>>32), (uint32_t)data, ecc_0); } else { cpu_aflt_log(CE_CONT, 0, NULL, NO_LFLAGS, NULL, " Paddr 0x%" PRIx64 ", " "Data 0x%08x.%08x", paddr, (uint32_t)(data>>32), (uint32_t)data); } } } } static struct { /* sec-ded-s4ed ecc code */ uint_t hi, lo; } ecc_code[8] = { { 0xee55de23U, 0x16161161U }, { 0x55eede93U, 0x61612212U }, { 0xbb557b8cU, 0x49494494U }, { 0x55bb7b6cU, 0x94948848U }, { 0x16161161U, 0xee55de23U }, { 0x61612212U, 0x55eede93U }, { 0x49494494U, 0xbb557b8cU }, { 0x94948848U, 0x55bb7b6cU } }; static ushort_t ecc_gen(uint_t high_bytes, uint_t low_bytes) { int i, j; uchar_t checker, bit_mask; struct { uint_t hi, lo; } hex_data, masked_data[8]; hex_data.hi = high_bytes; hex_data.lo = low_bytes; /* mask out bits according to sec-ded-s4ed ecc code */ for (i = 0; i < 8; i++) { masked_data[i].hi = hex_data.hi & ecc_code[i].hi; masked_data[i].lo = hex_data.lo & ecc_code[i].lo; } /* * xor all bits in masked_data[i] to get bit_i of checker, * where i = 0 to 7 */ checker = 0; for (i = 0; i < 8; i++) { bit_mask = 1 << i; for (j = 0; j < 32; j++) { if (masked_data[i].lo & 1) checker ^= bit_mask; if (masked_data[i].hi & 1) checker ^= bit_mask; masked_data[i].hi >>= 1; masked_data[i].lo >>= 1; } } return (checker); } /* * Flush the entire ecache using displacement flush by reading through a * physical address range as large as the ecache. */ void cpu_flush_ecache(void) { flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size * 2, cpunodes[CPU->cpu_id].ecache_linesize); } /* * read and display the data in the cache line where the * original ce error occurred. * This routine is mainly used for debugging new hardware. */ void read_ecc_data(struct async_flt *ecc, short verbose, short ce_err) { kpreempt_disable(); /* disable ECC error traps */ set_error_enable(EER_ECC_DISABLE); /* * flush the ecache * read the data * check to see if an ECC error occured */ flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size * 2, cpunodes[CPU->cpu_id].ecache_linesize); set_lsu(get_lsu() | cache_boot_state); cpu_read_paddr(ecc, verbose, ce_err); (void) check_ecc(ecc); /* enable ECC error traps */ set_error_enable(EER_ENABLE); kpreempt_enable(); } /* * Check the AFSR bits for UE/CE persistence. * If UE or CE errors are detected, the routine will * clears all the AFSR sticky bits (except CP for * spitfire/blackbird) and the UDBs. * if ce_debug or ue_debug is set, log any ue/ce errors detected. */ static int check_ecc(struct async_flt *ecc) { uint64_t t_afsr; uint64_t t_afar; uint64_t udbh; uint64_t udbl; ushort_t udb; int persistent = 0; /* * Capture the AFSR, AFAR and UDBs info */ get_asyncflt(&t_afsr); get_asyncaddr(&t_afar); t_afar &= SABRE_AFAR_PA; get_udb_errors(&udbh, &udbl); if ((t_afsr & P_AFSR_UE) || (t_afsr & P_AFSR_CE)) { /* * Clear the errors */ clr_datapath(); if (isus2i || isus2e) set_asyncflt(t_afsr); else set_asyncflt(t_afsr & ~P_AFSR_CP); /* * determine whether to check UDBH or UDBL for persistence */ if (ecc->flt_synd & UDBL_REG) { udb = (ushort_t)udbl; t_afar |= 0x8; } else { udb = (ushort_t)udbh; } if (ce_debug || ue_debug) { spitf_async_flt spf_flt; /* for logging */ struct async_flt *aflt = (struct async_flt *)&spf_flt; /* Package the info nicely in the spf_flt struct */ bzero(&spf_flt, sizeof (spitf_async_flt)); aflt->flt_stat = t_afsr; aflt->flt_addr = t_afar; spf_flt.flt_sdbh = (ushort_t)(udbh & 0x3FF); spf_flt.flt_sdbl = (ushort_t)(udbl & 0x3FF); cpu_aflt_log(CE_CONT, 0, &spf_flt, (CPU_AFSR | CPU_AFAR | CPU_UDBH | CPU_UDBL), NULL, " check_ecc: Dumping captured error states ..."); } /* * if the fault addresses don't match, not persistent */ if (t_afar != ecc->flt_addr) { return (persistent); } /* * check for UE persistence * since all DIMMs in the bank are identified for a UE, * there's no reason to check the syndrome */ if ((ecc->flt_stat & P_AFSR_UE) && (t_afsr & P_AFSR_UE)) { persistent = 1; } /* * check for CE persistence */ if ((ecc->flt_stat & P_AFSR_CE) && (t_afsr & P_AFSR_CE)) { if ((udb & P_DER_E_SYND) == (ecc->flt_synd & P_DER_E_SYND)) { persistent = 1; } } } return (persistent); } #ifdef HUMMINGBIRD #define HB_FULL_DIV 1 #define HB_HALF_DIV 2 #define HB_LOWEST_DIV 8 #define HB_ECLK_INVALID 0xdeadbad static uint64_t hb_eclk[HB_LOWEST_DIV + 1] = { HB_ECLK_INVALID, HB_ECLK_1, HB_ECLK_2, HB_ECLK_INVALID, HB_ECLK_4, HB_ECLK_INVALID, HB_ECLK_6, HB_ECLK_INVALID, HB_ECLK_8 }; #define HB_SLOW_DOWN 0 #define HB_SPEED_UP 1 #define SET_ESTAR_MODE(mode) \ stdphysio(HB_ESTAR_MODE, (mode)); \ /* \ * PLL logic requires minimum of 16 clock \ * cycles to lock to the new clock speed. \ * Wait 1 usec to satisfy this requirement. \ */ \ drv_usecwait(1); #define CHANGE_REFRESH_COUNT(direction, cur_div, new_div) \ { \ volatile uint64_t data; \ uint64_t count, new_count; \ clock_t delay; \ data = lddphysio(HB_MEM_CNTRL0); \ count = (data & HB_REFRESH_COUNT_MASK) >> \ HB_REFRESH_COUNT_SHIFT; \ new_count = (HB_REFRESH_INTERVAL * \ cpunodes[CPU->cpu_id].clock_freq) / \ (HB_REFRESH_CLOCKS_PER_COUNT * (new_div) * NANOSEC);\ data = (data & ~HB_REFRESH_COUNT_MASK) | \ (new_count << HB_REFRESH_COUNT_SHIFT); \ stdphysio(HB_MEM_CNTRL0, data); \ data = lddphysio(HB_MEM_CNTRL0); \ /* \ * If we are slowing down the cpu and Memory \ * Self Refresh is not enabled, it is required \ * to wait for old refresh count to count-down and \ * new refresh count to go into effect (let new value \ * counts down once). \ */ \ if ((direction) == HB_SLOW_DOWN && \ (data & HB_SELF_REFRESH_MASK) == 0) { \ /* \ * Each count takes 64 cpu clock cycles \ * to decrement. Wait for current refresh \ * count plus new refresh count at current \ * cpu speed to count down to zero. Round \ * up the delay time. \ */ \ delay = ((HB_REFRESH_CLOCKS_PER_COUNT * \ (count + new_count) * MICROSEC * (cur_div)) /\ cpunodes[CPU->cpu_id].clock_freq) + 1; \ drv_usecwait(delay); \ } \ } #define SET_SELF_REFRESH(bit) \ { \ volatile uint64_t data; \ data = lddphysio(HB_MEM_CNTRL0); \ data = (data & ~HB_SELF_REFRESH_MASK) | \ ((bit) << HB_SELF_REFRESH_SHIFT); \ stdphysio(HB_MEM_CNTRL0, data); \ data = lddphysio(HB_MEM_CNTRL0); \ } #endif /* HUMMINGBIRD */ /* ARGSUSED */ void cpu_change_speed(uint64_t new_divisor, uint64_t arg2) { #ifdef HUMMINGBIRD uint64_t cur_mask, cur_divisor = 0; volatile uint64_t reg; processor_info_t *pi = &(CPU->cpu_type_info); int index; if ((new_divisor < HB_FULL_DIV || new_divisor > HB_LOWEST_DIV) || (hb_eclk[new_divisor] == HB_ECLK_INVALID)) { cmn_err(CE_WARN, "cpu_change_speed: bad divisor 0x%lx", new_divisor); return; } reg = lddphysio(HB_ESTAR_MODE); cur_mask = reg & HB_ECLK_MASK; for (index = HB_FULL_DIV; index <= HB_LOWEST_DIV; index++) { if (hb_eclk[index] == cur_mask) { cur_divisor = index; break; } } if (cur_divisor == 0) cmn_err(CE_PANIC, "cpu_change_speed: current divisor " "can't be determined!"); /* * If we are already at the requested divisor speed, just * return. */ if (cur_divisor == new_divisor) return; if (cur_divisor == HB_FULL_DIV && new_divisor == HB_HALF_DIV) { CHANGE_REFRESH_COUNT(HB_SLOW_DOWN, cur_divisor, new_divisor); SET_ESTAR_MODE(hb_eclk[new_divisor]); SET_SELF_REFRESH(HB_SELF_REFRESH_ENABLE); } else if (cur_divisor == HB_HALF_DIV && new_divisor == HB_FULL_DIV) { SET_SELF_REFRESH(HB_SELF_REFRESH_DISABLE); SET_ESTAR_MODE(hb_eclk[new_divisor]); /* LINTED: E_FALSE_LOGICAL_EXPR */ CHANGE_REFRESH_COUNT(HB_SPEED_UP, cur_divisor, new_divisor); } else if (cur_divisor == HB_FULL_DIV && new_divisor > HB_HALF_DIV) { /* * Transition to 1/2 speed first, then to * lower speed. */ CHANGE_REFRESH_COUNT(HB_SLOW_DOWN, cur_divisor, HB_HALF_DIV); SET_ESTAR_MODE(hb_eclk[HB_HALF_DIV]); SET_SELF_REFRESH(HB_SELF_REFRESH_ENABLE); CHANGE_REFRESH_COUNT(HB_SLOW_DOWN, HB_HALF_DIV, new_divisor); SET_ESTAR_MODE(hb_eclk[new_divisor]); } else if (cur_divisor > HB_HALF_DIV && new_divisor == HB_FULL_DIV) { /* * Transition to 1/2 speed first, then to * full speed. */ SET_ESTAR_MODE(hb_eclk[HB_HALF_DIV]); /* LINTED: E_FALSE_LOGICAL_EXPR */ CHANGE_REFRESH_COUNT(HB_SPEED_UP, cur_divisor, HB_HALF_DIV); SET_SELF_REFRESH(HB_SELF_REFRESH_DISABLE); SET_ESTAR_MODE(hb_eclk[new_divisor]); /* LINTED: E_FALSE_LOGICAL_EXPR */ CHANGE_REFRESH_COUNT(HB_SPEED_UP, HB_HALF_DIV, new_divisor); } else if (cur_divisor < new_divisor) { CHANGE_REFRESH_COUNT(HB_SLOW_DOWN, cur_divisor, new_divisor); SET_ESTAR_MODE(hb_eclk[new_divisor]); } else if (cur_divisor > new_divisor) { SET_ESTAR_MODE(hb_eclk[new_divisor]); /* LINTED: E_FALSE_LOGICAL_EXPR */ CHANGE_REFRESH_COUNT(HB_SPEED_UP, cur_divisor, new_divisor); } CPU->cpu_m.divisor = (uchar_t)new_divisor; cpu_set_curr_clock(((uint64_t)pi->pi_clock * 1000000) / new_divisor); #endif } /* * Clear the AFSR sticky bits and the UDBs. For Sabre/Spitfire/Blackbird, * we clear all the sticky bits. If a non-null pointer to a async fault * structure argument is passed in, the captured error state (AFSR, AFAR, UDBs) * info will be returned in the structure. If a non-null pointer to a * uint64_t is passed in, this will be updated if the CP bit is set in the * AFSR. The afsr will be returned. */ static uint64_t clear_errors(spitf_async_flt *spf_flt, uint64_t *acc_afsr) { struct async_flt *aflt = (struct async_flt *)spf_flt; uint64_t afsr; uint64_t udbh, udbl; get_asyncflt(&afsr); if ((acc_afsr != NULL) && (afsr & P_AFSR_CP)) *acc_afsr |= afsr; if (spf_flt != NULL) { aflt->flt_stat = afsr; get_asyncaddr(&aflt->flt_addr); aflt->flt_addr &= SABRE_AFAR_PA; get_udb_errors(&udbh, &udbl); spf_flt->flt_sdbh = (ushort_t)(udbh & 0x3FF); spf_flt->flt_sdbl = (ushort_t)(udbl & 0x3FF); } set_asyncflt(afsr); /* clear afsr */ clr_datapath(); /* clear udbs */ return (afsr); } /* * Scan the ecache to look for bad lines. If found, the afsr, afar, e$ data * tag of the first bad line will be returned. We also return the old-afsr * (before clearing the sticky bits). The linecnt data will be updated to * indicate the number of bad lines detected. */ static void scan_ecache(uint64_t *t_afar, ec_data_t *ecache_data, uint64_t *ecache_tag, int *linecnt, uint64_t *t_afsr) { ec_data_t t_ecdata[8]; uint64_t t_etag, oafsr; uint64_t pa = AFLT_INV_ADDR; uint32_t i, j, ecache_sz; uint64_t acc_afsr = 0; uint64_t *cpu_afsr = NULL; if (CPU_PRIVATE(CPU) != NULL) cpu_afsr = CPU_PRIVATE_PTR(CPU, sfpr_scrub_afsr); *linecnt = 0; ecache_sz = cpunodes[CPU->cpu_id].ecache_size; for (i = 0; i < ecache_sz; i += 64) { get_ecache_dtag(i, (uint64_t *)&t_ecdata[0], &t_etag, &oafsr, cpu_afsr); acc_afsr |= oafsr; /* * Scan through the whole 64 bytes line in 8 8-byte chunks * looking for the first occurrence of an EDP error. The AFSR * info is captured for each 8-byte chunk. Note that for * Spitfire/Blackbird, the AFSR.PSYND is captured by h/w in * 16-byte chunk granularity (i.e. the AFSR will be the same * for the high and low 8-byte words within the 16-byte chunk). * For Sabre/Hummingbird, the AFSR.PSYND is captured in 8-byte * granularity and only PSYND bits [7:0] are used. */ for (j = 0; j < 8; j++) { ec_data_t *ecdptr = &t_ecdata[j]; if (ecdptr->ec_afsr & P_AFSR_EDP) { uint64_t errpa; ushort_t psynd; uint32_t ec_set_size = ecache_sz / ecache_associativity; /* * For Spitfire/Blackbird, we need to look at * the PSYND to make sure that this 8-byte chunk * is the right one. PSYND bits [15:8] belong * to the upper 8-byte (even) chunk. Bits * [7:0] belong to the lower 8-byte chunk (odd). */ psynd = ecdptr->ec_afsr & P_AFSR_P_SYND; if (!isus2i && !isus2e) { if (j & 0x1) psynd = psynd & 0xFF; else psynd = psynd >> 8; if (!psynd) continue; /* wrong chunk */ } /* Construct the PA */ errpa = ((t_etag & cpu_ec_tag_mask) << cpu_ec_tag_shift) | ((i | (j << 3)) % ec_set_size); /* clean up the cache line */ flushecacheline(P2ALIGN(errpa, 64), cpunodes[CPU->cpu_id].ecache_size); oafsr = clear_errors(NULL, cpu_afsr); acc_afsr |= oafsr; (*linecnt)++; /* * Capture the PA for the first bad line found. * Return the ecache dump and tag info. */ if (pa == AFLT_INV_ADDR) { int k; pa = errpa; for (k = 0; k < 8; k++) ecache_data[k] = t_ecdata[k]; *ecache_tag = t_etag; } break; } } } *t_afar = pa; *t_afsr = acc_afsr; } static void cpu_log_ecmem_info(spitf_async_flt *spf_flt) { struct async_flt *aflt = (struct async_flt *)spf_flt; uint64_t ecache_tag = spf_flt->flt_ec_tag; char linestr[30]; char *state_str; int i; /* * Check the ecache tag to make sure it * is valid. If invalid, a memory dump was * captured instead of a ecache dump. */ if (spf_flt->flt_ec_tag != AFLT_INV_ADDR) { uchar_t eparity = (uchar_t) ((ecache_tag & cpu_ec_par_mask) >> cpu_ec_par_shift); uchar_t estate = (uchar_t) ((ecache_tag & cpu_ec_state_mask) >> cpu_ec_state_shift); if (estate == cpu_ec_state_shr) state_str = "Shared"; else if (estate == cpu_ec_state_exl) state_str = "Exclusive"; else if (estate == cpu_ec_state_own) state_str = "Owner"; else if (estate == cpu_ec_state_mod) state_str = "Modified"; else state_str = "Invalid"; if (spf_flt->flt_ec_lcnt > 1) { (void) snprintf(linestr, sizeof (linestr), "Badlines found=%d", spf_flt->flt_ec_lcnt); } else { linestr[0] = '\0'; } cpu_aflt_log(CE_CONT, 2, spf_flt, CPU_ERRID_FIRST, NULL, " PA=0x%08x.%08x\n E$tag 0x%08x.%08x E$State: %s " "E$parity 0x%02x %s", (uint32_t)(aflt->flt_addr >> 32), (uint32_t)aflt->flt_addr, (uint32_t)(ecache_tag >> 32), (uint32_t)ecache_tag, state_str, (uint32_t)eparity, linestr); } else { cpu_aflt_log(CE_CONT, 2, spf_flt, CPU_ERRID_FIRST, NULL, " E$tag != PA from AFAR; E$line was victimized" "\n dumping memory from PA 0x%08x.%08x instead", (uint32_t)(P2ALIGN(aflt->flt_addr, 64) >> 32), (uint32_t)P2ALIGN(aflt->flt_addr, 64)); } /* * Dump out all 8 8-byte ecache data captured * For each 8-byte data captured, we check the * captured afsr's parity syndrome to find out * which 8-byte chunk is bad. For memory dump, the * AFSR values were initialized to 0. */ for (i = 0; i < 8; i++) { ec_data_t *ecdptr; uint_t offset; ushort_t psynd; ushort_t bad; uint64_t edp; offset = i << 3; /* multiply by 8 */ ecdptr = &spf_flt->flt_ec_data[i]; psynd = ecdptr->ec_afsr & P_AFSR_P_SYND; edp = ecdptr->ec_afsr & P_AFSR_EDP; /* * For Sabre/Hummingbird, parity synd is captured only * in [7:0] of AFSR.PSYND for each 8-byte chunk. * For spitfire/blackbird, AFSR.PSYND is captured * in 16-byte granularity. [15:8] represent * the upper 8 byte and [7:0] the lower 8 byte. */ if (isus2i || isus2e || (i & 0x1)) bad = (psynd & 0xFF); /* check bits [7:0] */ else bad = (psynd & 0xFF00); /* check bits [15:8] */ if (bad && edp) { cpu_aflt_log(CE_CONT, 2, spf_flt, NO_LFLAGS, NULL, " E$Data (0x%02x): 0x%08x.%08x " "*Bad* PSYND=0x%04x", offset, (uint32_t)(ecdptr->ec_d8 >> 32), (uint32_t)ecdptr->ec_d8, psynd); } else { cpu_aflt_log(CE_CONT, 2, spf_flt, NO_LFLAGS, NULL, " E$Data (0x%02x): 0x%08x.%08x", offset, (uint32_t)(ecdptr->ec_d8 >> 32), (uint32_t)ecdptr->ec_d8); } } } /* * Common logging function for all cpu async errors. This function allows the * caller to generate a single cmn_err() call that logs the appropriate items * from the fault structure, and implements our rules for AFT logging levels. * * ce_code: cmn_err() code (e.g. CE_PANIC, CE_WARN, CE_CONT) * tagnum: 0, 1, 2, .. generate the [AFT#] tag * spflt: pointer to spitfire async fault structure * logflags: bitflags indicating what to output * endstr: a end string to appear at the end of this log * fmt: a format string to appear at the beginning of the log * * The logflags allows the construction of predetermined output from the spflt * structure. The individual data items always appear in a consistent order. * Note that either or both of the spflt structure pointer and logflags may be * NULL or zero respectively, indicating that the predetermined output * substrings are not requested in this log. The output looks like this: * * [AFT#] * * newline+4spaces * newline+4spaces * newline+4spaces * newline+4spaces * newline+4spaces * * Note that may not start on a newline if we are logging ; * it is assumed that will be the unum string in this case. The size * of our intermediate formatting buf[] is based on the worst case of all flags * being enabled. We pass the caller's varargs directly to vcmn_err() for * formatting so we don't need additional stack space to format them here. */ /*PRINTFLIKE6*/ static void cpu_aflt_log(int ce_code, int tagnum, spitf_async_flt *spflt, uint_t logflags, const char *endstr, const char *fmt, ...) { struct async_flt *aflt = (struct async_flt *)spflt; char buf[400], *p, *q; /* see comments about buf[] size above */ va_list ap; int console_log_flag; if ((aflt == NULL) || ((aflt->flt_class == CPU_FAULT) && (aflt->flt_stat & P_AFSR_LEVEL1)) || (aflt->flt_panic)) { console_log_flag = (tagnum < 2) || aft_verbose; } else { int verbose = ((aflt->flt_class == BUS_FAULT) || (aflt->flt_stat & P_AFSR_CE)) ? ce_verbose_memory : ce_verbose_other; if (!verbose) return; console_log_flag = (verbose > 1); } if (console_log_flag) (void) sprintf(buf, "[AFT%d]", tagnum); else (void) sprintf(buf, "![AFT%d]", tagnum); p = buf + strlen(buf); /* current buffer position */ q = buf + sizeof (buf); /* pointer past end of buffer */ if (spflt != NULL && (logflags & CPU_ERRID_FIRST)) { (void) snprintf(p, (size_t)(q - p), " errID 0x%08x.%08x", (uint32_t)(aflt->flt_id >> 32), (uint32_t)aflt->flt_id); p += strlen(p); } /* * Copy the caller's format string verbatim into buf[]. It will be * formatted by the call to vcmn_err() at the end of this function. */ if (fmt != NULL && p < q) { (void) strncpy(p, fmt, (size_t)(q - p - 1)); buf[sizeof (buf) - 1] = '\0'; p += strlen(p); } if (spflt != NULL) { if (logflags & CPU_FLTCPU) { (void) snprintf(p, (size_t)(q - p), " CPU%d", aflt->flt_inst); p += strlen(p); } if (logflags & CPU_SPACE) { if (aflt->flt_status & ECC_D_TRAP) (void) snprintf(p, (size_t)(q - p), " Data access"); else if (aflt->flt_status & ECC_I_TRAP) (void) snprintf(p, (size_t)(q - p), " Instruction access"); p += strlen(p); } if (logflags & CPU_TL) { (void) snprintf(p, (size_t)(q - p), " at TL%s", aflt->flt_tl ? ">0" : "=0"); p += strlen(p); } if (logflags & CPU_ERRID) { (void) snprintf(p, (size_t)(q - p), ", errID 0x%08x.%08x", (uint32_t)(aflt->flt_id >> 32), (uint32_t)aflt->flt_id); p += strlen(p); } if (logflags & CPU_AFSR) { (void) snprintf(p, (size_t)(q - p), "\n AFSR 0x%8b.%8b", (uint32_t)(aflt->flt_stat >> 32), AFSR_FMTSTR0, (uint32_t)aflt->flt_stat, AFSR_FMTSTR1); p += strlen(p); } if (logflags & CPU_AFAR) { (void) snprintf(p, (size_t)(q - p), " AFAR 0x%08x.%08x", (uint32_t)(aflt->flt_addr >> 32), (uint32_t)aflt->flt_addr); p += strlen(p); } if (logflags & CPU_AF_PSYND) { ushort_t psynd = (ushort_t) (aflt->flt_stat & P_AFSR_P_SYND); (void) snprintf(p, (size_t)(q - p), "\n AFSR.PSYND 0x%04x(Score %02d)", psynd, ecc_psynd_score(psynd)); p += strlen(p); } if (logflags & CPU_AF_ETS) { (void) snprintf(p, (size_t)(q - p), " AFSR.ETS 0x%02x", (uchar_t)((aflt->flt_stat & P_AFSR_ETS) >> 16)); p += strlen(p); } if (logflags & CPU_FAULTPC) { (void) snprintf(p, (size_t)(q - p), " Fault_PC 0x%p", (void *)aflt->flt_pc); p += strlen(p); } if (logflags & CPU_UDBH) { (void) snprintf(p, (size_t)(q - p), "\n UDBH 0x%4b UDBH.ESYND 0x%02x", spflt->flt_sdbh, UDB_FMTSTR, spflt->flt_sdbh & 0xFF); p += strlen(p); } if (logflags & CPU_UDBL) { (void) snprintf(p, (size_t)(q - p), " UDBL 0x%4b UDBL.ESYND 0x%02x", spflt->flt_sdbl, UDB_FMTSTR, spflt->flt_sdbl & 0xFF); p += strlen(p); } if (logflags & CPU_SYND) { ushort_t synd = SYND(aflt->flt_synd); (void) snprintf(p, (size_t)(q - p), "\n %s Syndrome 0x%x Memory Module ", UDBL(aflt->flt_synd) ? "UDBL" : "UDBH", synd); p += strlen(p); } } if (endstr != NULL) { if (!(logflags & CPU_SYND)) (void) snprintf(p, (size_t)(q - p), "\n %s", endstr); else (void) snprintf(p, (size_t)(q - p), "%s", endstr); p += strlen(p); } if (ce_code == CE_CONT && (p < q - 1)) (void) strcpy(p, "\n"); /* add final \n if needed */ va_start(ap, fmt); vcmn_err(ce_code, buf, ap); va_end(ap); } /* * Ecache Scrubbing * * The basic idea is to prevent lines from sitting in the ecache long enough * to build up soft errors which can lead to ecache parity errors. * * The following rules are observed when flushing the ecache: * * 1. When the system is busy, flush bad clean lines * 2. When the system is idle, flush all clean lines * 3. When the system is idle, flush good dirty lines * 4. Never flush bad dirty lines. * * modify parity busy idle * ---------------------------- * clean good X * clean bad X X * dirty good X * dirty bad * * Bad or good refers to whether a line has an E$ parity error or not. * Clean or dirty refers to the state of the modified bit. We currently * default the scan rate to 100 (scan 10% of the cache per second). * * The following are E$ states and actions. * * We encode our state as a 3-bit number, consisting of: * ECACHE_STATE_MODIFIED (0=clean, 1=dirty) * ECACHE_STATE_PARITY (0=good, 1=bad) * ECACHE_STATE_BUSY (0=idle, 1=busy) * * We associate a flushing and a logging action with each state. * * E$ actions are different for Spitfire and Sabre/Hummingbird modules. * MIRROR_FLUSH indicates that an E$ line will be flushed for the mirrored * E$ only, in addition to value being set by ec_flush. */ #define ALWAYS_FLUSH 0x1 /* flush E$ line on all E$ types */ #define NEVER_FLUSH 0x0 /* never the flush the E$ line */ #define MIRROR_FLUSH 0xF /* flush E$ line on mirrored E$ only */ struct { char ec_flush; /* whether to flush or not */ char ec_log; /* ecache logging */ char ec_log_type; /* log type info */ } ec_action[] = { /* states of the E$ line in M P B */ { ALWAYS_FLUSH, 0, 0 }, /* 0 0 0 clean_good_idle */ { MIRROR_FLUSH, 0, 0 }, /* 0 0 1 clean_good_busy */ { ALWAYS_FLUSH, 1, CPU_BADLINE_CI_ERR }, /* 0 1 0 clean_bad_idle */ { ALWAYS_FLUSH, 1, CPU_BADLINE_CB_ERR }, /* 0 1 1 clean_bad_busy */ { ALWAYS_FLUSH, 0, 0 }, /* 1 0 0 dirty_good_idle */ { MIRROR_FLUSH, 0, 0 }, /* 1 0 1 dirty_good_busy */ { NEVER_FLUSH, 1, CPU_BADLINE_DI_ERR }, /* 1 1 0 dirty_bad_idle */ { NEVER_FLUSH, 1, CPU_BADLINE_DB_ERR } /* 1 1 1 dirty_bad_busy */ }; /* * Offsets into the ec_action[] that determines clean_good_busy and * dirty_good_busy lines. */ #define ECACHE_CGB_LINE 1 /* E$ clean_good_busy line */ #define ECACHE_DGB_LINE 5 /* E$ dirty_good_busy line */ /* * We are flushing lines which are Clean_Good_Busy and also the lines * Dirty_Good_Busy. And we only follow it for non-mirrored E$. */ #define CGB(x, m) (((x) == ECACHE_CGB_LINE) && (m != ECACHE_CPU_MIRROR)) #define DGB(x, m) (((x) == ECACHE_DGB_LINE) && (m != ECACHE_CPU_MIRROR)) #define ECACHE_STATE_MODIFIED 0x4 #define ECACHE_STATE_PARITY 0x2 #define ECACHE_STATE_BUSY 0x1 /* * If ecache is mirrored ecache_calls_a_sec and ecache_scan_rate are reduced. */ int ecache_calls_a_sec_mirrored = 1; int ecache_lines_per_call_mirrored = 1; int ecache_scrub_enable = 1; /* ecache scrubbing is on by default */ int ecache_scrub_verbose = 1; /* prints clean and dirty lines */ int ecache_scrub_panic = 0; /* panics on a clean and dirty line */ int ecache_calls_a_sec = 100; /* scrubber calls per sec */ int ecache_scan_rate = 100; /* scan rate (in tenths of a percent) */ int ecache_idle_factor = 1; /* increase the scan rate when idle */ int ecache_flush_clean_good_busy = 50; /* flush rate (in percent) */ int ecache_flush_dirty_good_busy = 100; /* flush rate (in percent) */ volatile int ec_timeout_calls = 1; /* timeout calls */ /* * Interrupt number and pil for ecache scrubber cross-trap calls. */ static uint64_t ecache_scrub_inum; uint_t ecache_scrub_pil = PIL_9; /* * Kstats for the E$ scrubber. */ typedef struct ecache_kstat { kstat_named_t clean_good_idle; /* # of lines scrubbed */ kstat_named_t clean_good_busy; /* # of lines skipped */ kstat_named_t clean_bad_idle; /* # of lines scrubbed */ kstat_named_t clean_bad_busy; /* # of lines scrubbed */ kstat_named_t dirty_good_idle; /* # of lines scrubbed */ kstat_named_t dirty_good_busy; /* # of lines skipped */ kstat_named_t dirty_bad_idle; /* # of lines skipped */ kstat_named_t dirty_bad_busy; /* # of lines skipped */ kstat_named_t invalid_lines; /* # of invalid lines */ kstat_named_t clean_good_busy_flush; /* # of lines scrubbed */ kstat_named_t dirty_good_busy_flush; /* # of lines scrubbed */ kstat_named_t tags_cleared; /* # of E$ tags cleared */ } ecache_kstat_t; static ecache_kstat_t ec_kstat_template = { { "clean_good_idle", KSTAT_DATA_ULONG }, { "clean_good_busy", KSTAT_DATA_ULONG }, { "clean_bad_idle", KSTAT_DATA_ULONG }, { "clean_bad_busy", KSTAT_DATA_ULONG }, { "dirty_good_idle", KSTAT_DATA_ULONG }, { "dirty_good_busy", KSTAT_DATA_ULONG }, { "dirty_bad_idle", KSTAT_DATA_ULONG }, { "dirty_bad_busy", KSTAT_DATA_ULONG }, { "invalid_lines", KSTAT_DATA_ULONG }, { "clean_good_busy_flush", KSTAT_DATA_ULONG }, { "dirty_good_busy_flush", KSTAT_DATA_ULONG }, { "ecache_tags_cleared", KSTAT_DATA_ULONG } }; struct kmem_cache *sf_private_cache; /* * Called periodically on each CPU to scan the ecache once a sec. * adjusting the ecache line index appropriately */ void scrub_ecache_line() { spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(CPU, sfpr_scrub_misc); int cpuid = CPU->cpu_id; uint32_t index = ssmp->ecache_flush_index; uint64_t ec_size = cpunodes[cpuid].ecache_size; size_t ec_linesize = cpunodes[cpuid].ecache_linesize; int nlines = ssmp->ecache_nlines; uint32_t ec_set_size = ec_size / ecache_associativity; int ec_mirror = ssmp->ecache_mirror; ecache_kstat_t *ec_ksp = (ecache_kstat_t *)ssmp->ecache_ksp->ks_data; int line, scan_lines, flush_clean_busy = 0, flush_dirty_busy = 0; int mpb; /* encode Modified, Parity, Busy for action */ uchar_t state; uint64_t ec_tag, paddr, oafsr, tafsr, nafsr; uint64_t *acc_afsr = CPU_PRIVATE_PTR(CPU, sfpr_scrub_afsr); ec_data_t ec_data[8]; kstat_named_t *ec_knp; switch (ec_mirror) { default: case ECACHE_CPU_NON_MIRROR: /* * The E$ scan rate is expressed in units of tenths of * a percent. ecache_scan_rate = 1000 (100%) means the * whole cache is scanned every second. */ scan_lines = (nlines * ecache_scan_rate) / (1000 * ecache_calls_a_sec); if (!(ssmp->ecache_busy)) { if (ecache_idle_factor > 0) { scan_lines *= ecache_idle_factor; } } else { flush_clean_busy = (scan_lines * ecache_flush_clean_good_busy) / 100; flush_dirty_busy = (scan_lines * ecache_flush_dirty_good_busy) / 100; } ec_timeout_calls = (ecache_calls_a_sec ? ecache_calls_a_sec : 1); break; case ECACHE_CPU_MIRROR: scan_lines = ecache_lines_per_call_mirrored; ec_timeout_calls = (ecache_calls_a_sec_mirrored ? ecache_calls_a_sec_mirrored : 1); break; } /* * The ecache scrubber algorithm operates by reading and * decoding the E$ tag to determine whether the corresponding E$ line * can be scrubbed. There is a implicit assumption in the scrubber * logic that the E$ tag is valid. Unfortunately, this assertion is * flawed since the E$ tag may also be corrupted and have parity errors * The scrubber logic is enhanced to check the validity of the E$ tag * before scrubbing. When a parity error is detected in the E$ tag, * it is possible to recover and scrub the tag under certain conditions * so that a ETP error condition can be avoided. */ for (mpb = line = 0; line < scan_lines; line++, mpb = 0) { /* * We get the old-AFSR before clearing the AFSR sticky bits * in {get_ecache_tag, check_ecache_line, get_ecache_dtag} * If CP bit is set in the old-AFSR, we log an Orphan CP event. */ ec_tag = get_ecache_tag(index, &nafsr, acc_afsr); state = (uchar_t)((ec_tag & cpu_ec_state_mask) >> cpu_ec_state_shift); /* * ETP is set try to scrub the ecache tag. */ if (nafsr & P_AFSR_ETP) { ecache_scrub_tag_err(nafsr, state, index); } else if (state & cpu_ec_state_valid) { /* * ETP is not set, E$ tag is valid. * Proceed with the E$ scrubbing. */ if (state & cpu_ec_state_dirty) mpb |= ECACHE_STATE_MODIFIED; tafsr = check_ecache_line(index, acc_afsr); if (tafsr & P_AFSR_EDP) { mpb |= ECACHE_STATE_PARITY; if (ecache_scrub_verbose || ecache_scrub_panic) { get_ecache_dtag(P2ALIGN(index, 64), (uint64_t *)&ec_data[0], &ec_tag, &oafsr, acc_afsr); } } if (ssmp->ecache_busy) mpb |= ECACHE_STATE_BUSY; ec_knp = (kstat_named_t *)ec_ksp + mpb; ec_knp->value.ul++; paddr = ((ec_tag & cpu_ec_tag_mask) << cpu_ec_tag_shift) | (index % ec_set_size); /* * We flush the E$ lines depending on the ec_flush, * we additionally flush clean_good_busy and * dirty_good_busy lines for mirrored E$. */ if (ec_action[mpb].ec_flush == ALWAYS_FLUSH) { flushecacheline(paddr, ec_size); } else if ((ec_mirror == ECACHE_CPU_MIRROR) && (ec_action[mpb].ec_flush == MIRROR_FLUSH)) { flushecacheline(paddr, ec_size); } else if (ec_action[mpb].ec_flush == NEVER_FLUSH) { softcall(ecache_page_retire, (void *)paddr); } /* * Conditionally flush both the clean_good and * dirty_good lines when busy. */ if (CGB(mpb, ec_mirror) && (flush_clean_busy > 0)) { flush_clean_busy--; flushecacheline(paddr, ec_size); ec_ksp->clean_good_busy_flush.value.ul++; } else if (DGB(mpb, ec_mirror) && (flush_dirty_busy > 0)) { flush_dirty_busy--; flushecacheline(paddr, ec_size); ec_ksp->dirty_good_busy_flush.value.ul++; } if (ec_action[mpb].ec_log && (ecache_scrub_verbose || ecache_scrub_panic)) { ecache_scrub_log(ec_data, ec_tag, paddr, mpb, tafsr); } } else { ec_ksp->invalid_lines.value.ul++; } if ((index += ec_linesize) >= ec_size) index = 0; } /* * set the ecache scrub index for the next time around */ ssmp->ecache_flush_index = index; if (*acc_afsr & P_AFSR_CP) { uint64_t ret_afsr; ret_afsr = ecache_scrub_misc_err(CPU_ORPHAN_CP_ERR, *acc_afsr); if ((ret_afsr & P_AFSR_CP) == 0) *acc_afsr = 0; } } /* * Handler for ecache_scrub_inum softint. Call scrub_ecache_line until * we decrement the outstanding request count to zero. */ /*ARGSUSED*/ uint_t scrub_ecache_line_intr(caddr_t arg1, caddr_t arg2) { int i; int outstanding; spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(CPU, sfpr_scrub_misc); uint32_t *countp = &ssmp->ec_scrub_outstanding; do { outstanding = *countp; ASSERT(outstanding > 0); for (i = 0; i < outstanding; i++) scrub_ecache_line(); } while (atomic_add_32_nv(countp, -outstanding)); return (DDI_INTR_CLAIMED); } /* * force each cpu to perform an ecache scrub, called from a timeout */ extern xcfunc_t ecache_scrubreq_tl1; void do_scrub_ecache_line(void) { long delta; if (ecache_calls_a_sec > hz) ecache_calls_a_sec = hz; else if (ecache_calls_a_sec <= 0) ecache_calls_a_sec = 1; if (ecache_calls_a_sec_mirrored > hz) ecache_calls_a_sec_mirrored = hz; else if (ecache_calls_a_sec_mirrored <= 0) ecache_calls_a_sec_mirrored = 1; if (ecache_scrub_enable) { xt_all(ecache_scrubreq_tl1, ecache_scrub_inum, 0); delta = hz / ec_timeout_calls; } else { delta = hz; } (void) realtime_timeout((void(*)(void *))do_scrub_ecache_line, 0, delta); } /* * initialization for ecache scrubbing * This routine is called AFTER all cpus have had cpu_init_private called * to initialize their private data areas. */ void cpu_init_cache_scrub(void) { if (ecache_calls_a_sec > hz) { cmn_err(CE_NOTE, "ecache_calls_a_sec set too high (%d); " "resetting to hz (%d)", ecache_calls_a_sec, hz); ecache_calls_a_sec = hz; } /* * Register softint for ecache scrubbing. */ ecache_scrub_inum = add_softintr(ecache_scrub_pil, scrub_ecache_line_intr, NULL, SOFTINT_MT); /* * kick off the scrubbing using realtime timeout */ (void) realtime_timeout((void(*)(void *))do_scrub_ecache_line, 0, hz / ecache_calls_a_sec); } /* * Unset the busy flag for this cpu. */ void cpu_idle_ecache_scrub(struct cpu *cp) { if (CPU_PRIVATE(cp) != NULL) { spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(cp, sfpr_scrub_misc); ssmp->ecache_busy = ECACHE_CPU_IDLE; } } /* * Set the busy flag for this cpu. */ void cpu_busy_ecache_scrub(struct cpu *cp) { if (CPU_PRIVATE(cp) != NULL) { spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(cp, sfpr_scrub_misc); ssmp->ecache_busy = ECACHE_CPU_BUSY; } } /* * initialize the ecache scrubber data structures * The global entry point cpu_init_private replaces this entry point. * */ static void cpu_init_ecache_scrub_dr(struct cpu *cp) { spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(cp, sfpr_scrub_misc); int cpuid = cp->cpu_id; /* * intialize bookkeeping for cache scrubbing */ bzero(ssmp, sizeof (spitfire_scrub_misc_t)); ssmp->ecache_flush_index = 0; ssmp->ecache_nlines = cpunodes[cpuid].ecache_size / cpunodes[cpuid].ecache_linesize; /* * Determine whether we are running on mirrored SRAM */ if (cpunodes[cpuid].msram == ECACHE_CPU_MIRROR) ssmp->ecache_mirror = ECACHE_CPU_MIRROR; else ssmp->ecache_mirror = ECACHE_CPU_NON_MIRROR; cpu_busy_ecache_scrub(cp); /* * initialize the kstats */ ecache_kstat_init(cp); } /* * uninitialize the ecache scrubber data structures * The global entry point cpu_uninit_private replaces this entry point. */ static void cpu_uninit_ecache_scrub_dr(struct cpu *cp) { spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(cp, sfpr_scrub_misc); if (ssmp->ecache_ksp != NULL) { kstat_delete(ssmp->ecache_ksp); ssmp->ecache_ksp = NULL; } /* * un-initialize bookkeeping for cache scrubbing */ bzero(ssmp, sizeof (spitfire_scrub_misc_t)); cpu_idle_ecache_scrub(cp); } struct kmem_cache *sf_private_cache; /* * Cpu private initialization. This includes allocating the cpu_private * data structure, initializing it, and initializing the scrubber for this * cpu. This is called once for EVERY cpu, including CPU 0. This function * calls cpu_init_ecache_scrub_dr to init the scrubber. * We use kmem_cache_create for the spitfire private data structure because it * needs to be allocated on a S_ECACHE_MAX_LSIZE (64) byte boundary. */ void cpu_init_private(struct cpu *cp) { spitfire_private_t *sfprp; ASSERT(CPU_PRIVATE(cp) == NULL); /* * If the sf_private_cache has not been created, create it. */ if (sf_private_cache == NULL) { sf_private_cache = kmem_cache_create("sf_private_cache", sizeof (spitfire_private_t), S_ECACHE_MAX_LSIZE, NULL, NULL, NULL, NULL, NULL, 0); ASSERT(sf_private_cache); } sfprp = CPU_PRIVATE(cp) = kmem_cache_alloc(sf_private_cache, KM_SLEEP); bzero(sfprp, sizeof (spitfire_private_t)); cpu_init_ecache_scrub_dr(cp); } /* * Cpu private unitialization. Uninitialize the Ecache scrubber and * deallocate the scrubber data structures and cpu_private data structure. * For now, this function just calls cpu_unint_ecache_scrub_dr to uninit * the scrubber for the specified cpu. */ void cpu_uninit_private(struct cpu *cp) { ASSERT(CPU_PRIVATE(cp)); cpu_uninit_ecache_scrub_dr(cp); kmem_cache_free(sf_private_cache, CPU_PRIVATE(cp)); CPU_PRIVATE(cp) = NULL; } /* * initialize the ecache kstats for each cpu */ static void ecache_kstat_init(struct cpu *cp) { struct kstat *ksp; spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(cp, sfpr_scrub_misc); ASSERT(ssmp != NULL); if ((ksp = kstat_create("unix", cp->cpu_id, "ecache_kstat", "misc", KSTAT_TYPE_NAMED, sizeof (ecache_kstat_t) / sizeof (kstat_named_t), KSTAT_FLAG_WRITABLE)) == NULL) { ssmp->ecache_ksp = NULL; cmn_err(CE_NOTE, "!ecache_kstat_init(%d) failed\n", cp->cpu_id); return; } ssmp->ecache_ksp = ksp; bcopy(&ec_kstat_template, ksp->ks_data, sizeof (ecache_kstat_t)); kstat_install(ksp); } /* * log the bad ecache information */ static void ecache_scrub_log(ec_data_t *ec_data, uint64_t ec_tag, uint64_t paddr, int mpb, uint64_t afsr) { spitf_async_flt spf_flt; struct async_flt *aflt; int i; char *class; bzero(&spf_flt, sizeof (spitf_async_flt)); aflt = &spf_flt.cmn_asyncflt; for (i = 0; i < 8; i++) { spf_flt.flt_ec_data[i] = ec_data[i]; } spf_flt.flt_ec_tag = ec_tag; if (mpb < (sizeof (ec_action) / sizeof (ec_action[0]))) { spf_flt.flt_type = ec_action[mpb].ec_log_type; } else spf_flt.flt_type = (ushort_t)mpb; aflt->flt_inst = CPU->cpu_id; aflt->flt_class = CPU_FAULT; aflt->flt_id = gethrtime_waitfree(); aflt->flt_addr = paddr; aflt->flt_stat = afsr; aflt->flt_panic = (uchar_t)ecache_scrub_panic; switch (mpb) { case CPU_ECACHE_TAG_ERR: case CPU_ECACHE_ADDR_PAR_ERR: case CPU_ECACHE_ETP_ETS_ERR: case CPU_ECACHE_STATE_ERR: class = FM_EREPORT_CPU_USII_ESCRUB_TAG; break; default: class = FM_EREPORT_CPU_USII_ESCRUB_DATA; break; } cpu_errorq_dispatch(class, (void *)&spf_flt, sizeof (spf_flt), ue_queue, aflt->flt_panic); if (aflt->flt_panic) cmn_err(CE_PANIC, "ecache_scrub_panic set and bad E$" "line detected"); } /* * Process an ecache error that occured during the E$ scrubbing. * We do the ecache scan to find the bad line, flush the bad line * and start the memscrubber to find any UE (in memory or in another cache) */ static uint64_t ecache_scrub_misc_err(int type, uint64_t afsr) { spitf_async_flt spf_flt; struct async_flt *aflt; uint64_t oafsr; bzero(&spf_flt, sizeof (spitf_async_flt)); aflt = &spf_flt.cmn_asyncflt; /* * Scan each line in the cache to look for the one * with bad parity */ aflt->flt_addr = AFLT_INV_ADDR; scan_ecache(&aflt->flt_addr, &spf_flt.flt_ec_data[0], &spf_flt.flt_ec_tag, &spf_flt.flt_ec_lcnt, &oafsr); if (oafsr & P_AFSR_CP) { uint64_t *cp_afsr = CPU_PRIVATE_PTR(CPU, sfpr_scrub_afsr); *cp_afsr |= oafsr; } /* * If we found a bad PA, update the state to indicate if it is * memory or I/O space. */ if (aflt->flt_addr != AFLT_INV_ADDR) { aflt->flt_in_memory = (pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT)) ? 1 : 0; } spf_flt.flt_type = (ushort_t)type; aflt->flt_inst = CPU->cpu_id; aflt->flt_class = CPU_FAULT; aflt->flt_id = gethrtime_waitfree(); aflt->flt_status = afsr; aflt->flt_panic = (uchar_t)ecache_scrub_panic; /* * We have the bad line, flush that line and start * the memscrubber. */ if (spf_flt.flt_ec_lcnt > 0) { flushecacheline(P2ALIGN(aflt->flt_addr, 64), cpunodes[CPU->cpu_id].ecache_size); read_all_memscrub = 1; memscrub_run(); } cpu_errorq_dispatch((type == CPU_ORPHAN_CP_ERR) ? FM_EREPORT_CPU_USII_CP : FM_EREPORT_CPU_USII_UNKNOWN, (void *)&spf_flt, sizeof (spf_flt), ue_queue, aflt->flt_panic); return (oafsr); } static void ecache_scrub_tag_err(uint64_t afsr, uchar_t state, uint32_t index) { ushort_t afsr_ets = (afsr & P_AFSR_ETS) >> P_AFSR_ETS_SHIFT; spitfire_scrub_misc_t *ssmp = CPU_PRIVATE_PTR(CPU, sfpr_scrub_misc); ecache_kstat_t *ec_ksp = (ecache_kstat_t *)ssmp->ecache_ksp->ks_data; uint64_t ec_tag, paddr, oafsr; ec_data_t ec_data[8]; int cpuid = CPU->cpu_id; uint32_t ec_set_size = cpunodes[cpuid].ecache_size / ecache_associativity; uint64_t *cpu_afsr = CPU_PRIVATE_PTR(CPU, sfpr_scrub_afsr); get_ecache_dtag(P2ALIGN(index, 64), (uint64_t *)&ec_data[0], &ec_tag, &oafsr, cpu_afsr); paddr = ((ec_tag & cpu_ec_tag_mask) << cpu_ec_tag_shift) | (index % ec_set_size); /* * E$ tag state has good parity */ if ((afsr_ets & cpu_ec_state_parity) == 0) { if (afsr_ets & cpu_ec_parity) { /* * E$ tag state bits indicate the line is clean, * invalidate the E$ tag and continue. */ if (!(state & cpu_ec_state_dirty)) { /* * Zero the tag and mark the state invalid * with good parity for the tag. */ if (isus2i || isus2e) write_hb_ec_tag_parity(index); else write_ec_tag_parity(index); /* Sync with the dual tag */ flushecacheline(0, cpunodes[CPU->cpu_id].ecache_size); ec_ksp->tags_cleared.value.ul++; ecache_scrub_log(ec_data, ec_tag, paddr, CPU_ECACHE_TAG_ERR, afsr); return; } else { ecache_scrub_log(ec_data, ec_tag, paddr, CPU_ECACHE_ADDR_PAR_ERR, afsr); cmn_err(CE_PANIC, " E$ tag address has bad" " parity"); } } else if ((afsr_ets & cpu_ec_parity) == 0) { /* * ETS is zero but ETP is set */ ecache_scrub_log(ec_data, ec_tag, paddr, CPU_ECACHE_ETP_ETS_ERR, afsr); cmn_err(CE_PANIC, "AFSR.ETP is set and" " AFSR.ETS is zero"); } } else { /* * E$ tag state bit has a bad parity */ ecache_scrub_log(ec_data, ec_tag, paddr, CPU_ECACHE_STATE_ERR, afsr); cmn_err(CE_PANIC, "E$ tag state has bad parity"); } } static void ecache_page_retire(void *arg) { uint64_t paddr = (uint64_t)arg; (void) page_retire(paddr, PR_UE); } void sticksync_slave(void) {} void sticksync_master(void) {} /*ARGSUSED*/ void cpu_check_ce(int flag, uint64_t pa, caddr_t va, uint_t bpp) {} void cpu_run_bus_error_handlers(struct async_flt *aflt, int expected) { int status; ddi_fm_error_t de; bzero(&de, sizeof (ddi_fm_error_t)); de.fme_version = DDI_FME_VERSION; de.fme_ena = fm_ena_generate_cpu(aflt->flt_id, aflt->flt_inst, FM_ENA_FMT1); de.fme_flag = expected; de.fme_bus_specific = (void *)aflt->flt_addr; status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de); if ((aflt->flt_prot == AFLT_PROT_NONE) && (status == DDI_FM_FATAL)) aflt->flt_panic = 1; } /*ARGSUSED*/ void cpu_errorq_dispatch(char *error_class, void *payload, size_t payload_sz, errorq_t *eqp, uint_t flag) { struct async_flt *aflt = (struct async_flt *)payload; aflt->flt_erpt_class = error_class; errorq_dispatch(eqp, payload, payload_sz, flag); } #define MAX_SIMM 8 struct ce_info { char name[UNUM_NAMLEN]; uint64_t intermittent_total; uint64_t persistent_total; uint64_t sticky_total; unsigned short leaky_bucket_cnt; }; /* * Separately-defined structure for use in reporting the ce_info * to SunVTS without exposing the internal layout and implementation * of struct ce_info. */ static struct ecc_error_info ecc_error_info_data = { { "version", KSTAT_DATA_UINT32 }, { "maxcount", KSTAT_DATA_UINT32 }, { "count", KSTAT_DATA_UINT32 } }; static const size_t ecc_error_info_ndata = sizeof (ecc_error_info_data) / sizeof (struct kstat_named); #if KSTAT_CE_UNUM_NAMLEN < UNUM_NAMLEN #error "Need to rev ecc_error_info version and update KSTAT_CE_UNUM_NAMLEN" #endif struct ce_info *mem_ce_simm = NULL; size_t mem_ce_simm_size = 0; /* * Default values for the number of CE's allowed per interval. * Interval is defined in minutes * SOFTERR_MIN_TIMEOUT is defined in microseconds */ #define SOFTERR_LIMIT_DEFAULT 2 #define SOFTERR_INTERVAL_DEFAULT 1440 /* This is 24 hours */ #define SOFTERR_MIN_TIMEOUT (60 * MICROSEC) /* This is 1 minute */ #define TIMEOUT_NONE ((timeout_id_t)0) #define TIMEOUT_SET ((timeout_id_t)1) /* * timeout identifer for leaky_bucket */ static timeout_id_t leaky_bucket_timeout_id = TIMEOUT_NONE; /* * Tunables for maximum number of allowed CE's in a given time */ int ecc_softerr_limit = SOFTERR_LIMIT_DEFAULT; int ecc_softerr_interval = SOFTERR_INTERVAL_DEFAULT; void cpu_mp_init(void) { size_t size = cpu_aflt_size(); size_t i; kstat_t *ksp; /* * Initialize the CE error handling buffers. */ mem_ce_simm_size = MAX_SIMM * max_ncpus; size = sizeof (struct ce_info) * mem_ce_simm_size; mem_ce_simm = kmem_zalloc(size, KM_SLEEP); ksp = kstat_create("unix", 0, "ecc-info", "misc", KSTAT_TYPE_NAMED, ecc_error_info_ndata, KSTAT_FLAG_VIRTUAL); if (ksp != NULL) { ksp->ks_data = (struct kstat_named *)&ecc_error_info_data; ecc_error_info_data.version.value.ui32 = KSTAT_CE_INFO_VER; ecc_error_info_data.maxcount.value.ui32 = mem_ce_simm_size; ecc_error_info_data.count.value.ui32 = 0; kstat_install(ksp); } for (i = 0; i < mem_ce_simm_size; i++) { struct kstat_ecc_mm_info *kceip; kceip = kmem_zalloc(sizeof (struct kstat_ecc_mm_info), KM_SLEEP); ksp = kstat_create("mm", i, "ecc-info", "misc", KSTAT_TYPE_NAMED, sizeof (struct kstat_ecc_mm_info) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (ksp != NULL) { /* * Re-declare ks_data_size to include room for the * UNUM name since we don't have KSTAT_FLAG_VAR_SIZE * set. */ ksp->ks_data_size = sizeof (struct kstat_ecc_mm_info) + KSTAT_CE_UNUM_NAMLEN; ksp->ks_data = kceip; kstat_named_init(&kceip->name, "name", KSTAT_DATA_STRING); kstat_named_init(&kceip->intermittent_total, "intermittent_total", KSTAT_DATA_UINT64); kstat_named_init(&kceip->persistent_total, "persistent_total", KSTAT_DATA_UINT64); kstat_named_init(&kceip->sticky_total, "sticky_total", KSTAT_DATA_UINT64); /* * Use the default snapshot routine as it knows how to * deal with named kstats with long strings. */ ksp->ks_update = ecc_kstat_update; kstat_install(ksp); } else { kmem_free(kceip, sizeof (struct kstat_ecc_mm_info)); } } } /*ARGSUSED*/ static void leaky_bucket_timeout(void *arg) { int i; struct ce_info *psimm = mem_ce_simm; for (i = 0; i < mem_ce_simm_size; i++) { if (psimm[i].leaky_bucket_cnt > 0) atomic_dec_16(&psimm[i].leaky_bucket_cnt); } add_leaky_bucket_timeout(); } static void add_leaky_bucket_timeout(void) { long timeout_in_microsecs; /* * create timeout for next leak. * * The timeout interval is calculated as follows * * (ecc_softerr_interval * 60 * MICROSEC) / ecc_softerr_limit * * ecc_softerr_interval is in minutes, so multiply this by 60 (seconds * in a minute), then multiply this by MICROSEC to get the interval * in microseconds. Divide this total by ecc_softerr_limit so that * the timeout interval is accurate to within a few microseconds. */ if (ecc_softerr_limit <= 0) ecc_softerr_limit = SOFTERR_LIMIT_DEFAULT; if (ecc_softerr_interval <= 0) ecc_softerr_interval = SOFTERR_INTERVAL_DEFAULT; timeout_in_microsecs = ((int64_t)ecc_softerr_interval * 60 * MICROSEC) / ecc_softerr_limit; if (timeout_in_microsecs < SOFTERR_MIN_TIMEOUT) timeout_in_microsecs = SOFTERR_MIN_TIMEOUT; leaky_bucket_timeout_id = timeout(leaky_bucket_timeout, (void *)NULL, drv_usectohz((clock_t)timeout_in_microsecs)); } /* * Legacy Correctable ECC Error Hash * * All of the code below this comment is used to implement a legacy array * which counted intermittent, persistent, and sticky CE errors by unum, * and then was later extended to publish the data as a kstat for SunVTS. * All of this code is replaced by FMA, and remains here until such time * that the UltraSPARC-I/II CPU code is converted to FMA, or is EOLed. * * Errors are saved in three buckets per-unum: * (1) sticky - scrub was unsuccessful, cannot be scrubbed * This could represent a problem, and is immediately printed out. * (2) persistent - was successfully scrubbed * These errors use the leaky bucket algorithm to determine * if there is a serious problem. * (3) intermittent - may have originated from the cpu or upa/safari bus, * and does not necessarily indicate any problem with the dimm itself, * is critical information for debugging new hardware. * Because we do not know if it came from the dimm, it would be * inappropriate to include these in the leaky bucket counts. * * If the E$ line was modified before the scrub operation began, then the * displacement flush at the beginning of scrubphys() will cause the modified * line to be written out, which will clean up the CE. Then, any subsequent * read will not cause an error, which will cause persistent errors to be * identified as intermittent. * * If a DIMM is going bad, it will produce true persistents as well as * false intermittents, so these intermittents can be safely ignored. * * If the error count is excessive for a DIMM, this function will return * PR_MCE, and the CPU module may then decide to remove that page from use. */ static int ce_count_unum(int status, int len, char *unum) { int i; struct ce_info *psimm = mem_ce_simm; int page_status = PR_OK; ASSERT(psimm != NULL); if (len <= 0 || (status & (ECC_STICKY | ECC_PERSISTENT | ECC_INTERMITTENT)) == 0) return (page_status); /* * Initialize the leaky_bucket timeout */ if (atomic_cas_ptr(&leaky_bucket_timeout_id, TIMEOUT_NONE, TIMEOUT_SET) == TIMEOUT_NONE) add_leaky_bucket_timeout(); for (i = 0; i < mem_ce_simm_size; i++) { if (psimm[i].name[0] == '\0') { /* * Hit the end of the valid entries, add * a new one. */ (void) strncpy(psimm[i].name, unum, len); if (status & ECC_STICKY) { /* * Sticky - the leaky bucket is used to track * soft errors. Since a sticky error is a * hard error and likely to be retired soon, * we do not count it in the leaky bucket. */ psimm[i].leaky_bucket_cnt = 0; psimm[i].intermittent_total = 0; psimm[i].persistent_total = 0; psimm[i].sticky_total = 1; cmn_err(CE_NOTE, "[AFT0] Sticky Softerror encountered " "on Memory Module %s\n", unum); page_status = PR_MCE; } else if (status & ECC_PERSISTENT) { psimm[i].leaky_bucket_cnt = 1; psimm[i].intermittent_total = 0; psimm[i].persistent_total = 1; psimm[i].sticky_total = 0; } else { /* * Intermittent - Because the scrub operation * cannot find the error in the DIMM, we will * not count these in the leaky bucket */ psimm[i].leaky_bucket_cnt = 0; psimm[i].intermittent_total = 1; psimm[i].persistent_total = 0; psimm[i].sticky_total = 0; } ecc_error_info_data.count.value.ui32++; break; } else if (strncmp(unum, psimm[i].name, len) == 0) { /* * Found an existing entry for the current * memory module, adjust the counts. */ if (status & ECC_STICKY) { psimm[i].sticky_total++; cmn_err(CE_NOTE, "[AFT0] Sticky Softerror encountered " "on Memory Module %s\n", unum); page_status = PR_MCE; } else if (status & ECC_PERSISTENT) { int new_value; new_value = atomic_inc_16_nv( &psimm[i].leaky_bucket_cnt); psimm[i].persistent_total++; if (new_value > ecc_softerr_limit) { cmn_err(CE_NOTE, "[AFT0] Most recent %d" " soft errors from Memory Module" " %s exceed threshold (N=%d," " T=%dh:%02dm) triggering page" " retire", new_value, unum, ecc_softerr_limit, ecc_softerr_interval / 60, ecc_softerr_interval % 60); atomic_dec_16( &psimm[i].leaky_bucket_cnt); page_status = PR_MCE; } } else { /* Intermittent */ psimm[i].intermittent_total++; } break; } } if (i >= mem_ce_simm_size) cmn_err(CE_CONT, "[AFT0] Softerror: mem_ce_simm[] out of " "space.\n"); return (page_status); } /* * Function to support counting of IO detected CEs. */ void cpu_ce_count_unum(struct async_flt *ecc, int len, char *unum) { int err; err = ce_count_unum(ecc->flt_status, len, unum); if (err != PR_OK && automatic_page_removal) { (void) page_retire(ecc->flt_addr, err); } } static int ecc_kstat_update(kstat_t *ksp, int rw) { struct kstat_ecc_mm_info *kceip = ksp->ks_data; struct ce_info *ceip = mem_ce_simm; int i = ksp->ks_instance; if (rw == KSTAT_WRITE) return (EACCES); ASSERT(ksp->ks_data != NULL); ASSERT(i < mem_ce_simm_size && i >= 0); /* * Since we're not using locks, make sure that we don't get partial * data. The name is always copied before the counters are incremented * so only do this update routine if at least one of the counters is * non-zero, which ensures that ce_count_unum() is done, and the * string is fully copied. */ if (ceip[i].intermittent_total == 0 && ceip[i].persistent_total == 0 && ceip[i].sticky_total == 0) { /* * Uninitialized or partially initialized. Ignore. * The ks_data buffer was allocated via kmem_zalloc, * so no need to bzero it. */ return (0); } kstat_named_setstr(&kceip->name, ceip[i].name); kceip->intermittent_total.value.ui64 = ceip[i].intermittent_total; kceip->persistent_total.value.ui64 = ceip[i].persistent_total; kceip->sticky_total.value.ui64 = ceip[i].sticky_total; return (0); } #define VIS_BLOCKSIZE 64 int dtrace_blksuword32_err(uintptr_t addr, uint32_t *data) { int ret, watched; watched = watch_disable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE); ret = dtrace_blksuword32(addr, data, 0); if (watched) watch_enable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE); return (ret); } /*ARGSUSED*/ void cpu_faulted_enter(struct cpu *cp) { } /*ARGSUSED*/ void cpu_faulted_exit(struct cpu *cp) { } /*ARGSUSED*/ void mmu_init_kernel_pgsz(struct hat *hat) { } size_t mmu_get_kernel_lpsize(size_t lpsize) { uint_t tte; if (lpsize == 0) { /* no setting for segkmem_lpsize in /etc/system: use default */ return (MMU_PAGESIZE4M); } for (tte = TTE8K; tte <= TTE4M; tte++) { if (lpsize == TTEBYTES(tte)) return (lpsize); } return (TTEBYTES(TTE8K)); }