/* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2004, 2005 David Young. All rights reserved. * * Programmed for NetBSD by David Young. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of David Young may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. */ /* * Control the Philips SA2400 RF front-end and the baseband processor * built into the Realtek RTL8180. */ #include #include #include "rtwreg.h" #include "rtwvar.h" #include "max2820reg.h" #include "sa2400reg.h" #include "rtwphyio.h" #include "rtwphy.h" static int rtw_max2820_pwrstate(struct rtw_rf *, enum rtw_pwrstate); static int rtw_sa2400_pwrstate(struct rtw_rf *, enum rtw_pwrstate); static int rtw_rf_init(struct rtw_rf *rf, uint_t freq, uint8_t opaque_txpower, enum rtw_pwrstate power) { return (*rf->rf_init)(rf, freq, opaque_txpower, power); } static int rtw_rf_tune(struct rtw_rf *rf, uint_t freq) { return (*rf->rf_tune)(rf, freq); } static int rtw_rf_txpower(struct rtw_rf *rf, uint8_t opaque_txpower) { return (*rf->rf_txpower)(rf, opaque_txpower); } static int rtw_rfbus_write(struct rtw_rfbus *bus, enum rtw_rfchipid rfchipid, uint_t addr, uint32_t val) { return (*bus->b_write)(bus->b_regs, rfchipid, addr, val); } static int rtw_bbp_preinit(struct rtw_regs *regs, uint_t antatten0, int dflantb, uint_t freq) { uint_t antatten = antatten0; if (dflantb) antatten |= RTW_BBP_ANTATTEN_DFLANTB; if (freq == 2484) /* channel 14 */ antatten |= RTW_BBP_ANTATTEN_CHAN14; return (rtw_bbp_write(regs, RTW_BBP_ANTATTEN, antatten)); } static int rtw_bbp_init(struct rtw_regs *regs, struct rtw_bbpset *bb, int antdiv, int dflantb, uint8_t cs_threshold, uint_t freq) { int rc; uint32_t sys2, sys3; sys2 = bb->bb_sys2; if (antdiv) sys2 |= RTW_BBP_SYS2_ANTDIV; sys3 = bb->bb_sys3 | LSHIFT(cs_threshold, RTW_BBP_SYS3_CSTHRESH_MASK); #define RTW_BBP_WRITE_OR_RETURN(reg, val) \ if ((rc = rtw_bbp_write(regs, reg, val)) != 0) \ return (rc); RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS1, bb->bb_sys1); RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TXAGC, bb->bb_txagc); RTW_BBP_WRITE_OR_RETURN(RTW_BBP_LNADET, bb->bb_lnadet); RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCINI, bb->bb_ifagcini); RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCLIMIT, bb->bb_ifagclimit); RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCDET, bb->bb_ifagcdet); if ((rc = rtw_bbp_preinit(regs, bb->bb_antatten, dflantb, freq)) != 0) return (rc); RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TRL, bb->bb_trl); RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS2, sys2); RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS3, sys3); RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHESTLIM, bb->bb_chestlim); RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHSQLIM, bb->bb_chsqlim); return (0); } static int rtw_sa2400_txpower(struct rtw_rf *rf, uint8_t opaque_txpower) { struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf; struct rtw_rfbus *bus = &sa->sa_bus; return (rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_TX, opaque_txpower)); } #ifdef _RTW_FUTURE_DEBUG_ /* * make sure we're using the same settings as the reference driver */ static void verify_syna(uint_t freq, uint32_t val) { uint32_t expected_val = ~val; switch (freq) { case 2412: expected_val = 0x0000096c; /* ch 1 */ break; case 2417: expected_val = 0x00080970; /* ch 2 */ break; case 2422: expected_val = 0x00100974; /* ch 3 */ break; case 2427: expected_val = 0x00180978; /* ch 4 */ break; case 2432: expected_val = 0x00000980; /* ch 5 */ break; case 2437: expected_val = 0x00080984; /* ch 6 */ break; case 2442: expected_val = 0x00100988; /* ch 7 */ break; case 2447: expected_val = 0x0018098c; /* ch 8 */ break; case 2452: expected_val = 0x00000994; /* ch 9 */ break; case 2457: expected_val = 0x00080998; /* ch 10 */ break; case 2462: expected_val = 0x0010099c; /* ch 11 */ break; case 2467: expected_val = 0x001809a0; /* ch 12 */ break; case 2472: expected_val = 0x000009a8; /* ch 13 */ break; case 2484: expected_val = 0x000009b4; /* ch 14 */ break; } } #endif /* _RTW_FUTURE_DEBUG_ */ /* freq is in MHz */ static int rtw_sa2400_tune(struct rtw_rf *rf, uint_t freq) { struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf; struct rtw_rfbus *bus = &sa->sa_bus; int rc; uint32_t syna, synb, sync; /* * XO = 44MHz, R = 11, hence N is in units of XO / R = 4MHz. * * The channel spacing (5MHz) is not divisible by 4MHz, so * we set the fractional part of N to compensate. */ int n = freq / 4, nf = (freq % 4) * 2; syna = LSHIFT(nf, SA2400_SYNA_NF_MASK) | LSHIFT(n, SA2400_SYNA_N_MASK); /* verify_syna(freq, syna); */ /* * Divide the 44MHz crystal down to 4MHz. Set the fractional * compensation charge pump value to agree with the fractional * modulus. */ synb = LSHIFT(11, SA2400_SYNB_R_MASK) | SA2400_SYNB_L_NORMAL | SA2400_SYNB_ON | SA2400_SYNB_ONE | LSHIFT(80, SA2400_SYNB_FC_MASK); /* agrees w/ SA2400_SYNA_FM = 0 */ sync = SA2400_SYNC_CP_NORMAL; if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNA, syna)) != 0) return (rc); if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNB, synb)) != 0) return (rc); if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNC, sync)) != 0) return (rc); return (rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYND, 0x0)); } static int rtw_sa2400_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power) { struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf; struct rtw_rfbus *bus = &sa->sa_bus; uint32_t opmode; opmode = SA2400_OPMODE_DEFAULTS; switch (power) { case RTW_ON: opmode |= SA2400_OPMODE_MODE_TXRX; break; case RTW_SLEEP: opmode |= SA2400_OPMODE_MODE_WAIT; break; case RTW_OFF: opmode |= SA2400_OPMODE_MODE_SLEEP; break; } if (sa->sa_digphy) opmode |= SA2400_OPMODE_DIGIN; return (rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE, opmode)); } static int rtw_sa2400_manrx_init(struct rtw_sa2400 *sa) { uint32_t manrx; /* * we are not supposed to be in RXMGC mode when we do * this? */ manrx = SA2400_MANRX_AHSN; manrx |= SA2400_MANRX_TEN; manrx |= LSHIFT(1023, SA2400_MANRX_RXGAIN_MASK); return (rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_MANRX, manrx)); } static int rtw_sa2400_vcocal_start(struct rtw_sa2400 *sa, int start) { uint32_t opmode; opmode = SA2400_OPMODE_DEFAULTS; if (start) opmode |= SA2400_OPMODE_MODE_VCOCALIB; else opmode |= SA2400_OPMODE_MODE_SLEEP; if (sa->sa_digphy) opmode |= SA2400_OPMODE_DIGIN; return (rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE, opmode)); } static int rtw_sa2400_vco_calibration(struct rtw_sa2400 *sa) { int rc; /* * calibrate VCO */ if ((rc = rtw_sa2400_vcocal_start(sa, 1)) != 0) return (rc); DELAY(2200); /* 2.2 milliseconds */ /* * XXX superfluous: SA2400 automatically entered SLEEP mode. */ return (rtw_sa2400_vcocal_start(sa, 0)); } static int rtw_sa2400_filter_calibration(struct rtw_sa2400 *sa) { uint32_t opmode; opmode = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_FCALIB; if (sa->sa_digphy) opmode |= SA2400_OPMODE_DIGIN; return (rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE, opmode)); } static int rtw_sa2400_dc_calibration(struct rtw_sa2400 *sa) { struct rtw_rf *rf = &sa->sa_rf; int rc; uint32_t dccal; (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 1); dccal = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_TXRX; rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE, dccal); if (rc != 0) return (rc); DELAY(5); /* DCALIB after being in Tx mode for 5 microseconds */ dccal &= ~SA2400_OPMODE_MODE_MASK; dccal |= SA2400_OPMODE_MODE_DCALIB; rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE, dccal); if (rc != 0) return (rc); DELAY(20); /* calibration takes at most 20 microseconds */ (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 0); return (0); } static int rtw_sa2400_agc_init(struct rtw_sa2400 *sa) { uint32_t agc; agc = LSHIFT(25, SA2400_AGC_MAXGAIN_MASK); agc |= LSHIFT(7, SA2400_AGC_BBPDELAY_MASK); agc |= LSHIFT(15, SA2400_AGC_LNADELAY_MASK); agc |= LSHIFT(27, SA2400_AGC_RXONDELAY_MASK); return (rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_AGC, agc)); } static void rtw_sa2400_destroy(struct rtw_rf *rf) { struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf; kmem_free(sa, sizeof (*sa)); } static int rtw_sa2400_calibrate(struct rtw_rf *rf, uint_t freq) { struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf; int i, rc; /* * XXX reference driver calibrates VCO twice. Is it a bug? */ for (i = 0; i < 2; i++) { if ((rc = rtw_sa2400_vco_calibration(sa)) != 0) return (rc); } /* * VCO calibration erases synthesizer registers, so re-tune */ if ((rc = rtw_sa2400_tune(rf, freq)) != 0) return (rc); if ((rc = rtw_sa2400_filter_calibration(sa)) != 0) return (rc); /* * analog PHY needs DC calibration */ if (!sa->sa_digphy) return (rtw_sa2400_dc_calibration(sa)); return (0); } static int rtw_sa2400_init(struct rtw_rf *rf, uint_t freq, uint8_t opaque_txpower, enum rtw_pwrstate power) { struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf; int rc; if ((rc = rtw_sa2400_txpower(rf, opaque_txpower)) != 0) return (rc); /* * skip configuration if it's time to sleep or to power-down. */ if (power == RTW_SLEEP || power == RTW_OFF) return (rtw_sa2400_pwrstate(rf, power)); /* * go to sleep for configuration */ if ((rc = rtw_sa2400_pwrstate(rf, RTW_SLEEP)) != 0) return (rc); if ((rc = rtw_sa2400_tune(rf, freq)) != 0) return (rc); if ((rc = rtw_sa2400_agc_init(sa)) != 0) return (rc); if ((rc = rtw_sa2400_manrx_init(sa)) != 0) return (rc); if ((rc = rtw_sa2400_calibrate(rf, freq)) != 0) return (rc); /* * enter Tx/Rx mode */ return (rtw_sa2400_pwrstate(rf, power)); } struct rtw_rf * rtw_sa2400_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy) { struct rtw_sa2400 *sa; struct rtw_rfbus *bus; struct rtw_rf *rf; struct rtw_bbpset *bb; sa = (struct rtw_sa2400 *)kmem_zalloc(sizeof (*sa), KM_SLEEP); if (sa == NULL) return (NULL); sa->sa_digphy = digphy; rf = &sa->sa_rf; bus = &sa->sa_bus; rf->rf_init = rtw_sa2400_init; rf->rf_destroy = rtw_sa2400_destroy; rf->rf_txpower = rtw_sa2400_txpower; rf->rf_tune = rtw_sa2400_tune; rf->rf_pwrstate = rtw_sa2400_pwrstate; bb = &rf->rf_bbpset; /* * XXX magic */ bb->bb_antatten = RTW_BBP_ANTATTEN_PHILIPS_MAGIC; bb->bb_chestlim = 0x00; bb->bb_chsqlim = 0xa0; bb->bb_ifagcdet = 0x64; bb->bb_ifagcini = 0x90; bb->bb_ifagclimit = 0x1a; bb->bb_lnadet = 0xe0; bb->bb_sys1 = 0x98; bb->bb_sys2 = 0x47; bb->bb_sys3 = 0x90; bb->bb_trl = 0x88; bb->bb_txagc = 0x38; bus->b_regs = regs; bus->b_write = rf_write; return (&sa->sa_rf); } /* * freq is in MHz */ static int rtw_max2820_tune(struct rtw_rf *rf, uint_t freq) { struct rtw_max2820 *mx = (struct rtw_max2820 *)rf; struct rtw_rfbus *bus = &mx->mx_bus; if (freq < 2400 || freq > 2499) return (-1); return (rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_CHANNEL, LSHIFT(freq - 2400, MAX2820_CHANNEL_CF_MASK))); } static void rtw_max2820_destroy(struct rtw_rf *rf) { struct rtw_max2820 *mx = (struct rtw_max2820 *)rf; kmem_free(mx, sizeof (*mx)); } /*ARGSUSED*/ static int rtw_max2820_init(struct rtw_rf *rf, uint_t freq, uint8_t opaque_txpower, enum rtw_pwrstate power) { struct rtw_max2820 *mx = (struct rtw_max2820 *)rf; struct rtw_rfbus *bus = &mx->mx_bus; int rc; if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TEST, MAX2820_TEST_DEFAULT)) != 0) return (rc); if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, MAX2820_ENABLE_DEFAULT)) != 0) return (rc); /* * skip configuration if it's time to sleep or to power-down. */ if ((rc = rtw_max2820_pwrstate(rf, power)) != 0) return (rc); else if (power == RTW_OFF || power == RTW_SLEEP) return (0); if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_SYNTH, MAX2820_SYNTH_R_44MHZ)) != 0) return (rc); if ((rc = rtw_max2820_tune(rf, freq)) != 0) return (rc); /* * XXX The MAX2820 datasheet indicates that 1C and 2C should not * be changed from 7, however, the reference driver sets them * to 4 and 1, respectively. */ if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_RECEIVE, MAX2820_RECEIVE_DL_DEFAULT | LSHIFT(4, MAX2820A_RECEIVE_1C_MASK) | LSHIFT(1, MAX2820A_RECEIVE_2C_MASK))) != 0) return (rc); return (rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TRANSMIT, MAX2820_TRANSMIT_PA_DEFAULT)); } /*ARGSUSED*/ static int rtw_max2820_txpower(struct rtw_rf *rf, uint8_t opaque_txpower) { /* TBD */ return (0); } static int rtw_max2820_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power) { uint32_t enable; struct rtw_max2820 *mx; struct rtw_rfbus *bus; mx = (struct rtw_max2820 *)rf; bus = &mx->mx_bus; switch (power) { case RTW_OFF: case RTW_SLEEP: default: enable = 0x0; break; case RTW_ON: enable = MAX2820_ENABLE_DEFAULT; break; } return (rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, enable)); } struct rtw_rf * rtw_max2820_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int is_a) { struct rtw_max2820 *mx; struct rtw_rfbus *bus; struct rtw_rf *rf; struct rtw_bbpset *bb; mx = (struct rtw_max2820 *)kmem_zalloc(sizeof (*mx), KM_SLEEP); if (mx == NULL) return (NULL); mx->mx_is_a = is_a; rf = &mx->mx_rf; bus = &mx->mx_bus; rf->rf_init = rtw_max2820_init; rf->rf_destroy = rtw_max2820_destroy; rf->rf_txpower = rtw_max2820_txpower; rf->rf_tune = rtw_max2820_tune; rf->rf_pwrstate = rtw_max2820_pwrstate; bb = &rf->rf_bbpset; /* * XXX magic */ bb->bb_antatten = RTW_BBP_ANTATTEN_MAXIM_MAGIC; bb->bb_chestlim = 0; bb->bb_chsqlim = 159; bb->bb_ifagcdet = 100; bb->bb_ifagcini = 144; bb->bb_ifagclimit = 26; bb->bb_lnadet = 248; bb->bb_sys1 = 136; bb->bb_sys2 = 71; bb->bb_sys3 = 155; bb->bb_trl = 136; bb->bb_txagc = 8; bus->b_regs = regs; bus->b_write = rf_write; return (&mx->mx_rf); } /* * freq is in MHz */ int rtw_phy_init(struct rtw_regs *regs, struct rtw_rf *rf, uint8_t opaque_txpower, uint8_t cs_threshold, uint_t freq, int antdiv, int dflantb, enum rtw_pwrstate power) { int rc; /* * XXX is this really necessary? */ if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0) return (rc); if ((rc = rtw_bbp_preinit(regs, rf->rf_bbpset.bb_antatten, dflantb, freq)) != 0) return (rc); if ((rc = rtw_rf_tune(rf, freq)) != 0) return (rc); /* * initialize RF */ if ((rc = rtw_rf_init(rf, freq, opaque_txpower, power)) != 0) return (rc); #ifdef _RTW_FUTURE_DEBUG_ /* what is this redundant tx power setting here for? */ if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0) return (rc); #endif /* _RTW_FUTURE_DEBUG */ return (rtw_bbp_init(regs, &rf->rf_bbpset, antdiv, dflantb, cs_threshold, freq)); }