/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * PMEM - Direct mapping physical memory pages to userland process * * Provide functions used for directly (w/o occupying kernel virtual address * space) allocating and exporting physical memory pages to userland. */ #include #include #include #include #include #include #include #include #include #include #include /* * The routines in this file allocate memory which will be accessed through * the AGP GART hardware. The GART is programmed with the PFNs for this * memory, and the only mechanism for removing these entries is by an * explicit process operation (ioctl/close of the driver, or process exit). * As such, the pages need to remain locked to ensure that they won't be * relocated or paged out. * * To prevent these locked pages from getting in the way of page * coalescing, we try to allocate large pages from the system, and carve * them up to satisfy pmem allocation requests. This will keep the locked * pages within a constrained area of physical memory, limiting the number * of large pages that would be pinned by our locked pages. This is, of * course, another take on the infamous kernel cage, and it has many of the * downsides of the original cage. It also interferes with system-wide * resource management decisions, as it maintains its own pool of unused * pages which can't be easily reclaimed and used during low-memory * situations. * * The right solution is for pmem to register a callback that the VM system * could call, which would temporarily remove any GART entries for pages * that were being relocated. This would let us leave the pages unlocked, * which would remove the need for using large pages, which would simplify * this code a great deal. Unfortunately, the support for these callbacks * only exists on some SPARC platforms right now. * * Note that this is the *only* reason that large pages are used here. The * GART can't perform large-page translations, and the code appropriately * falls back to using small pages if page_create_va_large() fails. */ #define HOLD_DHP_LOCK(dhp) if (dhp->dh_flags & DEVMAP_ALLOW_REMAP) \ { mutex_enter(&dhp->dh_lock); } #define RELE_DHP_LOCK(dhp) if (dhp->dh_flags & DEVMAP_ALLOW_REMAP) \ { mutex_exit(&dhp->dh_lock); } #define FROM_LPG(pp) (pp->p_szc != 0) #define PFIND(pp) (page_pptonum(pp) & (pmem_pgcnt - 1)) /* * Structs and static variables used for pmem only. */ typedef struct pmem_lpg { page_t *pl_pp; /* start pp */ ulong_t *pl_bitmap; /* allocation status for each page */ ushort_t pl_pfree; /* this large page might be fully freed */ struct pmem_lpg *pl_next; struct pmem_lpg *pl_prev; } pmem_lpg_t; static size_t pmem_lpgsize; /* the size of one large page */ static pgcnt_t pmem_pgcnt; /* the number of small pages in a large page */ static uint_t pmem_lszc; /* page size code of the large page */ /* The segment to be associated with all the allocated pages. */ static struct seg pmem_seg; /* Fully occupied large pages allocated for pmem. */ static pmem_lpg_t *pmem_occ_lpgs; /* Memory pool to store residual small pages from large pages. */ static page_t *pmem_mpool = NULL; /* Number of small pages reside in pmem_mpool currently. */ static pgcnt_t pmem_nmpages = 0; /* To protect pmem_nmpages, pmem_mpool and pmem_occ_lpgs. */ kmutex_t pmem_mutex; static int lpg_isfree(pmem_lpg_t *); static void pmem_lpg_sub(pmem_lpg_t **, pmem_lpg_t *); static void pmem_lpg_concat(pmem_lpg_t **, pmem_lpg_t **); static pmem_lpg_t *pmem_lpg_get(pmem_lpg_t *, page_t *, pmem_lpg_t **); static pmem_lpg_t *pmem_lpg_alloc(uint_t); static void pmem_lpg_free(pmem_lpg_t **, pmem_lpg_t *); static void lpg_free(page_t *spp); static pgcnt_t mpool_break(page_t **, pgcnt_t); static void mpool_append(page_t **, pgcnt_t); static void lpp_break(page_t **, pgcnt_t, pgcnt_t, pmem_lpg_t *); static void lpp_free(page_t *, pgcnt_t, pmem_lpg_t **); static int lpp_create(page_t **, pgcnt_t, pgcnt_t *, pmem_lpg_t **, vnode_t *, u_offset_t *, uint_t); static void tlist_in(page_t *, pgcnt_t, vnode_t *, u_offset_t *); static void tlist_out(page_t *, pgcnt_t); static int pmem_cookie_alloc(struct devmap_pmem_cookie **, pgcnt_t, uint_t); static int pmem_lock(pgcnt_t, proc_t *p); /* * Called by driver devmap routine to pass physical memory mapping info to * seg_dev framework, used only for physical memory allocated from * devmap_pmem_alloc(). */ /* ARGSUSED */ int devmap_pmem_setup(devmap_cookie_t dhc, dev_info_t *dip, struct devmap_callback_ctl *callbackops, devmap_pmem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot, uint_t flags, ddi_device_acc_attr_t *accattrp) { devmap_handle_t *dhp = (devmap_handle_t *)dhc; struct devmap_pmem_cookie *pcp = (struct devmap_pmem_cookie *)cookie; uint_t cache_attr = IOMEM_CACHE_ATTR(flags); if (pcp == NULL || (off + len) > ptob(pcp->dp_npages)) return (DDI_FAILURE); /* * First to check if this function has been called for this dhp. */ if (dhp->dh_flags & DEVMAP_SETUP_DONE) return (DDI_FAILURE); if ((dhp->dh_prot & dhp->dh_orig_maxprot & maxprot) != dhp->dh_prot) return (DDI_FAILURE); /* * Check if the cache attributes are supported. Need to pay * attention that only uncachable or write-combining is * permitted for pmem. */ if (i_ddi_check_cache_attr(flags) == B_FALSE || (cache_attr & (IOMEM_DATA_UNCACHED|IOMEM_DATA_UC_WR_COMBINE)) == 0) return (DDI_FAILURE); if (flags & DEVMAP_MAPPING_INVALID) { /* * If DEVMAP_MAPPING_INVALID is specified, we have to grant * remap permission. */ if (!(flags & DEVMAP_ALLOW_REMAP)) return (DDI_FAILURE); } else { dhp->dh_pcookie = (devmap_pmem_cookie_t)pcp; /* dh_roff is the offset inside the dh_pcookie. */ dhp->dh_roff = ptob(btop(off)); /* Set the cache attributes correctly */ i_ddi_cacheattr_to_hatacc(cache_attr, &dhp->dh_hat_attr); } dhp->dh_cookie = DEVMAP_PMEM_COOKIE; dhp->dh_flags |= (flags & DEVMAP_SETUP_FLAGS); dhp->dh_len = ptob(btopr(len)); dhp->dh_maxprot = maxprot & dhp->dh_orig_maxprot; ASSERT((dhp->dh_prot & dhp->dh_orig_maxprot & maxprot) == dhp->dh_prot); if (callbackops != NULL) { bcopy(callbackops, &dhp->dh_callbackops, sizeof (struct devmap_callback_ctl)); } /* * Initialize dh_lock if we want to do remap. */ if (dhp->dh_flags & DEVMAP_ALLOW_REMAP) { mutex_init(&dhp->dh_lock, NULL, MUTEX_DEFAULT, NULL); dhp->dh_flags |= DEVMAP_LOCK_INITED; } dhp->dh_flags |= DEVMAP_SETUP_DONE; return (DDI_SUCCESS); } /* * Replace existing mapping using a new cookie, mainly gets called when doing * fork(). Should be called in associated devmap_dup(9E). */ /* ARGSUSED */ int devmap_pmem_remap(devmap_cookie_t dhc, dev_info_t *dip, devmap_pmem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot, uint_t flags, ddi_device_acc_attr_t *accattrp) { devmap_handle_t *dhp = (devmap_handle_t *)dhc; struct devmap_pmem_cookie *pcp = (struct devmap_pmem_cookie *)cookie; uint_t cache_attr = IOMEM_CACHE_ATTR(flags); /* * Reture failure if setup has not been done or no remap permission * has been granted during the setup. */ if ((dhp->dh_flags & DEVMAP_SETUP_DONE) == 0 || (dhp->dh_flags & DEVMAP_ALLOW_REMAP) == 0) return (DDI_FAILURE); /* No flags supported for remap yet. */ if (flags != 0) return (DDI_FAILURE); if ((dhp->dh_prot & dhp->dh_orig_maxprot & maxprot) != dhp->dh_prot) return (DDI_FAILURE); if (pcp == NULL || (off + len) > ptob(pcp->dp_npages)) return (DDI_FAILURE); /* * Check if the cache attributes are supported. Need to pay * attention that only uncachable or write-combining is * permitted for pmem. */ if (i_ddi_check_cache_attr(flags) == B_FALSE || (cache_attr & (IOMEM_DATA_UNCACHED|IOMEM_DATA_UC_WR_COMBINE)) == 0) return (DDI_FAILURE); HOLD_DHP_LOCK(dhp); /* * Unload the old mapping of pages reloated with this dhp, so next * fault will setup the new mappings. It is in segdev_faultpage that * calls hat_devload to establish the mapping. Do this while holding * the dhp lock so other faults dont reestablish the mappings. */ hat_unload(dhp->dh_seg->s_as->a_hat, dhp->dh_uvaddr, dhp->dh_len, HAT_UNLOAD|HAT_UNLOAD_OTHER); /* Set the cache attributes correctly */ i_ddi_cacheattr_to_hatacc(cache_attr, &dhp->dh_hat_attr); dhp->dh_pcookie = cookie; dhp->dh_roff = ptob(btop(off)); dhp->dh_len = ptob(btopr(len)); /* Clear the large page size flag. */ dhp->dh_flags &= ~DEVMAP_FLAG_LARGE; dhp->dh_maxprot = maxprot & dhp->dh_orig_maxprot; ASSERT((dhp->dh_prot & dhp->dh_orig_maxprot & maxprot) == dhp->dh_prot); RELE_DHP_LOCK(dhp); return (DDI_SUCCESS); } /* * Directly (i.e., without occupying kernel virtual address space) allocate * 'npages' physical memory pages for exporting to user land. The allocated * page_t pointer will be recorded in cookie. */ int devmap_pmem_alloc(size_t size, uint_t flags, devmap_pmem_cookie_t *cookiep) { u_offset_t pmem_off = 0; page_t *pp = NULL; page_t *lpp = NULL; page_t *tlist = NULL; pgcnt_t i = 0; pgcnt_t rpages = 0; pgcnt_t lpages = 0; pgcnt_t tpages = 0; pgcnt_t npages = btopr(size); pmem_lpg_t *plp = NULL; struct devmap_pmem_cookie *pcp; uint_t reserved = 0; uint_t locked = 0; uint_t pflags, kflags; *cookiep = NULL; /* * Number larger than this will cause page_create_va() to loop * infinitely. */ if (npages == 0 || npages >= total_pages / 2) return (DDI_FAILURE); if ((flags & (PMEM_SLEEP | PMEM_NOSLEEP)) == 0) return (DDI_FAILURE); pflags = flags & PMEM_NOSLEEP ? PG_EXCL : PG_WAIT; kflags = flags & PMEM_NOSLEEP ? KM_NOSLEEP : KM_SLEEP; /* Allocate pmem cookie. */ if (pmem_cookie_alloc(&pcp, npages, kflags) == DDI_FAILURE) return (DDI_FAILURE); pcp->dp_npages = npages; /* * See if the requested memory can be locked. */ pcp->dp_proc = curproc; if (pmem_lock(npages, curproc) == DDI_FAILURE) goto alloc_fail; locked = 1; /* * First, grab as many as possible from pmem_mpool. If pages in * pmem_mpool are enough for this request, we are done. */ mutex_enter(&pmem_mutex); tpages = mpool_break(&tlist, npages); /* IOlock and hashin them into the new offset. */ if (tpages) tlist_in(tlist, tpages, pcp->dp_vnp, &pmem_off); mutex_exit(&pmem_mutex); if (tpages == npages) goto done; rpages = npages - tpages; /* Quit now if memory cannot be reserved. */ if (!page_resv(rpages, kflags)) goto alloc_fail; reserved = 1; /* If we have large pages */ if (pmem_lpgsize > PAGESIZE) { /* Try to alloc large pages first to decrease fragmentation. */ i = (rpages + (pmem_pgcnt - 1)) / pmem_pgcnt; if (lpp_create(&lpp, i, &lpages, &plp, pcp->dp_vnp, &pmem_off, kflags) == DDI_FAILURE) goto alloc_fail; ASSERT(lpages == 0 ? lpp == NULL : 1); } /* * Pages in large pages is more than the request, put the residual * pages into pmem_mpool. */ if (lpages >= rpages) { lpp_break(&lpp, lpages, lpages - rpages, plp); goto done; } /* Allocate small pages if lpp+tlist cannot satisfy the request. */ i = rpages - lpages; if ((pp = page_create_va(pcp->dp_vnp, pmem_off, ptob(i), pflags, &pmem_seg, (caddr_t)(uintptr_t)pmem_off)) == NULL) goto alloc_fail; done: page_list_concat(&tlist, &lpp); page_list_concat(&tlist, &pp); /* Set those small pages from large pages as allocated. */ mutex_enter(&pmem_mutex); pmem_lpg_concat(&pmem_occ_lpgs, &plp); mutex_exit(&pmem_mutex); /* * Now tlist holds all the pages for this cookie. Record these pages in * pmem cookie. */ for (pp = tlist, i = 0; i < npages; i++) { pcp->dp_pparray[i] = pp; page_io_unlock(pp); pp = pp->p_next; page_sub(&tlist, pp->p_prev); } ASSERT(tlist == NULL); *cookiep = (devmap_pmem_cookie_t)pcp; return (DDI_SUCCESS); alloc_fail: DTRACE_PROBE(pmem__alloc__fail); /* Free large pages and the associated allocation records. */ if (lpp) lpp_free(lpp, lpages / pmem_pgcnt, &plp); if (reserved == 1) page_unresv(rpages); /* Put those pages in tlist back into pmem_mpool. */ if (tpages != 0) { mutex_enter(&pmem_mutex); /* IOunlock, hashout and update the allocation records. */ tlist_out(tlist, tpages); mpool_append(&tlist, tpages); mutex_exit(&pmem_mutex); } if (locked == 1) i_ddi_decr_locked_memory(pcp->dp_proc, ptob(pcp->dp_npages)); /* Freeing pmem_cookie. */ kmem_free(pcp->dp_vnp, sizeof (vnode_t)); kmem_free(pcp->dp_pparray, npages * sizeof (page_t *)); kmem_free(pcp, sizeof (struct devmap_pmem_cookie)); return (DDI_FAILURE); } /* * Free all small pages inside cookie, and return pages from large pages into * mpool, if all the pages from one large page is in mpool, free it as a whole. */ void devmap_pmem_free(devmap_pmem_cookie_t cookie) { struct devmap_pmem_cookie *pcp = (struct devmap_pmem_cookie *)cookie; pgcnt_t i; pgcnt_t tpages = 0; page_t *pp; pmem_lpg_t *pl1, *plp; pmem_lpg_t *pf_lpgs = NULL; uint_t npls = 0; pmem_lpg_t *last_pl = NULL; pmem_lpg_t *plast_pl = NULL; ASSERT(pcp); mutex_enter(&pmem_mutex); /* Free small pages and return them to memory pool. */ for (i = pcp->dp_npages; i > 0; i--) { pp = pcp->dp_pparray[i - 1]; page_hashout(pp, NULL); /* * Remove the mapping of this single page, this mapping is * created using hat_devload() in segdev_faultpage(). */ (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); if (!FROM_LPG(pp)) { /* Normal small page. */ page_free(pp, 1); page_unresv(1); } else { /* Small page from large pages. */ plp = pmem_lpg_get(pmem_occ_lpgs, pp, &last_pl); if (plp && !(plp->pl_pfree)) { /* * Move this record to pf_lpgs list, this large * page may be able to be freed as a whole. */ pmem_lpg_sub(&pmem_occ_lpgs, plp); pmem_lpg_concat(&pf_lpgs, &plp); plp->pl_pfree = 1; npls++; last_pl = NULL; } else { /* Search in pf_lpgs list. */ plp = pmem_lpg_get(pf_lpgs, pp, &plast_pl); } ASSERT(plp); /* Mark this page as free. */ BT_SET(plp->pl_bitmap, PFIND(pp)); /* Record this page in pmem_mpool. */ mpool_append(&pp, 1); } } /* * Find out the large pages whose pages have been freed, remove them * from plp list, free them and the associated pmem_lpg struct. */ for (plp = pf_lpgs; npls != 0; npls--) { pl1 = plp; plp = plp->pl_next; if (lpg_isfree(pl1)) { /* * Get one free large page. Find all pages in this * large page and remove them from pmem_mpool. */ lpg_free(pl1->pl_pp); /* Remove associated allocation records. */ pmem_lpg_sub(&pf_lpgs, pl1); pmem_lpg_free(&pf_lpgs, pl1); tpages -= pmem_pgcnt; } else pl1->pl_pfree = 0; } /* Update allocation records accordingly. */ pmem_lpg_concat(&pmem_occ_lpgs, &pf_lpgs); mutex_exit(&pmem_mutex); if (curproc == pcp->dp_proc) i_ddi_decr_locked_memory(curproc, ptob(pcp->dp_npages)); kmem_free(pcp->dp_vnp, sizeof (vnode_t)); kmem_free(pcp->dp_pparray, pcp->dp_npages * sizeof (page_t *)); kmem_free(pcp, sizeof (struct devmap_pmem_cookie)); } /* * To extract page frame number from specified range in a cookie. */ int devmap_pmem_getpfns(devmap_pmem_cookie_t cookie, uint_t start, pgcnt_t npages, pfn_t *pfnarray) { struct devmap_pmem_cookie *pcp = (struct devmap_pmem_cookie *)cookie; pgcnt_t i; if (pcp == NULL || start + npages > pcp->dp_npages) return (DDI_FAILURE); for (i = start; i < start + npages; i++) pfnarray[i - start] = pfn_to_mfn(pcp->dp_pparray[i]->p_pagenum); return (DDI_SUCCESS); } void pmem_init() { mutex_init(&pmem_mutex, NULL, MUTEX_DEFAULT, NULL); pmem_lszc = MIN(1, page_num_pagesizes() - 1); pmem_lpgsize = page_get_pagesize(pmem_lszc); pmem_pgcnt = pmem_lpgsize >> PAGESHIFT; bzero(&pmem_seg, sizeof (struct seg)); pmem_seg.s_as = &kas; } /* Allocate kernel memory for one pmem cookie with n pages. */ static int pmem_cookie_alloc(struct devmap_pmem_cookie **pcpp, pgcnt_t n, uint_t kflags) { struct devmap_pmem_cookie *pcp; if ((*pcpp = kmem_zalloc(sizeof (struct devmap_pmem_cookie), kflags)) == NULL) return (DDI_FAILURE); pcp = *pcpp; if ((pcp->dp_vnp = kmem_zalloc(sizeof (vnode_t), kflags)) == NULL) { kmem_free(pcp, sizeof (struct devmap_pmem_cookie)); return (DDI_FAILURE); } if ((pcp->dp_pparray = kmem_zalloc(n * sizeof (page_t *), kflags)) == NULL) { kmem_free(pcp->dp_vnp, sizeof (vnode_t)); kmem_free(pcp, sizeof (struct devmap_pmem_cookie)); return (DDI_FAILURE); } return (DDI_SUCCESS); } /* Try to lock down n pages resource */ static int pmem_lock(pgcnt_t n, proc_t *p) { if (i_ddi_incr_locked_memory(p, ptob(n)) != 0) { return (DDI_FAILURE); } return (DDI_SUCCESS); } /* To check if all the pages in a large page are freed. */ static int lpg_isfree(pmem_lpg_t *plp) { uint_t i; for (i = 0; i < BT_BITOUL(pmem_pgcnt); i++) if (plp->pl_bitmap[i] != BT_ULMAXMASK) return (0); /* All 1 means all pages are freed. */ return (1); } /* * Using pp to get the associated large page allocation record, searching in * the splp linked list with *last as the heuristic pointer. Return NULL if * not found. */ static pmem_lpg_t * pmem_lpg_get(pmem_lpg_t *splp, page_t *pp, pmem_lpg_t **last) { pmem_lpg_t *plp; pgcnt_t root_pfn; ASSERT(pp); if (splp == NULL) return (NULL); root_pfn = page_pptonum(pp) & ~(pmem_pgcnt - 1); /* Try last winner first. */ if (*last && root_pfn == page_pptonum((*last)->pl_pp)) goto pl_found; /* Else search the whole pmem_lpg list. */ for (plp = splp; root_pfn != page_pptonum(plp->pl_pp); ) { plp = plp->pl_next; if (plp == splp) { plp = NULL; break; } ASSERT(plp->pl_pp); } *last = plp; pl_found: return (*last); } /* * Remove one pmem_lpg plp from the oplpp list. */ static void pmem_lpg_sub(pmem_lpg_t **oplpp, pmem_lpg_t *plp) { if (*oplpp == plp) *oplpp = plp->pl_next; /* go to next pmem_lpg */ if (*oplpp == plp) *oplpp = NULL; /* pmem_lpg list is gone */ else { plp->pl_prev->pl_next = plp->pl_next; plp->pl_next->pl_prev = plp->pl_prev; } plp->pl_prev = plp->pl_next = plp; /* make plp a list of one */ } /* * Concatenate page list nplpp onto the end of list plpp. */ static void pmem_lpg_concat(pmem_lpg_t **plpp, pmem_lpg_t **nplpp) { pmem_lpg_t *s1p, *s2p, *e1p, *e2p; if (*nplpp == NULL) { return; } if (*plpp == NULL) { *plpp = *nplpp; return; } s1p = *plpp; e1p = s1p->pl_prev; s2p = *nplpp; e2p = s2p->pl_prev; s1p->pl_prev = e2p; e2p->pl_next = s1p; e1p->pl_next = s2p; s2p->pl_prev = e1p; } /* * Allocate and initialize the allocation record of one large page, the init * value is 'allocated'. */ static pmem_lpg_t * pmem_lpg_alloc(uint_t kflags) { pmem_lpg_t *plp; ASSERT(pmem_pgcnt % BT_NBIPUL == 0); plp = kmem_zalloc(sizeof (pmem_lpg_t), kflags); if (plp == NULL) return (NULL); plp->pl_bitmap = kmem_zalloc(BT_SIZEOFMAP(pmem_pgcnt), kflags); if (plp->pl_bitmap == NULL) { kmem_free(plp, sizeof (*plp)); return (NULL); } plp->pl_next = plp->pl_prev = plp; return (plp); } /* Free one allocation record pointed by oplp. */ static void pmem_lpg_free(pmem_lpg_t **headp, pmem_lpg_t *plp) { if (*headp == plp) *headp = plp->pl_next; /* go to next pmem_lpg_t */ if (*headp == plp) *headp = NULL; /* this list is gone */ else { plp->pl_prev->pl_next = plp->pl_next; plp->pl_next->pl_prev = plp->pl_prev; } kmem_free(plp->pl_bitmap, BT_SIZEOFMAP(pmem_pgcnt)); kmem_free(plp, sizeof (*plp)); } /* Free one large page headed by spp from pmem_mpool. */ static void lpg_free(page_t *spp) { page_t *pp1 = spp; uint_t i; ASSERT(MUTEX_HELD(&pmem_mutex)); for (i = 0; i < pmem_pgcnt; i++) { /* Break pp1 from pmem_mpool. */ page_sub(&pmem_mpool, pp1); pp1++; } /* Free pages in this large page. */ page_free_pages(spp); page_unresv(pmem_pgcnt); pmem_nmpages -= pmem_pgcnt; ASSERT((pmem_nmpages && pmem_mpool) || (!pmem_nmpages && !pmem_mpool)); } /* Put n pages in *ppp list back into pmem_mpool. */ static void mpool_append(page_t **ppp, pgcnt_t n) { ASSERT(MUTEX_HELD(&pmem_mutex)); /* Put back pages. */ page_list_concat(&pmem_mpool, ppp); pmem_nmpages += n; ASSERT((pmem_nmpages && pmem_mpool) || (!pmem_nmpages && !pmem_mpool)); } /* * Try to grab MIN(pmem_nmpages, n) pages from pmem_mpool, put them into *ppp * list, and return the number of grabbed pages. */ static pgcnt_t mpool_break(page_t **ppp, pgcnt_t n) { pgcnt_t i; ASSERT(MUTEX_HELD(&pmem_mutex)); /* Grab the pages. */ i = MIN(pmem_nmpages, n); *ppp = pmem_mpool; page_list_break(ppp, &pmem_mpool, i); pmem_nmpages -= i; ASSERT((pmem_nmpages && pmem_mpool) || (!pmem_nmpages && !pmem_mpool)); return (i); } /* * Create n large pages, lpages and plpp contains the number of small pages and * allocation records list respectively. */ static int lpp_create(page_t **lppp, pgcnt_t n, pgcnt_t *lpages, pmem_lpg_t **plpp, vnode_t *vnp, u_offset_t *offp, uint_t kflags) { pgcnt_t i; pmem_lpg_t *plp; page_t *pp; for (i = 0, *lpages = 0; i < n; i++) { /* Allocte one large page each time. */ pp = page_create_va_large(vnp, *offp, pmem_lpgsize, PG_EXCL, &pmem_seg, (caddr_t)(uintptr_t)*offp, NULL); if (pp == NULL) break; *offp += pmem_lpgsize; page_list_concat(lppp, &pp); *lpages += pmem_pgcnt; /* Add one allocation record for this large page. */ if ((plp = pmem_lpg_alloc(kflags)) == NULL) return (DDI_FAILURE); plp->pl_pp = pp; pmem_lpg_concat(plpp, &plp); } return (DDI_SUCCESS); } /* * Break the last r small pages from the large page list *lppp (with totally n * small pages) and put them into pmem_mpool. */ static void lpp_break(page_t **lppp, pgcnt_t n, pgcnt_t r, pmem_lpg_t *oplp) { page_t *pp, *pp1; pgcnt_t i; pmem_lpg_t *plp; if (r == 0) return; ASSERT(*lppp != NULL && r < pmem_pgcnt); page_list_break(lppp, &pp, n - r); /* The residual should reside in the last large page. */ plp = oplp->pl_prev; /* IOunlock and hashout the residual pages. */ for (pp1 = pp, i = 0; i < r; i++) { page_io_unlock(pp1); page_hashout(pp1, NULL); /* Mark this page as free. */ BT_SET(plp->pl_bitmap, PFIND(pp1)); pp1 = pp1->p_next; } ASSERT(pp1 == pp); /* Put these residual pages into memory pool. */ mutex_enter(&pmem_mutex); mpool_append(&pp, r); mutex_exit(&pmem_mutex); } /* Freeing large pages in lpp and the associated allocation records in plp. */ static void lpp_free(page_t *lpp, pgcnt_t lpgs, pmem_lpg_t **plpp) { pgcnt_t i, j; page_t *pp = lpp, *pp1; pmem_lpg_t *plp1, *plp2; for (i = 0; i < lpgs; i++) { for (j = 0; j < pmem_pgcnt; j++) { /* IO unlock and hashout this small page. */ page_io_unlock(pp); page_hashout(pp, NULL); pp1 = pp->p_next; pp->p_prev = pp->p_next = pp; pp = pp1; } /* Free one large page at one time. */ page_free_pages(lpp); lpp = pp; } /* Free associate pmem large page allocation records. */ for (plp1 = *plpp; *plpp; plp1 = plp2) { plp2 = plp1->pl_next; pmem_lpg_free(plpp, plp1); } } /* * IOlock and hashin all pages in tlist, associate them with vnode *pvnp * and offset starting with *poffp. Update allocation records accordingly at * the same time. */ static void tlist_in(page_t *tlist, pgcnt_t tpages, vnode_t *pvnp, u_offset_t *poffp) { page_t *pp; pgcnt_t i = 0; pmem_lpg_t *plp, *last_pl = NULL; ASSERT(MUTEX_HELD(&pmem_mutex)); for (pp = tlist; i < tpages; i++) { ASSERT(FROM_LPG(pp)); page_io_lock(pp); (void) page_hashin(pp, pvnp, *poffp, NULL); plp = pmem_lpg_get(pmem_occ_lpgs, pp, &last_pl); /* Mark this page as allocated. */ BT_CLEAR(plp->pl_bitmap, PFIND(pp)); *poffp += PAGESIZE; pp = pp->p_next; } ASSERT(pp == tlist); } /* * IOunlock and hashout all pages in tlist, update allocation records * accordingly at the same time. */ static void tlist_out(page_t *tlist, pgcnt_t tpages) { page_t *pp; pgcnt_t i = 0; pmem_lpg_t *plp, *last_pl = NULL; ASSERT(MUTEX_HELD(&pmem_mutex)); for (pp = tlist; i < tpages; i++) { ASSERT(FROM_LPG(pp)); page_io_unlock(pp); page_hashout(pp, NULL); plp = pmem_lpg_get(pmem_occ_lpgs, pp, &last_pl); /* Mark this page as free. */ BT_SET(plp->pl_bitmap, PFIND(pp)); pp = pp->p_next; } ASSERT(pp == tlist); }