/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Performance Counter Back-End for Intel Family 6 Models 15 and 23 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int core_pcbe_init(void); static uint_t core_pcbe_ncounters(void); static const char *core_pcbe_impl_name(void); static const char *core_pcbe_cpuref(void); static char *core_pcbe_list_events(uint_t picnum); static char *core_pcbe_list_attrs(void); static uint64_t core_pcbe_event_coverage(char *event); static uint64_t core_pcbe_overflow_bitmap(void); static int core_pcbe_configure(uint_t picnum, char *event, uint64_t preset, uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data, void *token); static void core_pcbe_program(void *token); static void core_pcbe_allstop(void); static void core_pcbe_sample(void *token); static void core_pcbe_free(void *config); #define FALSE 0 #define TRUE 1 /* Architectural Performance Counter versioning */ #define APC_V1 1 #define APC_V2 2 /* Counter Type */ #define CORE_GPC 0 /* General-Purpose Counter (GPC) */ #define CORE_FFC 1 /* Fixed-Function Counter (FFC) */ /* MSR Addresses */ #define GPC_BASE_PMC 0x00c1 /* First GPC */ #define GPC_BASE_PES 0x0186 /* First GPC Event Select register */ #define FFC_BASE_PMC 0x0309 /* First FFC */ #define PERF_FIXED_CTR_CTRL 0x038d /* Used to enable/disable FFCs */ #define PERF_GLOBAL_STATUS 0x038e /* Overflow status register */ #define PERF_GLOBAL_CTRL 0x038f /* Used to enable/disable counting */ #define PERF_GLOBAL_OVF_CTRL 0x0390 /* Used to clear overflow status */ /* * Processor Event Select register fields */ #define CORE_USR (1ULL << 16) /* Count while not in ring 0 */ #define CORE_OS (1ULL << 17) /* Count while in ring 0 */ #define CORE_EDGE (1ULL << 18) /* Enable edge detection */ #define CORE_PC (1ULL << 19) /* Enable pin control */ #define CORE_INT (1ULL << 20) /* Enable interrupt on overflow */ #define CORE_EN (1ULL << 22) /* Enable counting */ #define CORE_INV (1ULL << 23) /* Invert the CMASK */ #define CORE_UMASK_SHIFT 8 #define CORE_UMASK_MASK 0xffu #define CORE_CMASK_SHIFT 24 #define CORE_CMASK_MASK 0xffu /* * Fixed-function counter attributes */ #define CORE_FFC_OS_EN (1ULL << 0) /* Count while not in ring 0 */ #define CORE_FFC_USR_EN (1ULL << 1) /* Count while in ring 1 */ #define CORE_FFC_PMI (1ULL << 3) /* Enable interrupt on overflow */ /* * Number of bits for specifying each FFC's attributes in the control register */ #define CORE_FFC_ATTR_SIZE 4 /* * CondChgd and OvfBuffer fields of global status and overflow control registers */ #define CONDCHGD (1ULL << 63) #define OVFBUFFER (1ULL << 62) #define MASK_CONDCHGD_OVFBUFFER (CONDCHGD | OVFBUFFER) #define ALL_STOPPED 0ULL #define BITMASK_XBITS(x) ((1ull << (x)) - 1ull) /* * Only the lower 32-bits can be written to in the general-purpose * counters. The higher bits are extended from bit 31; all ones if * bit 31 is one and all zeros otherwise. * * The fixed-function counters do not have this restriction. */ #define BITS_EXTENDED_FROM_31 (BITMASK_XBITS(width_gpc) & ~BITMASK_XBITS(31)) #define WRMSR(msr, value) \ wrmsr((msr), (value)); \ DTRACE_PROBE2(wrmsr, uint64_t, (msr), uint64_t, (value)); #define RDMSR(msr, value) \ (value) = rdmsr((msr)); \ DTRACE_PROBE2(rdmsr, uint64_t, (msr), uint64_t, (value)); typedef struct core_pcbe_config { uint64_t core_rawpic; uint64_t core_ctl; /* Event Select bits */ uint64_t core_pmc; /* Counter register address */ uint64_t core_pes; /* Event Select register address */ uint_t core_picno; uint8_t core_pictype; /* CORE_GPC or CORE_FFC */ } core_pcbe_config_t; pcbe_ops_t core_pcbe_ops = { PCBE_VER_1, /* pcbe_ver */ CPC_CAP_OVERFLOW_INTERRUPT | CPC_CAP_OVERFLOW_PRECISE, /* pcbe_caps */ core_pcbe_ncounters, /* pcbe_ncounters */ core_pcbe_impl_name, /* pcbe_impl_name */ core_pcbe_cpuref, /* pcbe_cpuref */ core_pcbe_list_events, /* pcbe_list_events */ core_pcbe_list_attrs, /* pcbe_list_attrs */ core_pcbe_event_coverage, /* pcbe_event_coverage */ core_pcbe_overflow_bitmap, /* pcbe_overflow_bitmap */ core_pcbe_configure, /* pcbe_configure */ core_pcbe_program, /* pcbe_program */ core_pcbe_allstop, /* pcbe_allstop */ core_pcbe_sample, /* pcbe_sample */ core_pcbe_free /* pcbe_free */ }; struct nametable { const char *name; uint64_t restricted_bits; uint8_t event_num; }; #define NT_END 0xFF /* * Counting an event for all cores or all bus agents requires cpc_cpu privileges */ #define ALL_CORES (1ULL << 15) #define ALL_AGENTS (1ULL << 13) static const struct nametable common_gpc_events[] = { /* Alphabetical order of event name */ { "baclears", 0x0, 0xe6 }, { "bogus_br", 0x0, 0xe4 }, { "br_bac_missp_exec", 0x0, 0x8a }, { "br_call_exec", 0x0, 0x92 }, { "br_call_missp_exec", 0x0, 0x93 }, { "br_cnd_exec", 0x0, 0x8b }, { "br_cnd_missp_exec", 0x0, 0x8c }, { "br_ind_call_exec", 0x0, 0x94 }, { "br_ind_exec", 0x0, 0x8d }, { "br_ind_missp_exec", 0x0, 0x8e }, { "br_inst_decoded", 0x0, 0xe0 }, { "br_inst_exec", 0x0, 0x88 }, { "br_inst_retired", 0x0, 0xc4 }, { "br_inst_retired_mispred", 0x0, 0xc5 }, { "br_missp_exec", 0x0, 0x89 }, { "br_ret_bac_missp_exec", 0x0, 0x91 }, { "br_ret_exec", 0x0, 0x8f }, { "br_ret_missp_exec", 0x0, 0x90 }, { "br_tkn_bubble_1", 0x0, 0x97 }, { "br_tkn_bubble_2", 0x0, 0x98 }, { "bus_bnr_drv", ALL_AGENTS, 0x61 }, { "bus_data_rcv", ALL_CORES, 0x64 }, { "bus_drdy_clocks", ALL_AGENTS, 0x62 }, { "bus_hit_drv", ALL_AGENTS, 0x7a }, { "bus_hitm_drv", ALL_AGENTS, 0x7b }, { "bus_io_wait", ALL_CORES, 0x7f }, { "bus_lock_clocks", ALL_CORES | ALL_AGENTS, 0x63 }, { "bus_request_outstanding", ALL_CORES | ALL_AGENTS, 0x60 }, { "bus_trans_any", ALL_CORES | ALL_AGENTS, 0x70 }, { "bus_trans_brd", ALL_CORES | ALL_AGENTS, 0x65 }, { "bus_trans_burst", ALL_CORES | ALL_AGENTS, 0x6e }, { "bus_trans_def", ALL_CORES | ALL_AGENTS, 0x6d }, { "bus_trans_ifetch", ALL_CORES | ALL_AGENTS, 0x68 }, { "bus_trans_inval", ALL_CORES | ALL_AGENTS, 0x69 }, { "bus_trans_io", ALL_CORES | ALL_AGENTS, 0x6c }, { "bus_trans_mem", ALL_CORES | ALL_AGENTS, 0x6f }, { "bus_trans_p", ALL_CORES | ALL_AGENTS, 0x6b }, { "bus_trans_pwr", ALL_CORES | ALL_AGENTS, 0x6a }, { "bus_trans_rfo", ALL_CORES | ALL_AGENTS, 0x66 }, { "bus_trans_wb", ALL_CORES | ALL_AGENTS, 0x67 }, { "busq_empty", ALL_CORES, 0x7d }, { "cmp_snoop", ALL_CORES, 0x78 }, { "cpu_clk_unhalted", 0x0, 0x3c }, { "cycles_int", 0x0, 0xc6 }, { "cycles_l1i_mem_stalled", 0x0, 0x86 }, { "dtlb_misses", 0x0, 0x08 }, { "eist_trans", 0x0, 0x3a }, { "esp", 0x0, 0xab }, { "ext_snoop", ALL_AGENTS, 0x77 }, { "fp_mmx_trans", 0x0, 0xcc }, { "hw_int_rcv", 0x0, 0xc8 }, { "ild_stall", 0x0, 0x87 }, { "inst_queue", 0x0, 0x83 }, { "inst_retired", 0x0, 0xc0 }, { "itlb", 0x0, 0x82 }, { "itlb_miss_retired", 0x0, 0xc9 }, { "l1d_all_ref", 0x0, 0x43 }, { "l1d_cache_ld", 0x0, 0x40 }, { "l1d_cache_lock", 0x0, 0x42 }, { "l1d_cache_st", 0x0, 0x41 }, { "l1d_m_evict", 0x0, 0x47 }, { "l1d_m_repl", 0x0, 0x46 }, { "l1d_pend_miss", 0x0, 0x48 }, { "l1d_prefetch", 0x0, 0x4e }, { "l1d_repl", 0x0, 0x45 }, { "l1d_split", 0x0, 0x49 }, { "l1i_misses", 0x0, 0x81 }, { "l1i_reads", 0x0, 0x80 }, { "l2_ads", ALL_CORES, 0x21 }, { "l2_dbus_busy_rd", ALL_CORES, 0x23 }, { "l2_ifetch", ALL_CORES, 0x28 }, { "l2_ld", ALL_CORES, 0x29 }, { "l2_lines_in", ALL_CORES, 0x24 }, { "l2_lines_out", ALL_CORES, 0x26 }, { "l2_lock", ALL_CORES, 0x2b }, { "l2_m_lines_in", ALL_CORES, 0x25 }, { "l2_m_lines_out", ALL_CORES, 0x27 }, { "l2_no_req", ALL_CORES, 0x32 }, { "l2_reject_busq", ALL_CORES, 0x30 }, { "l2_rqsts", ALL_CORES, 0x2e }, { "l2_st", ALL_CORES, 0x2a }, { "load_block", 0x0, 0x03 }, { "load_hit_pre", 0x0, 0x4c }, { "machine_nukes", 0x0, 0xc3 }, { "macro_insts", 0x0, 0xaa }, { "memory_disambiguation", 0x0, 0x09 }, { "page_walks", 0x0, 0x0c }, { "pref_rqsts_dn", 0x0, 0xf8 }, { "pref_rqsts_up", 0x0, 0xf0 }, { "rat_stalls", 0x0, 0xd2 }, { "resource_stalls", 0x0, 0xdc }, { "rs_uops_dispatched", 0x0, 0xa0 }, { "seg_reg_renames", 0x0, 0xd5 }, { "seg_rename_stalls", 0x0, 0xd4 }, { "segment_reg_loads", 0x0, 0x06 }, { "simd_assist", 0x0, 0xcd }, { "simd_comp_inst_retired", 0x0, 0xca }, { "simd_inst_retired", 0x0, 0xc7 }, { "simd_instr_retired", 0x0, 0xce }, { "simd_sat_instr_retired", 0x0, 0xcf }, { "simd_sat_uop_exec", 0x0, 0xb1 }, { "simd_uop_type_exec", 0x0, 0xb3 }, { "simd_uops_exec", 0x0, 0xb0 }, { "snoop_stall_drv", ALL_CORES | ALL_AGENTS, 0x7e }, { "sse_pre_exec", 0x0, 0x07 }, { "sse_pre_miss", 0x0, 0x4b }, { "store_block", 0x0, 0x04 }, { "thermal_trip", 0x0, 0x3b }, { "uops_retired", 0x0, 0xc2 }, { "x87_ops_retired", 0x0, 0xc1 }, { "", 0x0, NT_END } }; /* * If any of the pic specific events require privileges, make sure to add a * check in configure_gpc() to find whether an event hard-coded as a number by * the user has any privilege requirements */ static const struct nametable pic0_events[] = { /* Alphabetical order of event name */ { "cycles_div_busy", 0x0, 0x14 }, { "fp_comp_ops_exe", 0x0, 0x10 }, { "idle_during_div", 0x0, 0x18 }, { "mem_load_retired", 0x0, 0xcb }, { "rs_uops_dispatched_port", 0x0, 0xa1 }, { "", 0x0, NT_END } }; static const struct nametable pic1_events[] = { /* Alphabetical order of event name */ { "delayed_bypass", 0x0, 0x19 }, { "div", 0x0, 0x13 }, { "fp_assist", 0x0, 0x11 }, { "mul", 0x0, 0x12 }, { "", 0x0, NT_END } }; static char **gpc_names; char *ffc_names[] = { "instr_retired.any", "cpu_clk_unhalted.core", "cpu_clk_unhalted.ref", NULL }; static uint64_t num_gpc; static uint64_t width_gpc; static uint64_t mask_gpc; static uint64_t num_ffc; static uint64_t width_ffc; static uint64_t mask_ffc; static uint_t total_pmc; static uint64_t control_ffc; static uint64_t control_gpc; static uint64_t control_mask; static const char *core_impl_name = "Core Microarchitecture"; static const char *core_cpuref = "See Appendix A of the \"Intel 64 and IA-32 Architectures Software" \ " Developer's Manual Volume 3B: System Programming Guide, Part 2\"" \ " Order Number: 253669-026US, Februrary 2008"; static int core_pcbe_init(void) { struct cpuid_regs cp; uint32_t versionid; const struct nametable *n; size_t size; size_t common_size; uint64_t i; const struct nametable *picspecific_events; if ((cpuid_getvendor(CPU) != X86_VENDOR_Intel) || (cpuid_getfamily(CPU) != 6) || (cpuid_getmodel(CPU) != 15 && cpuid_getmodel(CPU) != 23)) return (-1); /* Obtain the Architectural Performance Monitoring Leaf */ cp.cp_eax = 0xa; (void) __cpuid_insn(&cp); versionid = cp.cp_eax & 0xFF; /* * All Family 6 Model 15 and Model 23 processors have fixed-function * counters. These counters were made Architectural with * Family 6 Model 9 Stepping 9. */ switch (versionid) { case 0: return (-1); case APC_V2: num_ffc = cp.cp_edx & 0x1F; width_ffc = (cp.cp_edx >> 5) & 0xFF; if (num_ffc == 0) { /* * Some processors have an errata (AW34) where * versionid is reported as 2 when actually 1. * In this case, fixed-function counters are * model-specific as in Version 1. */ num_ffc = 3; width_ffc = 40; versionid = APC_V1; } break; default: /* * For higher versions currently unsupported, * default to Version 1 */ num_ffc = 3; width_ffc = 40; break; } if (num_ffc >= 64) return (-1); if (num_ffc >= sizeof (ffc_names) / sizeof (char *)) { /* * The system seems to have more fixed-function counters than * what this PCBE is able to handle correctly. Default to the * maximum number of fixed-function counters that this driver * is aware of. */ num_ffc = sizeof (ffc_names) / sizeof (char *) - 1; } mask_ffc = BITMASK_XBITS(width_ffc); num_gpc = (cp.cp_eax >> 8) & 0xFF; width_gpc = (cp.cp_eax >> 16) & 0xFF; if (num_gpc >= 64) return (-1); mask_gpc = BITMASK_XBITS(width_gpc); total_pmc = num_gpc + num_ffc; control_gpc = BITMASK_XBITS(num_gpc); control_ffc = BITMASK_XBITS(num_ffc); control_mask = (control_ffc << 32) | control_gpc; if (total_pmc > 64) { /* Too wide for the overflow bitmap */ return (-1); } /* General-purpose Counters (GPC) */ gpc_names = NULL; if (num_gpc > 0) { gpc_names = kmem_alloc(num_gpc * sizeof (char *), KM_SLEEP); /* Calculate space needed to save all the common event names */ common_size = 0; for (n = common_gpc_events; n->event_num != NT_END; n++) { common_size += strlen(n->name) + 1; } for (i = 0; i < num_gpc; i++) { size = 0; switch (i) { case 0: picspecific_events = pic0_events; break; case 1: picspecific_events = pic1_events; break; default: picspecific_events = NULL; break; } if (picspecific_events != NULL) { for (n = picspecific_events; n->event_num != NT_END; n++) { size += strlen(n->name) + 1; } } gpc_names[i] = kmem_alloc(size + common_size + 1, KM_SLEEP); gpc_names[i][0] = '\0'; if (picspecific_events != NULL) { for (n = picspecific_events; n->event_num != NT_END; n++) { (void) strcat(gpc_names[i], n->name); (void) strcat(gpc_names[i], ","); } } for (n = common_gpc_events; n->event_num != NT_END; n++) { (void) strcat(gpc_names[i], n->name); (void) strcat(gpc_names[i], ","); } /* * Remove trailing comma. */ gpc_names[i][common_size + size - 1] = '\0'; } } /* * Fixed-function Counters (FFC) are already listed individually in * ffc_names[] */ return (0); } static uint_t core_pcbe_ncounters() { return (total_pmc); } static const char *core_pcbe_impl_name(void) { return (core_impl_name); } static const char *core_pcbe_cpuref(void) { return (core_cpuref); } static char *core_pcbe_list_events(uint_t picnum) { ASSERT(picnum < cpc_ncounters); if (picnum < num_gpc) { return (gpc_names[picnum]); } else { return (ffc_names[picnum - num_gpc]); } } static char *core_pcbe_list_attrs(void) { return ("edge,pc,inv,umask,cmask"); } static const struct nametable * find_gpcevent(char *name, const struct nametable *nametable) { const struct nametable *n; int compare_result; compare_result = -1; for (n = nametable; n->event_num != NT_END; n++) { compare_result = strcmp(name, n->name); if (compare_result <= 0) { break; } } if (compare_result == 0) { return (n); } return (NULL); } static uint64_t core_pcbe_event_coverage(char *event) { uint64_t bitmap; uint64_t bitmask; int i; bitmap = 0; /* Is it an event that a GPC can track? */ if (find_gpcevent(event, common_gpc_events) != NULL) { bitmap |= BITMASK_XBITS(num_gpc); } else if (find_gpcevent(event, pic0_events) != NULL) { bitmap |= 1ULL; } else if (find_gpcevent(event, pic1_events) != NULL) { bitmap |= 1ULL << 1; } /* Check if the event can be counted in the fixed-function counters */ if (num_ffc > 0) { bitmask = 1ULL << num_gpc; for (i = 0; i < num_ffc; i++) { if (strcmp(event, ffc_names[i]) == 0) { bitmap |= bitmask; } bitmask = bitmask << 1; } } return (bitmap); } static uint64_t core_pcbe_overflow_bitmap(void) { uint64_t interrupt_status; uint64_t intrbits_ffc; uint64_t intrbits_gpc; extern int kcpc_hw_overflow_intr_installed; uint64_t overflow_bitmap; RDMSR(PERF_GLOBAL_STATUS, interrupt_status); WRMSR(PERF_GLOBAL_OVF_CTRL, interrupt_status); interrupt_status = interrupt_status & control_mask; intrbits_ffc = (interrupt_status >> 32) & control_ffc; intrbits_gpc = interrupt_status & control_gpc; overflow_bitmap = (intrbits_ffc << num_gpc) | intrbits_gpc; ASSERT(kcpc_hw_overflow_intr_installed); (*kcpc_hw_enable_cpc_intr)(); return (overflow_bitmap); } static int check_cpc_securitypolicy(core_pcbe_config_t *conf, const struct nametable *n) { if (conf->core_ctl & n->restricted_bits) { if (secpolicy_cpc_cpu(crgetcred()) != 0) { return (CPC_ATTR_REQUIRES_PRIVILEGE); } } return (0); } static int configure_gpc(uint_t picnum, char *event, uint64_t preset, uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data) { core_pcbe_config_t conf; const struct nametable *n; const struct nametable *m; const struct nametable *picspecific_events; struct nametable nt_raw = { "", 0x0, 0x0 }; uint_t i; long event_num; if (((preset & BITS_EXTENDED_FROM_31) != 0) && ((preset & BITS_EXTENDED_FROM_31) != BITS_EXTENDED_FROM_31)) { /* * Bits beyond bit-31 in the general-purpose counters can only * be written to by extension of bit 31. We cannot preset * these bits to any value other than all 1s or all 0s. */ return (CPC_ATTRIBUTE_OUT_OF_RANGE); } n = find_gpcevent(event, common_gpc_events); if (n == NULL) { switch (picnum) { case 0: picspecific_events = pic0_events; break; case 1: picspecific_events = pic1_events; break; default: picspecific_events = NULL; break; } if (picspecific_events != NULL) { n = find_gpcevent(event, picspecific_events); if (n == NULL) { /* * Check if this is a case where the event was * specified directly by its event number * instead of its name string. */ if (ddi_strtol(event, NULL, 0, &event_num) != 0) { return (CPC_INVALID_EVENT); } event_num = event_num & 0xFF; /* * Search the event table to find out if the * event specified has an privilege * requirements. Currently none of the * pic-specific counters have any privilege * requirements. Hence only the * common_gpc_events table is searched. */ for (m = common_gpc_events; m->event_num != NT_END; m++) { if (event_num == m->event_num) { break; } } if (m->event_num == NT_END) { nt_raw.event_num = (uint8_t)event_num; n = &nt_raw; } else { n = m; } } } } conf.core_picno = picnum; conf.core_pictype = CORE_GPC; conf.core_rawpic = preset & mask_gpc; conf.core_pes = GPC_BASE_PES + picnum; conf.core_pmc = GPC_BASE_PMC + picnum; conf.core_ctl = n->event_num; /* Event Select */ for (i = 0; i < nattrs; i++) { if (strncmp(attrs[i].ka_name, "umask", 6) == 0) { if ((attrs[i].ka_val | CORE_UMASK_MASK) != CORE_UMASK_MASK) { return (CPC_ATTRIBUTE_OUT_OF_RANGE); } conf.core_ctl |= attrs[i].ka_val << CORE_UMASK_SHIFT; } else if (strncmp(attrs[i].ka_name, "edge", 6) == 0) { if (attrs[i].ka_val != 0) conf.core_ctl |= CORE_EDGE; } else if (strncmp(attrs[i].ka_name, "pc", 3) == 0) { if (attrs[i].ka_val != 0) conf.core_ctl |= CORE_PC; } else if (strncmp(attrs[i].ka_name, "inv", 4) == 0) { if (attrs[i].ka_val != 0) conf.core_ctl |= CORE_INV; } else if (strncmp(attrs[i].ka_name, "cmask", 6) == 0) { if ((attrs[i].ka_val | CORE_CMASK_MASK) != CORE_CMASK_MASK) { return (CPC_ATTRIBUTE_OUT_OF_RANGE); } conf.core_ctl |= attrs[i].ka_val << CORE_CMASK_SHIFT; } else { return (CPC_INVALID_ATTRIBUTE); } } if (flags & CPC_COUNT_USER) conf.core_ctl |= CORE_USR; if (flags & CPC_COUNT_SYSTEM) conf.core_ctl |= CORE_OS; if (flags & CPC_OVF_NOTIFY_EMT) conf.core_ctl |= CORE_INT; conf.core_ctl |= CORE_EN; if (check_cpc_securitypolicy(&conf, n) != 0) { return (CPC_ATTR_REQUIRES_PRIVILEGE); } *data = kmem_alloc(sizeof (core_pcbe_config_t), KM_SLEEP); *((core_pcbe_config_t *)*data) = conf; return (0); } static int configure_ffc(uint_t picnum, char *event, uint64_t preset, uint32_t flags, uint_t nattrs, void **data) { core_pcbe_config_t *conf; if (picnum - num_gpc >= num_ffc) { return (CPC_INVALID_PICNUM); } if (strcmp(ffc_names[picnum-num_gpc], event) != 0) { return (CPC_INVALID_EVENT); } if (nattrs != 0) { return (CPC_INVALID_ATTRIBUTE); } conf = kmem_alloc(sizeof (core_pcbe_config_t), KM_SLEEP); conf->core_picno = picnum; conf->core_pictype = CORE_FFC; conf->core_rawpic = preset & mask_ffc; conf->core_pmc = FFC_BASE_PMC + (picnum - num_gpc); /* All fixed-function counters have the same control register */ conf->core_pes = PERF_FIXED_CTR_CTRL; conf->core_ctl = 0; if (flags & CPC_COUNT_USER) conf->core_ctl |= CORE_FFC_USR_EN; if (flags & CPC_COUNT_SYSTEM) conf->core_ctl |= CORE_FFC_OS_EN; if (flags & CPC_OVF_NOTIFY_EMT) conf->core_ctl |= CORE_FFC_PMI; *data = conf; return (0); } /*ARGSUSED*/ static int core_pcbe_configure(uint_t picnum, char *event, uint64_t preset, uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data, void *token) { int ret; core_pcbe_config_t *conf; /* * If we've been handed an existing configuration, we need only preset * the counter value. */ if (*data != NULL) { conf = *data; ASSERT(conf->core_pictype == CORE_GPC || conf->core_pictype == CORE_FFC); if (conf->core_pictype == CORE_GPC) conf->core_rawpic = preset & mask_gpc; else /* CORE_FFC */ conf->core_rawpic = preset & mask_ffc; return (0); } if (picnum >= total_pmc) { return (CPC_INVALID_PICNUM); } if (picnum < num_gpc) { ret = configure_gpc(picnum, event, preset, flags, nattrs, attrs, data); } else { ret = configure_ffc(picnum, event, preset, flags, nattrs, data); } return (ret); } static void core_pcbe_program(void *token) { core_pcbe_config_t *cfg; uint64_t perf_global_ctrl; uint64_t perf_fixed_ctr_ctrl; uint64_t curcr4; core_pcbe_allstop(); curcr4 = getcr4(); if (kcpc_allow_nonpriv(token)) /* Allow RDPMC at any ring level */ setcr4(curcr4 | CR4_PCE); else /* Allow RDPMC only at ring 0 */ setcr4(curcr4 & ~CR4_PCE); /* Clear any overflow indicators before programming the counters */ WRMSR(PERF_GLOBAL_OVF_CTRL, MASK_CONDCHGD_OVFBUFFER | control_mask); cfg = NULL; perf_global_ctrl = 0; perf_fixed_ctr_ctrl = 0; cfg = (core_pcbe_config_t *)kcpc_next_config(token, cfg, NULL); while (cfg != NULL) { ASSERT(cfg->core_pictype == CORE_GPC || cfg->core_pictype == CORE_FFC); if (cfg->core_pictype == CORE_GPC) { /* * General-purpose counter registers have write * restrictions where only the lower 32-bits can be * written to. The rest of the relevant bits are * written to by extension from bit 31 (all ZEROS if * bit-31 is ZERO and all ONE if bit-31 is ONE). This * makes it possible to write to the counter register * only values that have all ONEs or all ZEROs in the * higher bits. */ if (((cfg->core_rawpic & BITS_EXTENDED_FROM_31) == 0) || ((cfg->core_rawpic & BITS_EXTENDED_FROM_31) == BITS_EXTENDED_FROM_31)) { /* * Straighforward case where the higher bits * are all ZEROs or all ONEs. */ WRMSR(cfg->core_pmc, (cfg->core_rawpic & mask_gpc)); } else { /* * The high order bits are not all the same. * We save what is currently in the registers * and do not write to it. When we want to do * a read from this register later (in * core_pcbe_sample()), we subtract the value * we save here to get the actual event count. * * NOTE: As a result, we will not get overflow * interrupts as expected. */ RDMSR(cfg->core_pmc, cfg->core_rawpic); cfg->core_rawpic = cfg->core_rawpic & mask_gpc; } WRMSR(cfg->core_pes, cfg->core_ctl); perf_global_ctrl |= 1ull << cfg->core_picno; } else { /* * Unlike the general-purpose counters, all relevant * bits of fixed-function counters can be written to. */ WRMSR(cfg->core_pmc, cfg->core_rawpic & mask_ffc); /* * Collect the control bits for all the * fixed-function counters and write it at one shot * later in this function */ perf_fixed_ctr_ctrl |= cfg->core_ctl << ((cfg->core_picno - num_gpc) * CORE_FFC_ATTR_SIZE); perf_global_ctrl |= 1ull << (cfg->core_picno - num_gpc + 32); } cfg = (core_pcbe_config_t *) kcpc_next_config(token, cfg, NULL); } /* Enable all the counters */ WRMSR(PERF_FIXED_CTR_CTRL, perf_fixed_ctr_ctrl); WRMSR(PERF_GLOBAL_CTRL, perf_global_ctrl); } static void core_pcbe_allstop(void) { /* Disable all the counters together */ WRMSR(PERF_GLOBAL_CTRL, ALL_STOPPED); setcr4(getcr4() & ~CR4_PCE); } static void core_pcbe_sample(void *token) { uint64_t *daddr; uint64_t curpic; core_pcbe_config_t *cfg; uint64_t counter_mask; cfg = (core_pcbe_config_t *)kcpc_next_config(token, NULL, &daddr); while (cfg != NULL) { ASSERT(cfg->core_pictype == CORE_GPC || cfg->core_pictype == CORE_FFC); curpic = rdmsr(cfg->core_pmc); DTRACE_PROBE4(core__pcbe__sample, uint64_t, cfg->core_pmc, uint64_t, curpic, uint64_t, cfg->core_rawpic, uint64_t, *daddr); if (cfg->core_pictype == CORE_GPC) { counter_mask = mask_gpc; } else { counter_mask = mask_ffc; } curpic = curpic & counter_mask; if (curpic >= cfg->core_rawpic) { *daddr += curpic - cfg->core_rawpic; } else { /* Counter overflowed since our last sample */ *daddr += counter_mask - (cfg->core_rawpic - curpic) + 1; } cfg->core_rawpic = *daddr & counter_mask; cfg = (core_pcbe_config_t *)kcpc_next_config(token, cfg, &daddr); } } static void core_pcbe_free(void *config) { kmem_free(config, sizeof (core_pcbe_config_t)); } static struct modlpcbe core_modlpcbe = { &mod_pcbeops, "Core Performance Counters", &core_pcbe_ops }; static struct modlinkage core_modl = { MODREV_1, &core_modlpcbe, }; int _init(void) { if (core_pcbe_init() != 0) { return (ENOTSUP); } return (mod_install(&core_modl)); } int _fini(void) { return (mod_remove(&core_modl)); } int _info(struct modinfo *mi) { return (mod_info(&core_modl, mi)); }