/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * * xenbus_xs.c * * This is the kernel equivalent of the "xs" library. We don't need everything * and we use xenbus_comms for communication. * * Copyright (C) 2005 Rusty Russell, IBM Corporation * * This file may be distributed separately from the Linux kernel, or * incorporated into other software packages, subject to the following license: * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this source file (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, * and to permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /* * NOTE: To future maintainers of the Solaris version of this file: * I found the Linux version of this code to be very disgusting in * overloading pointers and error codes into void * return values. * The main difference you will find is that all such usage is changed * to pass pointers to void* to be filled in with return values and * the functions return error codes. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _XSD_ERRORS_DEFINED #ifdef XPV_HVM_DRIVER #include #endif #include #include #include #include #include #include #include #define streq(a, b) (strcmp((a), (b)) == 0) #define list_empty(list) (list_head(list) == NULL) struct xs_stored_msg { list_node_t list; struct xsd_sockmsg hdr; union { /* Queued replies. */ struct { char *body; } reply; /* Queued watch events. */ struct { struct xenbus_watch *handle; char **vec; unsigned int vec_size; } watch; } un; }; static struct xs_handle { /* A list of replies. Currently only one will ever be outstanding. */ list_t reply_list; kmutex_t reply_lock; kcondvar_t reply_cv; /* One request at a time. */ kmutex_t request_mutex; /* Protect transactions against save/restore. */ krwlock_t suspend_lock; } xs_state; static int last_req_id; /* * List of clients wanting a xenstore up notification, and a lock to protect it */ static boolean_t xenstore_up; static list_t notify_list; static kmutex_t notify_list_lock; static taskq_t *xenbus_taskq; /* List of registered watches, and a lock to protect it. */ static list_t watches; static kmutex_t watches_lock; /* List of pending watch callback events, and a lock to protect it. */ static list_t watch_events; static kmutex_t watch_events_lock; /* * Details of the xenwatch callback kernel thread. The thread waits on the * watch_events_cv for work to do (queued on watch_events list). When it * wakes up it acquires the xenwatch_mutex before reading the list and * carrying out work. */ static kmutex_t xenwatch_mutex; static kcondvar_t watch_events_cv; static int process_msg(void); static int get_error(const char *errorstring) { unsigned int i; for (i = 0; !streq(errorstring, xsd_errors[i].errstring); i++) { if (i == (sizeof (xsd_errors) / sizeof (xsd_errors[0])) - 1) { cmn_err(CE_WARN, "XENBUS xen store gave: unknown error %s", errorstring); return (EINVAL); } } return (xsd_errors[i].errnum); } /* * Read a synchronous reply from xenstore. Since we can return early before * reading a relevant reply, we discard any messages not matching the request * ID. Caller must free returned message on success. */ static int read_reply(struct xsd_sockmsg *req_hdr, struct xs_stored_msg **reply) { extern int do_polled_io; mutex_enter(&xs_state.reply_lock); for (;;) { while (list_empty(&xs_state.reply_list)) { if (interrupts_unleashed && !do_polled_io) { if (cv_wait_sig(&xs_state.reply_cv, &xs_state.reply_lock) == 0) { mutex_exit(&xs_state.reply_lock); *reply = NULL; return (EINTR); } } else { /* polled mode needed for early probes */ mutex_exit(&xs_state.reply_lock); (void) HYPERVISOR_yield(); (void) process_msg(); mutex_enter(&xs_state.reply_lock); } } *reply = list_head(&xs_state.reply_list); list_remove(&xs_state.reply_list, *reply); if ((*reply)->hdr.req_id == req_hdr->req_id) break; } mutex_exit(&xs_state.reply_lock); return (0); } /* Emergency write. */ void xenbus_debug_write(const char *str, unsigned int count) { struct xsd_sockmsg msg = { 0 }; msg.type = XS_DEBUG; msg.len = sizeof ("print") + count + 1; mutex_enter(&xs_state.request_mutex); (void) xb_write(&msg, sizeof (msg)); (void) xb_write("print", sizeof ("print")); (void) xb_write(str, count); (void) xb_write("", 1); mutex_exit(&xs_state.request_mutex); } /* * This is pretty unpleasant. First off, there's the horrible logic around * suspend_lock and transactions. Also, we can be interrupted either before we * write a message, or before we receive a reply. A client that wants to * survive this can't know which case happened. Luckily all clients don't care * about signals currently, and the alternative (a hard wait on a userspace * daemon) isn't exactly preferable. Caller must free 'reply' on success. */ int xenbus_dev_request_and_reply(struct xsd_sockmsg *msg, void **reply) { struct xsd_sockmsg req_msg = *msg; struct xs_stored_msg *reply_msg = NULL; int err; if (req_msg.type == XS_TRANSACTION_START) rw_enter(&xs_state.suspend_lock, RW_READER); mutex_enter(&xs_state.request_mutex); msg->req_id = last_req_id++; err = xb_write(msg, sizeof (*msg) + msg->len); if (err) { if (req_msg.type == XS_TRANSACTION_START) rw_exit(&xs_state.suspend_lock); msg->type = XS_ERROR; *reply = NULL; goto out; } err = read_reply(msg, &reply_msg); if (err) { if (msg->type == XS_TRANSACTION_START) rw_exit(&xs_state.suspend_lock); *reply = NULL; goto out; } *reply = reply_msg->un.reply.body; *msg = reply_msg->hdr; if (reply_msg->hdr.type == XS_TRANSACTION_END) rw_exit(&xs_state.suspend_lock); out: if (reply_msg != NULL) kmem_free(reply_msg, sizeof (*reply_msg)); mutex_exit(&xs_state.request_mutex); return (err); } /* * Send message to xs, return errcode, rval filled in with pointer * to kmem_alloc'ed reply. */ static int xs_talkv(xenbus_transaction_t t, enum xsd_sockmsg_type type, const iovec_t *iovec, unsigned int num_vecs, void **rval, unsigned int *len) { struct xsd_sockmsg msg; struct xs_stored_msg *reply_msg; char *reply; unsigned int i; int err; msg.tx_id = (uint32_t)(unsigned long)t; msg.type = type; msg.len = 0; for (i = 0; i < num_vecs; i++) msg.len += iovec[i].iov_len; mutex_enter(&xs_state.request_mutex); msg.req_id = last_req_id++; err = xb_write(&msg, sizeof (msg)); if (err) { mutex_exit(&xs_state.request_mutex); return (err); } for (i = 0; i < num_vecs; i++) { err = xb_write(iovec[i].iov_base, iovec[i].iov_len); if (err) { mutex_exit(&xs_state.request_mutex); return (err); } } err = read_reply(&msg, &reply_msg); mutex_exit(&xs_state.request_mutex); if (err) return (err); reply = reply_msg->un.reply.body; if (reply_msg->hdr.type == XS_ERROR) { err = get_error(reply); kmem_free(reply, reply_msg->hdr.len + 1); goto out; } if (len != NULL) *len = reply_msg->hdr.len + 1; ASSERT(reply_msg->hdr.type == type); if (rval != NULL) *rval = reply; else kmem_free(reply, reply_msg->hdr.len + 1); out: kmem_free(reply_msg, sizeof (*reply_msg)); return (err); } /* Simplified version of xs_talkv: single message. */ static int xs_single(xenbus_transaction_t t, enum xsd_sockmsg_type type, const char *string, void **ret, unsigned int *len) { iovec_t iovec; iovec.iov_base = (char *)string; iovec.iov_len = strlen(string) + 1; return (xs_talkv(t, type, &iovec, 1, ret, len)); } static unsigned int count_strings(const char *strings, unsigned int len) { unsigned int num; const char *p; for (p = strings, num = 0; p < strings + len; p += strlen(p) + 1) num++; return (num); } /* Return the path to dir with /name appended. Buffer must be kmem_free()'ed */ static char * join(const char *dir, const char *name) { char *buffer; size_t slashlen; slashlen = streq(name, "") ? 0 : 1; buffer = kmem_alloc(strlen(dir) + slashlen + strlen(name) + 1, KM_SLEEP); (void) strcpy(buffer, dir); if (slashlen != 0) { (void) strcat(buffer, "/"); (void) strcat(buffer, name); } return (buffer); } static char ** split(char *strings, unsigned int len, unsigned int *num) { char *p, **ret; /* Count the strings. */ if ((*num = count_strings(strings, len - 1)) == 0) return (NULL); /* Transfer to one big alloc for easy freeing. */ ret = kmem_alloc(*num * sizeof (char *) + (len - 1), KM_SLEEP); (void) memcpy(&ret[*num], strings, len - 1); kmem_free(strings, len); strings = (char *)&ret[*num]; for (p = strings, *num = 0; p < strings + (len - 1); p += strlen(p) + 1) { ret[(*num)++] = p; } return (ret); } char ** xenbus_directory(xenbus_transaction_t t, const char *dir, const char *node, unsigned int *num) { char *strings, *path; unsigned int len; int err; path = join(dir, node); err = xs_single(t, XS_DIRECTORY, path, (void **)&strings, &len); kmem_free(path, strlen(path) + 1); if (err != 0 || strings == NULL) { /* sigh, we lose error code info here */ *num = 0; return (NULL); } return (split(strings, len, num)); } /* Check if a path exists. */ boolean_t xenbus_exists(const char *dir, const char *node) { void *p; uint_t n; if (xenbus_read(XBT_NULL, dir, node, &p, &n) != 0) return (B_FALSE); kmem_free(p, n); return (B_TRUE); } /* Check if a directory path exists. */ boolean_t xenbus_exists_dir(const char *dir, const char *node) { char **d; unsigned int dir_n; int i, len; d = xenbus_directory(XBT_NULL, dir, node, &dir_n); if (d == NULL) return (B_FALSE); for (i = 0, len = 0; i < dir_n; i++) len += strlen(d[i]) + 1 + sizeof (char *); kmem_free(d, len); return (B_TRUE); } /* * Get the value of a single file. * Returns a kmem_alloced value in retp: call kmem_free() on it after use. * len indicates length in bytes. */ int xenbus_read(xenbus_transaction_t t, const char *dir, const char *node, void **retp, unsigned int *len) { char *path; int err; path = join(dir, node); err = xs_single(t, XS_READ, path, retp, len); kmem_free(path, strlen(path) + 1); return (err); } int xenbus_read_str(const char *dir, const char *node, char **retp) { uint_t n; int err; char *str; /* * Since we access the xenbus value immediatly we can't be * part of a transaction. */ if ((err = xenbus_read(XBT_NULL, dir, node, (void **)&str, &n)) != 0) return (err); ASSERT((str != NULL) && (n > 0)); /* * Why bother with this? Because xenbus is truly annoying in the * fact that when it returns a string, it doesn't guarantee that * the memory that holds the string is of size strlen() + 1. * This forces callers to keep track of the size of the memory * containing the string. Ugh. We'll work around this by * re-allocate strings to always be of size strlen() + 1. */ *retp = strdup(str); kmem_free(str, n); return (0); } /* * Write the value of a single file. * Returns err on failure. */ int xenbus_write(xenbus_transaction_t t, const char *dir, const char *node, const char *string) { char *path; iovec_t iovec[2]; int ret; path = join(dir, node); iovec[0].iov_base = (void *)path; iovec[0].iov_len = strlen(path) + 1; iovec[1].iov_base = (void *)string; iovec[1].iov_len = strlen(string); ret = xs_talkv(t, XS_WRITE, iovec, 2, NULL, NULL); kmem_free(path, iovec[0].iov_len); return (ret); } /* Create a new directory. */ int xenbus_mkdir(xenbus_transaction_t t, const char *dir, const char *node) { char *path; int ret; path = join(dir, node); ret = xs_single(t, XS_MKDIR, path, NULL, NULL); kmem_free(path, strlen(path) + 1); return (ret); } /* Destroy a file or directory (directories must be empty). */ int xenbus_rm(xenbus_transaction_t t, const char *dir, const char *node) { char *path; int ret; path = join(dir, node); ret = xs_single(t, XS_RM, path, NULL, NULL); kmem_free(path, strlen(path) + 1); return (ret); } /* * Start a transaction: changes by others will not be seen during this * transaction, and changes will not be visible to others until end. */ int xenbus_transaction_start(xenbus_transaction_t *t) { void *id_str; unsigned long id; int err; unsigned int len; rw_enter(&xs_state.suspend_lock, RW_READER); err = xs_single(XBT_NULL, XS_TRANSACTION_START, "", &id_str, &len); if (err) { rw_exit(&xs_state.suspend_lock); return (err); } (void) ddi_strtoul((char *)id_str, NULL, 0, &id); *t = (xenbus_transaction_t)id; kmem_free(id_str, len); return (0); } /* * End a transaction. * If abandon is true, transaction is discarded instead of committed. */ int xenbus_transaction_end(xenbus_transaction_t t, int abort) { char abortstr[2]; int err; if (abort) (void) strcpy(abortstr, "F"); else (void) strcpy(abortstr, "T"); err = xs_single(t, XS_TRANSACTION_END, abortstr, NULL, NULL); rw_exit(&xs_state.suspend_lock); return (err); } /* * Single read and scanf: returns errno or 0. This can only handle a single * conversion specifier. */ /* SCANFLIKE4 */ int xenbus_scanf(xenbus_transaction_t t, const char *dir, const char *node, const char *fmt, ...) { va_list ap; int ret; char *val; unsigned int len; ret = xenbus_read(t, dir, node, (void **)&val, &len); if (ret) return (ret); va_start(ap, fmt); if (vsscanf(val, fmt, ap) != 1) ret = ERANGE; va_end(ap); kmem_free(val, len); return (ret); } /* Single printf and write: returns errno or 0. */ /* PRINTFLIKE4 */ int xenbus_printf(xenbus_transaction_t t, const char *dir, const char *node, const char *fmt, ...) { va_list ap; int ret; #define PRINTF_BUFFER_SIZE 4096 char *printf_buffer; printf_buffer = kmem_alloc(PRINTF_BUFFER_SIZE, KM_SLEEP); va_start(ap, fmt); ret = vsnprintf(printf_buffer, PRINTF_BUFFER_SIZE, fmt, ap); va_end(ap); ASSERT(ret <= PRINTF_BUFFER_SIZE-1); ret = xenbus_write(t, dir, node, printf_buffer); kmem_free(printf_buffer, PRINTF_BUFFER_SIZE); return (ret); } /* Takes tuples of names, scanf-style args, and void **, NULL terminated. */ int xenbus_gather(xenbus_transaction_t t, const char *dir, ...) { va_list ap; const char *name; int ret = 0; unsigned int len; va_start(ap, dir); while (ret == 0 && (name = va_arg(ap, char *)) != NULL) { const char *fmt = va_arg(ap, char *); void *result = va_arg(ap, void *); char *p; ret = xenbus_read(t, dir, name, (void **)&p, &len); if (ret) break; if (fmt) { ASSERT(result != NULL); if (sscanf(p, fmt, result) != 1) ret = EINVAL; kmem_free(p, len); } else *(char **)result = p; } va_end(ap); return (ret); } static int xs_watch(const char *path, const char *token) { iovec_t iov[2]; iov[0].iov_base = (void *)path; iov[0].iov_len = strlen(path) + 1; iov[1].iov_base = (void *)token; iov[1].iov_len = strlen(token) + 1; return (xs_talkv(XBT_NULL, XS_WATCH, iov, 2, NULL, NULL)); } static int xs_unwatch(const char *path, const char *token) { iovec_t iov[2]; iov[0].iov_base = (char *)path; iov[0].iov_len = strlen(path) + 1; iov[1].iov_base = (char *)token; iov[1].iov_len = strlen(token) + 1; return (xs_talkv(XBT_NULL, XS_UNWATCH, iov, 2, NULL, NULL)); } static struct xenbus_watch * find_watch(const char *token) { struct xenbus_watch *i, *cmp; (void) ddi_strtoul(token, NULL, 16, (unsigned long *)&cmp); for (i = list_head(&watches); i != NULL; i = list_next(&watches, i)) if (i == cmp) break; return (i); } /* Register a xenstore state notify callback */ int xs_register_xenbus_callback(void (*callback)(int)) { struct xenbus_notify *xbn, *xnp; xbn = kmem_alloc(sizeof (struct xenbus_notify), KM_SLEEP); xbn->notify_func = callback; mutex_enter(¬ify_list_lock); /* * Make sure not already on the list */ xnp = list_head(¬ify_list); for (; xnp != NULL; xnp = list_next(¬ify_list, xnp)) { if (xnp->notify_func == callback) { kmem_free(xbn, sizeof (struct xenbus_notify)); mutex_exit(¬ify_list_lock); return (EEXIST); } } xnp = xbn; list_insert_tail(¬ify_list, xbn); done: if (xenstore_up) xnp->notify_func(XENSTORE_UP); mutex_exit(¬ify_list_lock); return (0); } /* * Notify clients of xenstore state */ static void do_notify_callbacks(void *arg) { struct xenbus_notify *xnp; mutex_enter(¬ify_list_lock); xnp = list_head(¬ify_list); for (; xnp != NULL; xnp = list_next(¬ify_list, xnp)) { xnp->notify_func((int)((uintptr_t)arg)); } mutex_exit(¬ify_list_lock); } void xs_notify_xenstore_up(void) { xenstore_up = B_TRUE; (void) taskq_dispatch(xenbus_taskq, do_notify_callbacks, (void *)XENSTORE_UP, 0); } void xs_notify_xenstore_down(void) { xenstore_up = B_FALSE; (void) taskq_dispatch(xenbus_taskq, do_notify_callbacks, (void *)XENSTORE_DOWN, 0); } /* Register callback to watch this node. */ int register_xenbus_watch(struct xenbus_watch *watch) { /* Pointer in ascii is the token. */ char token[sizeof (watch) * 2 + 1]; int err; ASSERT(xenstore_up); (void) snprintf(token, sizeof (token), "%lX", (long)watch); rw_enter(&xs_state.suspend_lock, RW_READER); mutex_enter(&watches_lock); /* * May be re-registering a watch if xenstore daemon was restarted */ if (find_watch(token) == NULL) list_insert_tail(&watches, watch); mutex_exit(&watches_lock); DTRACE_XPV3(xenbus__register__watch, const char *, watch->node, uintptr_t, watch->callback, struct xenbus_watch *, watch); err = xs_watch(watch->node, token); /* Ignore errors due to multiple registration. */ if ((err != 0) && (err != EEXIST)) { mutex_enter(&watches_lock); list_remove(&watches, watch); mutex_exit(&watches_lock); } rw_exit(&xs_state.suspend_lock); return (err); } static void free_stored_msg(struct xs_stored_msg *msg) { int i, len = 0; for (i = 0; i < msg->un.watch.vec_size; i++) len += strlen(msg->un.watch.vec[i]) + 1 + sizeof (char *); kmem_free(msg->un.watch.vec, len); kmem_free(msg, sizeof (*msg)); } void unregister_xenbus_watch(struct xenbus_watch *watch) { struct xs_stored_msg *msg; char token[sizeof (watch) * 2 + 1]; int err; (void) snprintf(token, sizeof (token), "%lX", (long)watch); rw_enter(&xs_state.suspend_lock, RW_READER); mutex_enter(&watches_lock); ASSERT(find_watch(token)); list_remove(&watches, watch); mutex_exit(&watches_lock); DTRACE_XPV3(xenbus__unregister__watch, const char *, watch->node, uintptr_t, watch->callback, struct xenbus_watch *, watch); err = xs_unwatch(watch->node, token); if (err) cmn_err(CE_WARN, "XENBUS Failed to release watch %s: %d", watch->node, err); rw_exit(&xs_state.suspend_lock); /* Cancel pending watch events. */ mutex_enter(&watch_events_lock); msg = list_head(&watch_events); while (msg != NULL) { struct xs_stored_msg *tmp = list_next(&watch_events, msg); if (msg->un.watch.handle == watch) { list_remove(&watch_events, msg); free_stored_msg(msg); } msg = tmp; } mutex_exit(&watch_events_lock); /* Flush any currently-executing callback, unless we are it. :-) */ if (mutex_owner(&xenwatch_mutex) != curthread) { mutex_enter(&xenwatch_mutex); mutex_exit(&xenwatch_mutex); } } void xenbus_suspend(void) { rw_enter(&xs_state.suspend_lock, RW_WRITER); mutex_enter(&xs_state.request_mutex); xb_suspend(); } void xenbus_resume(void) { struct xenbus_watch *watch; char token[sizeof (watch) * 2 + 1]; mutex_exit(&xs_state.request_mutex); xb_init(); xb_setup_intr(); /* No need for watches_lock: the suspend_lock is sufficient. */ for (watch = list_head(&watches); watch != NULL; watch = list_next(&watches, watch)) { (void) snprintf(token, sizeof (token), "%lX", (long)watch); (void) xs_watch(watch->node, token); } rw_exit(&xs_state.suspend_lock); } static void xenwatch_thread(void) { struct xs_stored_msg *msg; struct xenbus_watch *watch; for (;;) { mutex_enter(&watch_events_lock); while (list_empty(&watch_events)) cv_wait(&watch_events_cv, &watch_events_lock); msg = list_head(&watch_events); ASSERT(msg != NULL); list_remove(&watch_events, msg); watch = msg->un.watch.handle; mutex_exit(&watch_events_lock); mutex_enter(&xenwatch_mutex); DTRACE_XPV4(xenbus__fire__watch, const char *, watch->node, uintptr_t, watch->callback, struct xenbus_watch *, watch, const char *, msg->un.watch.vec[XS_WATCH_PATH]); watch->callback(watch, (const char **)msg->un.watch.vec, msg->un.watch.vec_size); free_stored_msg(msg); mutex_exit(&xenwatch_mutex); } } static int process_msg(void) { struct xs_stored_msg *msg; char *body; int err, mlen; msg = kmem_alloc(sizeof (*msg), KM_SLEEP); err = xb_read(&msg->hdr, sizeof (msg->hdr)); if (err) { kmem_free(msg, sizeof (*msg)); return (err); } mlen = msg->hdr.len + 1; body = kmem_alloc(mlen, KM_SLEEP); err = xb_read(body, msg->hdr.len); if (err) { kmem_free(body, mlen); kmem_free(msg, sizeof (*msg)); return (err); } body[mlen - 1] = '\0'; if (msg->hdr.type == XS_WATCH_EVENT) { const char *token; msg->un.watch.vec = split(body, msg->hdr.len + 1, &msg->un.watch.vec_size); if (msg->un.watch.vec == NULL) { kmem_free(msg, sizeof (*msg)); return (EIO); } mutex_enter(&watches_lock); token = msg->un.watch.vec[XS_WATCH_TOKEN]; if ((msg->un.watch.handle = find_watch(token)) != NULL) { mutex_enter(&watch_events_lock); DTRACE_XPV4(xenbus__enqueue__watch, const char *, msg->un.watch.handle->node, uintptr_t, msg->un.watch.handle->callback, struct xenbus_watch *, msg->un.watch.handle, const char *, msg->un.watch.vec[XS_WATCH_PATH]); list_insert_tail(&watch_events, msg); cv_broadcast(&watch_events_cv); mutex_exit(&watch_events_lock); } else { free_stored_msg(msg); } mutex_exit(&watches_lock); } else { msg->un.reply.body = body; mutex_enter(&xs_state.reply_lock); list_insert_tail(&xs_state.reply_list, msg); mutex_exit(&xs_state.reply_lock); cv_signal(&xs_state.reply_cv); } return (0); } static void xenbus_thread(void) { int err; /* * We have to wait for interrupts to be ready, so we don't clash * with the polled-IO code in read_reply(). */ while (!interrupts_unleashed) delay(10); for (;;) { err = process_msg(); if (err) cmn_err(CE_WARN, "XENBUS error %d while reading " "message", err); } } /* * When setting up xenbus, dom0 and domU have to take different paths, which * makes this code a little confusing. For dom0: * * xs_early_init - mutex init only * xs_dom0_init - called on xenbus dev attach: set up our xenstore page and * event channel; start xenbus threads for responding to interrupts. * * And for domU: * * xs_early_init - mutex init; set up our xenstore page and event channel * xs_domu_init - installation of IRQ handler; start xenbus threads. * * We need an early init on domU so we can use xenbus in polled mode to * discover devices, VCPUs etc. * * On resume, we use xb_init() and xb_setup_intr() to restore xenbus to a * working state. */ void xs_early_init(void) { list_create(&xs_state.reply_list, sizeof (struct xs_stored_msg), offsetof(struct xs_stored_msg, list)); list_create(&watch_events, sizeof (struct xs_stored_msg), offsetof(struct xs_stored_msg, list)); list_create(&watches, sizeof (struct xenbus_watch), offsetof(struct xenbus_watch, list)); list_create(¬ify_list, sizeof (struct xenbus_notify), offsetof(struct xenbus_notify, list)); mutex_init(&xs_state.reply_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&xs_state.request_mutex, NULL, MUTEX_DEFAULT, NULL); mutex_init(¬ify_list_lock, NULL, MUTEX_DEFAULT, NULL); rw_init(&xs_state.suspend_lock, NULL, RW_DEFAULT, NULL); cv_init(&xs_state.reply_cv, NULL, CV_DEFAULT, NULL); if (DOMAIN_IS_INITDOMAIN(xen_info)) return; xb_init(); xenstore_up = B_TRUE; } static void xs_thread_init(void) { (void) thread_create(NULL, 0, xenwatch_thread, NULL, 0, &p0, TS_RUN, minclsyspri); (void) thread_create(NULL, 0, xenbus_thread, NULL, 0, &p0, TS_RUN, minclsyspri); xenbus_taskq = taskq_create("xenbus_taskq", 1, maxclsyspri - 1, 1, 1, TASKQ_PREPOPULATE); ASSERT(xenbus_taskq != NULL); } void xs_domu_init(void) { if (DOMAIN_IS_INITDOMAIN(xen_info)) return; /* * Add interrupt handler for xenbus now, must wait till after * psm module is loaded. All use of xenbus is in polled mode * until xs_init is called since it is what kicks off the xs * server threads. */ xs_thread_init(); xb_setup_intr(); } void xs_dom0_init(void) { static boolean_t initialized = B_FALSE; ASSERT(DOMAIN_IS_INITDOMAIN(xen_info)); /* * The xenbus driver might be re-attaching. */ if (initialized) return; xb_init(); xs_thread_init(); xb_setup_intr(); initialized = B_TRUE; }