/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2012 Gary Mills * Copyright 2016 PALO, Richard. * * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. * * Copyright 2018 Joyent, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* XXX: need to add a PAE version too, if we ever support both PAE and non */ #define XPV_FILENAME "/boot/amd64/xen-syms" #define XPV_MODNAME "xpv" int xpv_panicking = 0; struct module *xpv_module; struct modctl *xpv_modctl; #define ALIGN(x, a) ((a) == 0 ? (uintptr_t)(x) : \ (((uintptr_t)(x) + (uintptr_t)(a) - 1l) & ~((uintptr_t)(a) - 1l))) /* Pointer to the xpv_panic_info structure handed to us by Xen. */ static struct panic_info *xpv_panic_info = NULL; /* Timer support */ #define NSEC_SHIFT 5 #define T_XPV_TIMER 0xd1 #define XPV_TIMER_INTERVAL 1000 /* 1000 microseconds */ static uint32_t *xpv_apicadr = NULL; static uint_t nsec_scale; /* IDT support */ #pragma align 16(xpv_panic_idt) static gate_desc_t xpv_panic_idt[NIDT]; /* interrupt descriptor table */ /* Xen pagetables mapped into our HAT's ptable windows */ static pfn_t ptable_pfn[MAX_NUM_LEVEL]; /* Number of MMU_PAGESIZE pages we're adding to the Solaris dump */ static int xpv_dump_pages; /* * There are up to two large swathes of RAM that we don't want to include * in the dump: those that comprise the Xen version of segkpm. On 32-bit * systems there is no such region of memory. On 64-bit systems, there * should be just a single contiguous region that corresponds to all of * physical memory. The tricky bit is that Xen's heap sometimes lives in * the middle of their segkpm, and is mapped using only kpm-like addresses. * In that case, we need to skip the swathes before and after Xen's heap. */ uintptr_t kpm1_low = 0; uintptr_t kpm1_high = 0; uintptr_t kpm2_low = 0; uintptr_t kpm2_high = 0; /* * Some commonly used values that we don't want to recompute over and over. */ static int xpv_panic_nptes[MAX_NUM_LEVEL]; static ulong_t xpv_panic_cr3; static uintptr_t xpv_end; static void xpv_panic_console_print(const char *fmt, ...); static void (*xpv_panic_printf)(const char *, ...) = xpv_panic_console_print; #define CONSOLE_BUF_SIZE 256 static char console_buffer[CONSOLE_BUF_SIZE]; static boolean_t use_polledio; /* * Pointers to machine check panic info (if any). */ xpv_mca_panic_data_t *xpv_mca_panic_data = NULL; static void xpv_panic_putc(int m) { struct cons_polledio *c = cons_polledio; /* This really shouldn't happen */ if (boot_console_type(NULL) == CONS_HYPERVISOR) return; if (use_polledio == B_TRUE) c->cons_polledio_putchar(c->cons_polledio_argument, m); else bcons_putchar(m); } static void xpv_panic_puts(char *msg) { char *m; dump_timeleft = dump_timeout; for (m = msg; *m; m++) xpv_panic_putc((int)*m); } static void xpv_panic_console_print(const char *fmt, ...) { va_list ap; va_start(ap, fmt); (void) vsnprintf(console_buffer, sizeof (console_buffer), fmt, ap); va_end(ap); xpv_panic_puts(console_buffer); } static void xpv_panic_map(int level, pfn_t pfn) { x86pte_t pte, *pteptr; /* * The provided pfn represents a level 'level' page table. Map it * into the 'level' slot in the list of page table windows. */ pteptr = (x86pte_t *)PWIN_PTE_VA(level); pte = pfn_to_pa(pfn) | PT_VALID; XPV_ALLOW_PAGETABLE_UPDATES(); if (mmu.pae_hat) *pteptr = pte; else *(x86pte32_t *)pteptr = pte; XPV_DISALLOW_PAGETABLE_UPDATES(); mmu_flush_tlb_page((uintptr_t)PWIN_VA(level)); } /* * Walk the page tables to find the pfn mapped by the given va. */ static pfn_t xpv_va_walk(uintptr_t *vaddr) { int l, idx; pfn_t pfn; x86pte_t pte; x86pte_t *ptep; uintptr_t va = *vaddr; uintptr_t scan_va; caddr_t ptable_window; static pfn_t toplevel_pfn; static uintptr_t lastva; pte = 0; /* * If we do anything other than a simple scan through memory, don't * trust the mapped page tables. */ if (va != lastva + MMU_PAGESIZE) for (l = mmu.max_level; l >= 0; l--) ptable_pfn[l] = PFN_INVALID; toplevel_pfn = mmu_btop(xpv_panic_cr3); while (va < xpv_end && va >= *vaddr) { /* Find the lowest table with any entry for va */ pfn = toplevel_pfn; for (l = mmu.max_level; l >= 0; l--) { if (ptable_pfn[l] != pfn) { xpv_panic_map(l, pfn); ptable_pfn[l] = pfn; } /* * Search this pagetable for any mapping to an * address >= va. */ ptable_window = PWIN_VA(l); if (l == mmu.max_level && mmu.pae_hat) ptable_window += (xpv_panic_cr3 & MMU_PAGEOFFSET); idx = (va >> LEVEL_SHIFT(l)) & (xpv_panic_nptes[l] - 1); scan_va = va; while (idx < xpv_panic_nptes[l] && scan_va < xpv_end && scan_va >= *vaddr) { ptep = (x86pte_t *)(ptable_window + (idx << mmu.pte_size_shift)); pte = GET_PTE(ptep); if (pte & PTE_VALID) break; idx++; scan_va += mmu.level_size[l]; } /* * If there are no valid mappings in this table, we * can skip to the end of the VA range it covers. */ if (idx == xpv_panic_nptes[l]) { va = NEXT_ENTRY_VA(va, l + 1); break; } va = scan_va; /* * See if we've hit the end of the range. */ if (va >= xpv_end || va < *vaddr) break; /* * If this mapping is for a pagetable, we drop down * to the next level in the hierarchy and look for * a mapping in it. */ pfn = PTE2MFN(pte, l); if (!PTE_ISPAGE(pte, l)) continue; /* * The APIC page is magic. Nothing to see here; * move along. */ if (((uintptr_t)xpv_apicadr & MMU_PAGEMASK) == (va & MMU_PAGEMASK)) { va += MMU_PAGESIZE; break; } /* * See if the address is within one of the two * kpm-like regions we want to skip. */ if (va >= kpm1_low && va < kpm1_high) { va = kpm1_high; break; } if (va >= kpm2_low && va < kpm2_high) { va = kpm2_high; break; } /* * The Xen panic code only handles small pages. If * this mapping is for a large page, we need to * identify the consituent page that covers the * specific VA we were looking for. */ if (l > 0) { if (l > 1) panic("Xen panic can't cope with " "giant pages."); idx = (va >> LEVEL_SHIFT(0)) & (xpv_panic_nptes[0] - 1); pfn += idx; } *vaddr = va; lastva = va; return (pfn | PFN_IS_FOREIGN_MFN); } } return (PFN_INVALID); } /* * Walk through the Xen VA space, finding pages that are mapped in. * * These pages all have MFNs rather than PFNs, meaning they may be outside * the physical address space the kernel knows about, or they may collide * with PFNs the kernel is using. * * The obvious trick of just adding the PFN_IS_FOREIGN_MFN bit to the MFNs * to avoid collisions doesn't work. The pages need to be written to disk * in PFN-order or savecore gets confused. We can't allocate memory to * contruct a sorted pfn->VA reverse mapping, so we have to write the pages * to disk in VA order. * * To square this circle, we simply make up PFNs for each of Xen's pages. * We assign each mapped page a fake PFN in ascending order. These fake * PFNs each have the FOREIGN bit set, ensuring that they fall outside the * range of Solaris PFNs written by the kernel. */ int dump_xpv_addr() { uintptr_t va; mem_vtop_t mem_vtop; xpv_dump_pages = 0; va = xen_virt_start; while (xpv_va_walk(&va) != PFN_INVALID) { mem_vtop.m_as = &kas; mem_vtop.m_va = (void *)va; mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN; dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); xpv_dump_pages++; va += MMU_PAGESIZE; } /* * Add the shared_info page. This page actually ends up in the * dump twice: once for the Xen va and once for the Solaris va. * This isn't ideal, but we don't know the address Xen is using for * the page, so we can't share it. */ mem_vtop.m_as = &kas; mem_vtop.m_va = HYPERVISOR_shared_info; mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN; dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); xpv_dump_pages++; return (xpv_dump_pages); } void dump_xpv_pfn() { pfn_t pfn; int cnt; for (cnt = 0; cnt < xpv_dump_pages; cnt++) { pfn = (pfn_t)cnt | PFN_IS_FOREIGN_MFN; dumpvp_write(&pfn, sizeof (pfn)); } } int dump_xpv_data(void *dump_cbuf) { uintptr_t va; uint32_t csize; int cnt = 0; /* * XXX: we should probably run this data through a UE check. The * catch is that the UE code relies on on_trap() and getpfnum() * working. */ va = xen_virt_start; while (xpv_va_walk(&va) != PFN_INVALID) { csize = (uint32_t)compress((void *)va, dump_cbuf, PAGESIZE); dumpvp_write(&csize, sizeof (uint32_t)); dumpvp_write(dump_cbuf, csize); if (dump_ioerr) { dumphdr->dump_flags &= ~DF_COMPLETE; return (cnt); } cnt++; va += MMU_PAGESIZE; } /* * Finally, dump the shared_info page */ csize = (uint32_t)compress((void *)HYPERVISOR_shared_info, dump_cbuf, PAGESIZE); dumpvp_write(&csize, sizeof (uint32_t)); dumpvp_write(dump_cbuf, csize); if (dump_ioerr) dumphdr->dump_flags &= ~DF_COMPLETE; cnt++; return (cnt); } static void * showstack(void *fpreg, int xpv_only) { struct frame *fpp; ulong_t off; char *sym; uintptr_t pc, fp, lastfp; uintptr_t minaddr = min(KERNELBASE, xen_virt_start); fp = (uintptr_t)fpreg; if (fp < minaddr) { xpv_panic_printf("Bad frame ptr: 0x%p\n", fpreg); return (fpreg); } do { fpp = (struct frame *)fp; pc = fpp->fr_savpc; if ((xpv_only != 0) && (fp > xpv_end || fp < xen_virt_start)) break; if ((sym = kobj_getsymname(pc, &off)) != NULL) xpv_panic_printf("%08lx %s:%s+%lx\n", fp, mod_containing_pc((caddr_t)pc), sym, off); else if ((pc >= xen_virt_start) && (pc <= xpv_end)) xpv_panic_printf("%08lx 0x%lx (in Xen)\n", fp, pc); else xpv_panic_printf("%08lx %lx\n", fp, pc); lastfp = fp; fp = fpp->fr_savfp; /* * Xen marks an exception frame by inverting the frame * pointer. */ if (fp < lastfp) { if ((~fp > minaddr) && ((~fp) ^ lastfp) < 0xfff) fp = ~fp; } } while (fp > lastfp); return ((void *)fp); } void * xpv_traceback(void *fpreg) { return (showstack(fpreg, 1)); } static void xpv_panic_hypercall(ulong_t call) { panic("Illegally issued hypercall %d during panic!\n", (int)call); } void xpv_die(struct regs *rp) { struct panic_trap_info ti; struct cregs creg; ti.trap_regs = rp; ti.trap_type = rp->r_trapno; curthread->t_panic_trap = &ti; if (ti.trap_type == T_PGFLT) { getcregs(&creg); ti.trap_addr = (caddr_t)creg.cr_cr2; panic("Fatal pagefault at 0x%lx. fault addr=0x%p rp=0x%p", rp->r_pc, (void *)ti.trap_addr, (void *)rp); } else { ti.trap_addr = (caddr_t)rp->r_pc; panic("Fatal trap %ld at 0x%lx. rp=0x%p", rp->r_trapno, rp->r_pc, (void *)rp); } } /* * Build IDT to handle a Xen panic */ static void switch_to_xpv_panic_idt() { int i; desctbr_t idtr; gate_desc_t *idt = xpv_panic_idt; selector_t cs = get_cs_register(); for (i = 0; i < 32; i++) set_gatesegd(&idt[i], &xpv_invaltrap, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_ZERODIV], &xpv_div0trap, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_SGLSTP], &xpv_dbgtrap, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_NMIFLT], &xpv_nmiint, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_BOUNDFLT], &xpv_boundstrap, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_ILLINST], &xpv_invoptrap, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_NOEXTFLT], &xpv_ndptrap, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_TSSFLT], &xpv_invtsstrap, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_SEGFLT], &xpv_segnptrap, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_STKFLT], &xpv_stktrap, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_GPFLT], &xpv_gptrap, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_PGFLT], &xpv_pftrap, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_EXTERRFLT], &xpv_ndperr, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_ALIGNMENT], &xpv_achktrap, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_MCE], &xpv_mcetrap, cs, SDT_SYSIGT, TRP_XPL, 0); set_gatesegd(&idt[T_SIMDFPE], &xpv_xmtrap, cs, SDT_SYSIGT, TRP_XPL, 0); /* * We have no double fault handler. Any single fault represents a * catastrophic failure for us, so there is no attempt to handle * them cleanly: we just print a message and reboot. If we * encounter a second fault while doing that, there is nothing * else we can do. */ /* * Be prepared to absorb any stray device interrupts received * while writing the core to disk. */ for (i = 33; i < NIDT; i++) set_gatesegd(&idt[i], &xpv_surprise_intr, cs, SDT_SYSIGT, TRP_XPL, 0); /* The one interrupt we expect to get is from the APIC timer. */ set_gatesegd(&idt[T_XPV_TIMER], &xpv_timer_trap, cs, SDT_SYSIGT, TRP_XPL, 0); idtr.dtr_base = (uintptr_t)xpv_panic_idt; idtr.dtr_limit = sizeof (xpv_panic_idt) - 1; wr_idtr(&idtr); /* Catch any hypercalls. */ wrmsr(MSR_AMD_LSTAR, (uintptr_t)xpv_panic_hypercall); wrmsr(MSR_AMD_CSTAR, (uintptr_t)xpv_panic_hypercall); } static void xpv_apic_clkinit() { uint_t apic_ticks = 0; /* * Measure how many APIC ticks there are within a fixed time * period. We're going to be fairly coarse here. This timer is * just being used to detect a stalled panic, so as long as we have * the right order of magnitude, everything should be fine. */ xpv_apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR; xpv_apicadr[APIC_LOCAL_TIMER] = AV_MASK; xpv_apicadr[APIC_INT_VECT0] = AV_MASK; /* local intr reg 0 */ xpv_apicadr[APIC_DIVIDE_REG] = 0; xpv_apicadr[APIC_INIT_COUNT] = APIC_MAXVAL; drv_usecwait(XPV_TIMER_INTERVAL); apic_ticks = APIC_MAXVAL - xpv_apicadr[APIC_CURR_COUNT]; /* * apic_ticks now represents roughly how many apic ticks comprise * one timeout interval. Program the timer to send us an interrupt * every time that interval expires. */ xpv_apicadr[APIC_LOCAL_TIMER] = T_XPV_TIMER | AV_PERIODIC; xpv_apicadr[APIC_INIT_COUNT] = apic_ticks; xpv_apicadr[APIC_EOI_REG] = 0; } void xpv_timer_tick(void) { static int ticks = 0; if (ticks++ >= MICROSEC / XPV_TIMER_INTERVAL) { ticks = 0; if (dump_timeleft && (--dump_timeleft == 0)) panic("Xen panic timeout\n"); } xpv_apicadr[APIC_EOI_REG] = 0; } void xpv_interrupt(void) { #ifdef DEBUG static int cnt = 0; if (cnt++ < 10) xpv_panic_printf("Unexpected interrupt received.\n"); if ((cnt < 1000) && ((cnt % 100) == 0)) xpv_panic_printf("%d unexpected interrupts received.\n", cnt); #endif xpv_apicadr[APIC_EOI_REG] = 0; } /* * Managing time in panic context is trivial. We only have a single CPU, * we never get rescheduled, we never get suspended. We just need to * convert clock ticks into nanoseconds. */ static hrtime_t xpv_panic_gethrtime(void) { hrtime_t tsc, hrt; unsigned int *l = (unsigned int *)&(tsc); tsc = __rdtsc_insn(); hrt = (mul32(l[1], nsec_scale) << NSEC_SHIFT) + (mul32(l[0], nsec_scale) >> (32 - NSEC_SHIFT)); return (hrt); } static void xpv_panic_time_init() { nsec_scale = CPU->cpu_m.mcpu_vcpu_info->time.tsc_to_system_mul >> NSEC_SHIFT; gethrtimef = xpv_panic_gethrtime; } static void xpv_panicsys(struct regs *rp, char *fmt, ...) { extern void panicsys(const char *, va_list, struct regs *, int); va_list alist; va_start(alist, fmt); panicsys(fmt, alist, rp, 1); va_end(alist); } void xpv_do_panic(void *arg) { struct panic_info *pip = (struct panic_info *)arg; int l; struct cregs creg; extern uintptr_t postbootkernelbase; if (xpv_panicking++ > 0) panic("multiple calls to xpv_do_panic()"); /* * Indicate to the underlying panic framework that a panic has been * initiated. This is ordinarily done as part of vpanic(). Since * we already have all the register state saved by the hypervisor, * we skip that and jump straight into the panic processing code. * * XXX If another thread grabs and wins the panic_quiesce trigger * then we'll have two threads in panicsys believing they are in * charge of the panic attempt! */ (void) panic_trigger(&panic_quiesce); /* * bzero() and bcopy() get unhappy when asked to operate on * addresses outside of the kernel. At this point Xen is really a * part of the kernel, so we update the routines' notion of where * the kernel starts. */ postbootkernelbase = xen_virt_start; #if defined(HYPERVISOR_VIRT_END) xpv_end = HYPERVISOR_VIRT_END; #else xpv_end = (uintptr_t)UINTPTR_MAX - sizeof (uintptr_t); #endif /* * If we were redirecting console output to the hypervisor, we have * to stop. */ use_polledio = B_FALSE; if (boot_console_type(NULL) == CONS_HYPERVISOR) { bcons_device_change(CONS_HYPERVISOR); } else if (cons_polledio != NULL && cons_polledio->cons_polledio_putchar != NULL) { if (cons_polledio->cons_polledio_enter != NULL) cons_polledio->cons_polledio_enter( cons_polledio->cons_polledio_argument); use_polledio = 1; } /* Make sure we handle all console output from here on. */ sysp->bsvc_putchar = xpv_panic_putc; /* * If we find an unsupported panic_info structure, there's not much * we can do other than complain, plow on, and hope for the best. */ if (pip->pi_version != PANIC_INFO_VERSION) xpv_panic_printf("Warning: Xen is using an unsupported " "version of the panic_info structure.\n"); xpv_panic_info = pip; kpm1_low = (uintptr_t)xpv_panic_info->pi_ram_start; if (xpv_panic_info->pi_xen_start == NULL) { kpm1_high = (uintptr_t)xpv_panic_info->pi_ram_end; } else { kpm1_high = (uintptr_t)xpv_panic_info->pi_xen_start; kpm2_low = (uintptr_t)xpv_panic_info->pi_xen_end; kpm2_high = (uintptr_t)xpv_panic_info->pi_ram_end; } /* * Make sure we are running on the Solaris %gs. The Xen panic code * should already have set up the GDT properly. */ xpv_panic_resetgs(); wrmsr(MSR_AMD_GSBASE, (uint64_t)&cpus[0]); xpv_panic_time_init(); /* * Switch to our own IDT, avoiding any accidental returns to Xen * world. */ switch_to_xpv_panic_idt(); /* * Initialize the APIC timer, which is used to detect a hung dump * attempt. */ xpv_apicadr = pip->pi_apic; xpv_apic_clkinit(); /* * Set up a few values that we'll need repeatedly. */ getcregs(&creg); xpv_panic_cr3 = creg.cr_cr3; for (l = mmu.max_level; l >= 0; l--) xpv_panic_nptes[l] = mmu.ptes_per_table; /* Add the fake Xen module to the module list */ if (xpv_module != NULL) { extern int last_module_id; xpv_modctl->mod_id = last_module_id++; xpv_modctl->mod_next = &modules; xpv_modctl->mod_prev = modules.mod_prev; modules.mod_prev->mod_next = xpv_modctl; modules.mod_prev = xpv_modctl; } if (pip->pi_mca.mpd_magic == MCA_PANICDATA_MAGIC) xpv_mca_panic_data = &pip->pi_mca; xpv_panic_printf = printf; xpv_panicsys((struct regs *)pip->pi_regs, pip->pi_panicstr); xpv_panic_printf("Failed to reboot following panic.\n"); for (;;) ; } /* * Set up the necessary data structures to pretend that the Xen hypervisor * is a loadable module, allowing mdb to find the Xen symbols in a crash * dump. Since these symbols all map to VA space Solaris doesn't normally * have access to, we don't link these structures into the kernel's lists * until/unless we hit a Xen panic. * * The observant reader will note a striking amount of overlap between this * code and that found in krtld. While it would be handy if we could just * ask krtld to do this work for us, it's not that simple. Among the * complications: we're not actually loading the text here (grub did it at * boot), the .text section is writable, there are no relocations to do, * none of the module text/data is in readable memory, etc. Training krtld * to deal with this weird module is as complicated, and more risky, than * reimplementing the necessary subset of it here. */ static void init_xen_module() { struct _buf *file = NULL; struct module *mp; struct modctl *mcp; int i, shn; Shdr *shp, *ctf_shp; char *names = NULL; size_t n, namesize, text_align, data_align; const char machine = EM_AMD64; /* Allocate and init the module structure */ mp = kmem_zalloc(sizeof (*mp), KM_SLEEP); mp->filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP); (void) strcpy(mp->filename, XPV_FILENAME); /* Allocate and init the modctl structure */ mcp = kmem_zalloc(sizeof (*mcp), KM_SLEEP); mcp->mod_modname = kobj_zalloc(strlen(XPV_MODNAME) + 1, KM_SLEEP); (void) strcpy(mcp->mod_modname, XPV_MODNAME); mcp->mod_filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP); (void) strcpy(mcp->mod_filename, XPV_FILENAME); mcp->mod_inprogress_thread = (kthread_id_t)-1; mcp->mod_ref = 1; mcp->mod_loaded = 1; mcp->mod_loadcnt = 1; mcp->mod_mp = mp; /* * Try to open a Xen image that hasn't had its symbol and CTF * information stripped off. */ file = kobj_open_file(XPV_FILENAME); if (file == (struct _buf *)-1) { file = NULL; goto err; } /* * Read the header and ensure that this is an ELF file for the * proper ISA. If it's not, somebody has done something very * stupid. Why bother? See Mencken. */ if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) goto err; for (i = 0; i < SELFMAG; i++) if (mp->hdr.e_ident[i] != ELFMAG[i]) goto err; if ((mp->hdr.e_ident[EI_DATA] != ELFDATA2LSB) || (mp->hdr.e_machine != machine)) goto err; /* Read in the section headers */ n = mp->hdr.e_shentsize * mp->hdr.e_shnum; mp->shdrs = kmem_zalloc(n, KM_SLEEP); if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) goto err; /* Read the section names */ shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); namesize = shp->sh_size; names = kmem_zalloc(shp->sh_size, KM_SLEEP); if (kobj_read_file(file, names, shp->sh_size, shp->sh_offset) < 0) goto err; /* * Fill in the text and data size fields. */ ctf_shp = NULL; text_align = data_align = 0; for (shn = 1; shn < mp->hdr.e_shnum; shn++) { shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); /* Sanity check the offset of the section name */ if (shp->sh_name >= namesize) continue; /* If we find the symtab section, remember it for later. */ if (shp->sh_type == SHT_SYMTAB) { mp->symtbl_section = shn; mp->symhdr = shp; continue; } /* If we find the CTF section, remember it for later. */ if ((shp->sh_size != 0) && (strcmp(names + shp->sh_name, ".SUNW_ctf") == 0)) { ctf_shp = shp; continue; } if (!(shp->sh_flags & SHF_ALLOC)) continue; /* * Xen marks its text section as writable, so we need to * look for the name - not just the flag. */ if ((strcmp(&names[shp->sh_name], ".text") != 0) && (shp->sh_flags & SHF_WRITE) != 0) { if (shp->sh_addralign > data_align) data_align = shp->sh_addralign; mp->data_size = ALIGN(mp->data_size, data_align); mp->data_size += ALIGN(shp->sh_size, 8); if (mp->data == NULL || mp->data > (char *)shp->sh_addr) mp->data = (char *)shp->sh_addr; } else { if (shp->sh_addralign > text_align) text_align = shp->sh_addralign; mp->text_size = ALIGN(mp->text_size, text_align); mp->text_size += ALIGN(shp->sh_size, 8); if (mp->text == NULL || mp->text > (char *)shp->sh_addr) mp->text = (char *)shp->sh_addr; } } kmem_free(names, namesize); names = NULL; shp = NULL; mcp->mod_text = mp->text; mcp->mod_text_size = mp->text_size; /* * If we have symbol table and string table sections, read them in * now. If we don't, we just plow on. We'll still get a valid * core dump, but finding anything useful will be just a bit * harder. * * Note: we don't bother with a hash table. We'll never do a * symbol lookup unless we crash, and then mdb creates its own. We * also don't try to perform any relocations. Xen should be loaded * exactly where the ELF file indicates, and the symbol information * in the file should be complete and correct already. Static * linking ain't all bad. */ if ((mp->symhdr != NULL) && (mp->symhdr->sh_link < mp->hdr.e_shnum)) { mp->strhdr = (Shdr *) (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; /* Allocate space for the symbol table and strings. */ mp->symsize = mp->symhdr->sh_size + mp->nsyms * sizeof (symid_t) + mp->strhdr->sh_size; mp->symspace = kmem_zalloc(mp->symsize, KM_SLEEP); mp->symtbl = mp->symspace; mp->strings = (char *)(mp->symtbl + mp->symhdr->sh_size); if ((kobj_read_file(file, mp->symtbl, mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0) || (kobj_read_file(file, mp->strings, mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)) goto err; } /* * Read in the CTF section */ if ((ctf_shp != NULL) && ((moddebug & MODDEBUG_NOCTF) == 0)) { mp->ctfdata = kmem_zalloc(ctf_shp->sh_size, KM_SLEEP); mp->ctfsize = ctf_shp->sh_size; if (kobj_read_file(file, mp->ctfdata, mp->ctfsize, ctf_shp->sh_offset) < 0) goto err; } kobj_close_file(file); xpv_module = mp; xpv_modctl = mcp; return; err: cmn_err(CE_WARN, "Failed to initialize xpv module."); if (file != NULL) kobj_close_file(file); kmem_free(mp->filename, strlen(XPV_FILENAME) + 1); if (mp->shdrs != NULL) kmem_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum); if (mp->symspace != NULL) kmem_free(mp->symspace, mp->symsize); if (mp->ctfdata != NULL) kmem_free(mp->ctfdata, mp->ctfsize); kmem_free(mp, sizeof (*mp)); kmem_free(mcp->mod_filename, strlen(XPV_FILENAME) + 1); kmem_free(mcp->mod_modname, strlen(XPV_MODNAME) + 1); kmem_free(mcp, sizeof (*mcp)); if (names != NULL) kmem_free(names, namesize); } void xpv_panic_init() { xen_platform_op_t op; int i; ASSERT(DOMAIN_IS_INITDOMAIN(xen_info)); for (i = 0; i < mmu.num_level; i++) ptable_pfn[i] = PFN_INVALID; /* Let Xen know where to jump if/when it panics. */ op.cmd = XENPF_panic_init; op.interface_version = XENPF_INTERFACE_VERSION; op.u.panic_init.panic_addr = (unsigned long)xpv_panic_hdlr; (void) HYPERVISOR_platform_op(&op); init_xen_module(); }