/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, v.1, (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2014-2017 Cavium, Inc. * The contents of this file are subject to the terms of the Common Development * and Distribution License, v.1, (the "License"). * You may not use this file except in compliance with the License. * You can obtain a copy of the License at available * at http://opensource.org/licenses/CDDL-1.0 * See the License for the specific language governing permissions and * limitations under the License. */ /* * Copyright 2018 Joyent, Inc. */ #include "qede.h" #define FP_LOCK(ptr) \ mutex_enter(&ptr->fp_lock); #define FP_UNLOCK(ptr) \ mutex_exit(&ptr->fp_lock); int qede_ucst_find(qede_t *qede, const uint8_t *mac_addr) { int slot; for(slot = 0; slot < qede->ucst_total; slot++) { if (bcmp(qede->ucst_mac[slot].mac_addr.ether_addr_octet, mac_addr, ETHERADDRL) == 0) { return (slot); } } return (-1); } static int qede_set_mac_addr(qede_t *qede, uint8_t *mac_addr, uint8_t fl) { struct ecore_filter_ucast params; memset(¶ms, 0, sizeof (params)); params.opcode = fl; params.type = ECORE_FILTER_MAC; params.is_rx_filter = true; params.is_tx_filter = true; COPY_ETH_ADDRESS(mac_addr, params.mac); return (ecore_filter_ucast_cmd(&qede->edev, ¶ms, ECORE_SPQ_MODE_EBLOCK, NULL)); } static int qede_add_macaddr(qede_t *qede, uint8_t *mac_addr) { int i, ret = 0; i = qede_ucst_find(qede, mac_addr); if (i != -1) { /* LINTED E_ARGUMENT_MISMATCH */ qede_info(qede, "mac addr already added %d\n", qede->ucst_avail); return (0); } if (qede->ucst_avail == 0) { qede_info(qede, "add macaddr ignored \n"); return (ENOSPC); } for (i = 0; i < qede->ucst_total; i++) { if (qede->ucst_mac[i].set == 0) { break; } } if (i >= qede->ucst_total) { qede_info(qede, "add macaddr ignored no space"); return (ENOSPC); } ret = qede_set_mac_addr(qede, (uint8_t *)mac_addr, ECORE_FILTER_ADD); if (ret == 0) { bcopy(mac_addr, qede->ucst_mac[i].mac_addr.ether_addr_octet, ETHERADDRL); qede->ucst_mac[i].set = 1; qede->ucst_avail--; /* LINTED E_ARGUMENT_MISMATCH */ qede_info(qede, " add macaddr passed for addr " "%02x:%02x:%02x:%02x:%02x:%02x", mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]); } else { /* LINTED E_ARGUMENT_MISMATCH */ qede_info(qede, "add macaddr failed for addr " "%02x:%02x:%02x:%02x:%02x:%02x", mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]); } if (qede->ucst_avail == (qede->ucst_total -1)) { u8 bcast_addr[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; for (i = 0; i < qede->ucst_total; i++) { if (qede->ucst_mac[i].set == 0) break; } ret = qede_set_mac_addr(qede, (uint8_t *)bcast_addr, ECORE_FILTER_ADD); if (ret == 0) { bcopy(bcast_addr, qede->ucst_mac[i].mac_addr.ether_addr_octet, ETHERADDRL); qede->ucst_mac[i].set = 1; qede->ucst_avail--; } else { /* LINTED E_ARGUMENT_MISMATCH */ qede_info(qede, "add macaddr failed for addr " "%02x:%02x:%02x:%02x:%02x:%02x", mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]); } } return (ret); } #ifndef ILLUMOS static int qede_add_mac_addr(void *arg, const uint8_t *mac_addr, const uint64_t flags) #else static int qede_add_mac_addr(void *arg, const uint8_t *mac_addr) #endif { qede_mac_group_t *rx_group = (qede_mac_group_t *)arg; qede_t *qede = rx_group->qede; int ret = DDI_SUCCESS; /* LINTED E_ARGUMENT_MISMATCH */ qede_info(qede, " mac addr :" MAC_STRING, MACTOSTR(mac_addr)); mutex_enter(&qede->gld_lock); if (qede->qede_state == QEDE_STATE_SUSPENDED) { mutex_exit(&qede->gld_lock); return (ECANCELED); } ret = qede_add_macaddr(qede, (uint8_t *)mac_addr); mutex_exit(&qede->gld_lock); return (ret); } static int qede_rem_macaddr(qede_t *qede, uint8_t *mac_addr) { int ret = 0; int i; i = qede_ucst_find(qede, mac_addr); if (i == -1) { /* LINTED E_ARGUMENT_MISMATCH */ qede_info(qede, "mac addr not there to remove", MAC_STRING, MACTOSTR(mac_addr)); return (0); } if (qede->ucst_mac[i].set == 0) { return (EINVAL); } ret = qede_set_mac_addr(qede, (uint8_t *)mac_addr, ECORE_FILTER_REMOVE); if (ret == 0) { bzero(qede->ucst_mac[i].mac_addr.ether_addr_octet,ETHERADDRL); qede->ucst_mac[i].set = 0; qede->ucst_avail++; } else { /* LINTED E_ARGUMENT_MISMATCH */ qede_info(qede, "mac addr remove failed", MAC_STRING, MACTOSTR(mac_addr)); } return (ret); } static int qede_rem_mac_addr(void *arg, const uint8_t *mac_addr) { qede_mac_group_t *rx_group = (qede_mac_group_t *)arg; qede_t *qede = rx_group->qede; int ret = DDI_SUCCESS; /* LINTED E_ARGUMENT_MISMATCH */ qede_info(qede, "mac addr remove:" MAC_STRING, MACTOSTR(mac_addr)); mutex_enter(&qede->gld_lock); if (qede->qede_state == QEDE_STATE_SUSPENDED) { mutex_exit(&qede->gld_lock); return (ECANCELED); } ret = qede_rem_macaddr(qede, (uint8_t *)mac_addr); mutex_exit(&qede->gld_lock); return (ret); } static int qede_tx_ring_stat(mac_ring_driver_t rh, uint_t stat, uint64_t *val) { int ret = 0; qede_fastpath_t *fp = (qede_fastpath_t *)rh; qede_tx_ring_t *tx_ring = fp->tx_ring[0]; qede_t *qede = fp->qede; if (qede->qede_state == QEDE_STATE_SUSPENDED) return (ECANCELED); switch (stat) { case MAC_STAT_OBYTES: *val = tx_ring->tx_byte_count; break; case MAC_STAT_OPACKETS: *val = tx_ring->tx_pkt_count; break; default: *val = 0; ret = ENOTSUP; } return (ret); } #ifndef ILLUMOS static mblk_t * qede_rx_ring_poll(void *arg, int poll_bytes, int poll_pkts) { #else static mblk_t * qede_rx_ring_poll(void *arg, int poll_bytes) { /* XXX pick a value at the moment */ int poll_pkts = 100; #endif qede_fastpath_t *fp = (qede_fastpath_t *)arg; mblk_t *mp = NULL; int work_done = 0; qede_t *qede = fp->qede; if (poll_bytes == 0) { return (NULL); } mutex_enter(&fp->fp_lock); qede->intrSbPollCnt[fp->vect_info->vect_index]++; mp = qede_process_fastpath(fp, poll_bytes, poll_pkts, &work_done); if (mp != NULL) { fp->rx_ring->rx_poll_cnt++; } else if ((mp == NULL) && (work_done == 0)) { qede->intrSbPollNoChangeCnt[fp->vect_info->vect_index]++; } mutex_exit(&fp->fp_lock); return (mp); } #ifndef ILLUMOS static int qede_rx_ring_intr_enable(mac_ring_driver_t rh) #else static int qede_rx_ring_intr_enable(mac_intr_handle_t rh) #endif { qede_fastpath_t *fp = (qede_fastpath_t *)rh; mutex_enter(&fp->qede->drv_lock); if (!fp->sb_phys && (fp->sb_dma_handle == NULL)) { mutex_exit(&fp->qede->drv_lock); return (DDI_FAILURE); } fp->rx_ring->intrEnableCnt++; qede_enable_hw_intr(fp); fp->disabled_by_poll = 0; mutex_exit(&fp->qede->drv_lock); return (DDI_SUCCESS); } #ifndef ILLUMOS static int qede_rx_ring_intr_disable(mac_ring_driver_t rh) #else static int qede_rx_ring_intr_disable(mac_intr_handle_t rh) #endif { qede_fastpath_t *fp = (qede_fastpath_t *)rh; mutex_enter(&fp->qede->drv_lock); if (!fp->sb_phys && (fp->sb_dma_handle == NULL)) { mutex_exit(&fp->qede->drv_lock); return (DDI_FAILURE); } fp->rx_ring->intrDisableCnt++; qede_disable_hw_intr(fp); fp->disabled_by_poll = 1; mutex_exit(&fp->qede->drv_lock); return (DDI_SUCCESS); } static int qede_rx_ring_stat(mac_ring_driver_t rh, uint_t stat, uint64_t *val) { int ret = 0; qede_fastpath_t *fp = (qede_fastpath_t *)rh; qede_t *qede = fp->qede; qede_rx_ring_t *rx_ring = fp->rx_ring; if (qede->qede_state == QEDE_STATE_SUSPENDED) { return (ECANCELED); } switch (stat) { case MAC_STAT_RBYTES: *val = rx_ring->rx_byte_cnt; break; case MAC_STAT_IPACKETS: *val = rx_ring->rx_pkt_cnt; break; default: *val = 0; ret = ENOTSUP; break; } return (ret); } static int qede_get_global_ring_index(qede_t *qede, int gindex, int rindex) { qede_fastpath_t *fp; qede_rx_ring_t *rx_ring; int i = 0; for (i = 0; i < qede->num_fp; i++) { fp = &qede->fp_array[i]; rx_ring = fp->rx_ring; if (rx_ring->group_index == gindex) { rindex--; } if (rindex < 0) { return (i); } } return (-1); } static void qede_rx_ring_stop(mac_ring_driver_t rh) { qede_fastpath_t *fp = (qede_fastpath_t *)rh; qede_rx_ring_t *rx_ring = fp->rx_ring; qede_print("!%s(%d): called", __func__,fp->qede->instance); mutex_enter(&fp->fp_lock); rx_ring->mac_ring_started = B_FALSE; mutex_exit(&fp->fp_lock); } static int qede_rx_ring_start(mac_ring_driver_t rh, u64 mr_gen_num) { qede_fastpath_t *fp = (qede_fastpath_t *)rh; qede_rx_ring_t *rx_ring = fp->rx_ring; qede_print("!%s(%d): called", __func__,fp->qede->instance); mutex_enter(&fp->fp_lock); rx_ring->mr_gen_num = mr_gen_num; rx_ring->mac_ring_started = B_TRUE; rx_ring->intrDisableCnt = 0; rx_ring->intrEnableCnt = 0; fp->disabled_by_poll = 0; mutex_exit(&fp->fp_lock); return (DDI_SUCCESS); } /* Callback function from mac layer to register rings */ void qede_fill_ring(void *arg, mac_ring_type_t rtype, const int group_index, const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh) { qede_t *qede = (qede_t *)arg; mac_intr_t *mintr = &infop->mri_intr; switch (rtype) { case MAC_RING_TYPE_RX: { /* * Index passed as a param is the ring index within the * given group index. If multiple groups are supported * then need to search into all groups to find out the * global ring index for the passed group relative * ring index */ int global_ring_index = qede_get_global_ring_index(qede, group_index, ring_index); qede_fastpath_t *fp; qede_rx_ring_t *rx_ring; int i; /* * global_ring_index < 0 means group index passed * was registered by our driver */ ASSERT(global_ring_index >= 0); if (rh == NULL) { cmn_err(CE_WARN, "!rx ring(%d) ring handle NULL", global_ring_index); } fp = &qede->fp_array[global_ring_index]; rx_ring = fp->rx_ring; fp->qede = qede; rx_ring->mac_ring_handle = rh; qede_info(qede, "rx_ring %d mac_ring_handle %p", rx_ring->rss_id, rh); /* mri_driver passed as arg to mac_ring* callbacks */ infop->mri_driver = (mac_ring_driver_t)fp; /* * mri_start callback will supply a mac rings generation * number which is needed while indicating packets * upstream via mac_ring_rx() call */ infop->mri_start = qede_rx_ring_start; infop->mri_stop = qede_rx_ring_stop; infop->mri_poll = qede_rx_ring_poll; infop->mri_stat = qede_rx_ring_stat; mintr->mi_handle = (mac_intr_handle_t)fp; mintr->mi_enable = qede_rx_ring_intr_enable; mintr->mi_disable = qede_rx_ring_intr_disable; if (qede->intr_ctx.intr_type_in_use & (DDI_INTR_TYPE_MSIX | DDI_INTR_TYPE_MSI)) { mintr->mi_ddi_handle = qede->intr_ctx. intr_hdl_array[global_ring_index + qede->num_hwfns]; } break; } case MAC_RING_TYPE_TX: { qede_fastpath_t *fp; qede_tx_ring_t *tx_ring; int i, tc; ASSERT(ring_index < qede->num_fp); fp = &qede->fp_array[ring_index]; fp->qede = qede; tx_ring = fp->tx_ring[0]; tx_ring->mac_ring_handle = rh; qede_info(qede, "tx_ring %d mac_ring_handle %p", tx_ring->tx_queue_index, rh); infop->mri_driver = (mac_ring_driver_t)fp; infop->mri_start = NULL; infop->mri_stop = NULL; infop->mri_tx = qede_ring_tx; infop->mri_stat = qede_tx_ring_stat; if (qede->intr_ctx.intr_type_in_use & (DDI_INTR_TYPE_MSIX | DDI_INTR_TYPE_MSI)) { mintr->mi_ddi_handle = qede->intr_ctx. intr_hdl_array[ring_index + qede->num_hwfns]; } break; } default: break; } } /* * Callback function from mac layer to register group */ void qede_fill_group(void *arg, mac_ring_type_t rtype, const int index, mac_group_info_t *infop, mac_group_handle_t gh) { qede_t *qede = (qede_t *)arg; switch (rtype) { case MAC_RING_TYPE_RX: { qede_mac_group_t *rx_group; rx_group = &qede->rx_groups[index]; rx_group->group_handle = gh; rx_group->group_index = index; rx_group->qede = qede; infop->mgi_driver = (mac_group_driver_t)rx_group; infop->mgi_start = NULL; infop->mgi_stop = NULL; #ifndef ILLUMOS infop->mgi_addvlan = NULL; infop->mgi_remvlan = NULL; infop->mgi_getsriov_info = NULL; infop->mgi_setmtu = NULL; #endif infop->mgi_addmac = qede_add_mac_addr; infop->mgi_remmac = qede_rem_mac_addr; infop->mgi_count = qede->num_fp; #ifndef ILLUMOS if (index == 0) { infop->mgi_flags = MAC_GROUP_DEFAULT; } #endif break; } case MAC_RING_TYPE_TX: { qede_mac_group_t *tx_group; tx_group = &qede->tx_groups[index]; tx_group->group_handle = gh; tx_group->group_index = index; tx_group->qede = qede; infop->mgi_driver = (mac_group_driver_t)tx_group; infop->mgi_start = NULL; infop->mgi_stop = NULL; infop->mgi_addmac = NULL; infop->mgi_remmac = NULL; #ifndef ILLUMOS infop->mgi_addvlan = NULL; infop->mgi_remvlan = NULL; infop->mgi_setmtu = NULL; infop->mgi_getsriov_info = NULL; #endif infop->mgi_count = qede->num_fp; #ifndef ILLUMOS if (index == 0) { infop->mgi_flags = MAC_GROUP_DEFAULT; } #endif break; } default: break; } } #ifdef ILLUMOS static int qede_transceiver_info(void *arg, uint_t id, mac_transceiver_info_t *infop) { qede_t *qede = arg; struct ecore_dev *edev = &qede->edev; struct ecore_hwfn *hwfn; struct ecore_ptt *ptt; uint32_t transceiver_state; if (id >= edev->num_hwfns || arg == NULL || infop == NULL) return (EINVAL); hwfn = &edev->hwfns[id]; ptt = ecore_ptt_acquire(hwfn); if (ptt == NULL) { return (EIO); } /* * Use the underlying raw API to get this information. While the * ecore_phy routines have some ways of getting to this information, it * ends up writing the raw data as ASCII characters which doesn't help * us one bit. */ transceiver_state = ecore_rd(hwfn, ptt, hwfn->mcp_info->port_addr + offsetof(struct public_port, transceiver_data)); transceiver_state = GET_FIELD(transceiver_state, ETH_TRANSCEIVER_STATE); ecore_ptt_release(hwfn, ptt); if ((transceiver_state & ETH_TRANSCEIVER_STATE_PRESENT) != 0) { mac_transceiver_info_set_present(infop, B_TRUE); /* * Based on our testing, the ETH_TRANSCEIVER_STATE_VALID flag is * not set, so we cannot rely on it. Instead, we have found that * the ETH_TRANSCEIVER_STATE_UPDATING will be set when we cannot * use the transceiver. */ if ((transceiver_state & ETH_TRANSCEIVER_STATE_UPDATING) != 0) { mac_transceiver_info_set_usable(infop, B_FALSE); } else { mac_transceiver_info_set_usable(infop, B_TRUE); } } else { mac_transceiver_info_set_present(infop, B_FALSE); mac_transceiver_info_set_usable(infop, B_FALSE); } return (0); } static int qede_transceiver_read(void *arg, uint_t id, uint_t page, void *buf, size_t nbytes, off_t offset, size_t *nread) { qede_t *qede = arg; struct ecore_dev *edev = &qede->edev; struct ecore_hwfn *hwfn; uint32_t port, lane; struct ecore_ptt *ptt; enum _ecore_status_t ret; if (id >= edev->num_hwfns || buf == NULL || nbytes == 0 || nread == NULL || (page != 0xa0 && page != 0xa2) || offset < 0) return (EINVAL); /* * Both supported pages have a length of 256 bytes, ensure nothing asks * us to go beyond that. */ if (nbytes > 256 || offset >= 256 || (offset + nbytes > 256)) { return (EINVAL); } hwfn = &edev->hwfns[id]; ptt = ecore_ptt_acquire(hwfn); if (ptt == NULL) { return (EIO); } ret = ecore_mcp_phy_sfp_read(hwfn, ptt, hwfn->port_id, page, offset, nbytes, buf); ecore_ptt_release(hwfn, ptt); if (ret != ECORE_SUCCESS) { return (EIO); } *nread = nbytes; return (0); } #endif /* ILLUMOS */ static int qede_mac_stats(void * arg, uint_t stat, uint64_t * value) { qede_t * qede = (qede_t *)arg; struct ecore_eth_stats vstats; struct ecore_dev *edev = &qede->edev; struct qede_link_cfg lnkcfg; int rc = 0; qede_fastpath_t *fp = &qede->fp_array[0]; qede_rx_ring_t *rx_ring; qede_tx_ring_t *tx_ring; if ((qede == NULL) || (value == NULL)) { return EINVAL; } mutex_enter(&qede->gld_lock); if(qede->qede_state != QEDE_STATE_STARTED) { mutex_exit(&qede->gld_lock); return EAGAIN; } *value = 0; memset(&vstats, 0, sizeof(struct ecore_eth_stats)); ecore_get_vport_stats(edev, &vstats); memset(&qede->curcfg, 0, sizeof(struct qede_link_cfg)); qede_get_link_info(&edev->hwfns[0], &qede->curcfg); switch (stat) { case MAC_STAT_IFSPEED: *value = (qede->props.link_speed * 1000000ULL); break; case MAC_STAT_MULTIRCV: *value = vstats.common.rx_mcast_pkts; break; case MAC_STAT_BRDCSTRCV: *value = vstats.common.rx_bcast_pkts; break; case MAC_STAT_MULTIXMT: *value = vstats.common.tx_mcast_pkts; break; case MAC_STAT_BRDCSTXMT: *value = vstats.common.tx_bcast_pkts; break; case MAC_STAT_NORCVBUF: *value = vstats.common.no_buff_discards; break; case MAC_STAT_NOXMTBUF: *value = 0; break; case MAC_STAT_IERRORS: case ETHER_STAT_MACRCV_ERRORS: *value = vstats.common.mac_filter_discards + vstats.common.packet_too_big_discard + vstats.common.rx_crc_errors; break; case MAC_STAT_OERRORS: break; case MAC_STAT_COLLISIONS: *value = vstats.bb.tx_total_collisions; break; case MAC_STAT_RBYTES: *value = vstats.common.rx_ucast_bytes + vstats.common.rx_mcast_bytes + vstats.common.rx_bcast_bytes; break; case MAC_STAT_IPACKETS: *value = vstats.common.rx_ucast_pkts + vstats.common.rx_mcast_pkts + vstats.common.rx_bcast_pkts; break; case MAC_STAT_OBYTES: *value = vstats.common.tx_ucast_bytes + vstats.common.tx_mcast_bytes + vstats.common.tx_bcast_bytes; break; case MAC_STAT_OPACKETS: *value = vstats.common.tx_ucast_pkts + vstats.common.tx_mcast_pkts + vstats.common.tx_bcast_pkts; break; case ETHER_STAT_ALIGN_ERRORS: *value = vstats.common.rx_align_errors; break; case ETHER_STAT_FCS_ERRORS: *value = vstats.common.rx_crc_errors; break; case ETHER_STAT_FIRST_COLLISIONS: break; case ETHER_STAT_MULTI_COLLISIONS: break; case ETHER_STAT_DEFER_XMTS: break; case ETHER_STAT_TX_LATE_COLLISIONS: break; case ETHER_STAT_EX_COLLISIONS: break; case ETHER_STAT_MACXMT_ERRORS: *value = 0; break; case ETHER_STAT_CARRIER_ERRORS: break; case ETHER_STAT_TOOLONG_ERRORS: *value = vstats.common.rx_oversize_packets; break; #if (MAC_VERSION > 1) case ETHER_STAT_TOOSHORT_ERRORS: *value = vstats.common.rx_undersize_packets; break; #endif case ETHER_STAT_XCVR_ADDR: *value = 0; break; case ETHER_STAT_XCVR_ID: *value = 0; break; case ETHER_STAT_XCVR_INUSE: switch (qede->props.link_speed) { default: *value = XCVR_UNDEFINED; } break; #if (MAC_VERSION > 1) case ETHER_STAT_CAP_10GFDX: *value = 0; break; #endif case ETHER_STAT_CAP_100FDX: *value = 0; break; case ETHER_STAT_CAP_100HDX: *value = 0; break; case ETHER_STAT_CAP_ASMPAUSE: *value = 1; break; case ETHER_STAT_CAP_PAUSE: *value = 1; break; case ETHER_STAT_CAP_AUTONEG: *value = 1; break; #if (MAC_VERSION > 1) case ETHER_STAT_CAP_REMFAULT: *value = 0; break; #endif #if (MAC_VERSION > 1) case ETHER_STAT_ADV_CAP_10GFDX: *value = 0; break; #endif case ETHER_STAT_ADV_CAP_ASMPAUSE: *value = 1; break; case ETHER_STAT_ADV_CAP_PAUSE: *value = 1; break; case ETHER_STAT_ADV_CAP_AUTONEG: *value = qede->curcfg.adv_capab.autoneg; break; #if (MAC_VERSION > 1) case ETHER_STAT_ADV_REMFAULT: *value = 0; break; #endif case ETHER_STAT_LINK_AUTONEG: *value = qede->curcfg.autoneg; break; case ETHER_STAT_LINK_DUPLEX: *value = (qede->props.link_duplex == DUPLEX_FULL) ? LINK_DUPLEX_FULL : LINK_DUPLEX_HALF; break; /* * Supported speeds. These indicate what hardware is capable of. */ case ETHER_STAT_CAP_1000HDX: *value = qede->curcfg.supp_capab.param_1000hdx; break; case ETHER_STAT_CAP_1000FDX: *value = qede->curcfg.supp_capab.param_1000fdx; break; case ETHER_STAT_CAP_10GFDX: *value = qede->curcfg.supp_capab.param_10000fdx; break; case ETHER_STAT_CAP_25GFDX: *value = qede->curcfg.supp_capab.param_25000fdx; break; case ETHER_STAT_CAP_40GFDX: *value = qede->curcfg.supp_capab.param_40000fdx; break; case ETHER_STAT_CAP_50GFDX: *value = qede->curcfg.supp_capab.param_50000fdx; break; case ETHER_STAT_CAP_100GFDX: *value = qede->curcfg.supp_capab.param_100000fdx; break; /* * Advertised speeds. These indicate what hardware is currently sending. */ case ETHER_STAT_ADV_CAP_1000HDX: *value = qede->curcfg.adv_capab.param_1000hdx; break; case ETHER_STAT_ADV_CAP_1000FDX: *value = qede->curcfg.adv_capab.param_1000fdx; break; case ETHER_STAT_ADV_CAP_10GFDX: *value = qede->curcfg.adv_capab.param_10000fdx; break; case ETHER_STAT_ADV_CAP_25GFDX: *value = qede->curcfg.adv_capab.param_25000fdx; break; case ETHER_STAT_ADV_CAP_40GFDX: *value = qede->curcfg.adv_capab.param_40000fdx; break; case ETHER_STAT_ADV_CAP_50GFDX: *value = qede->curcfg.adv_capab.param_50000fdx; break; case ETHER_STAT_ADV_CAP_100GFDX: *value = qede->curcfg.adv_capab.param_100000fdx; break; default: rc = ENOTSUP; } mutex_exit(&qede->gld_lock); return (rc); } /* (flag) TRUE = on, FALSE = off */ static int qede_mac_promiscuous(void *arg, boolean_t on) { qede_t *qede = (qede_t *)arg; qede_print("!%s(%d): called", __func__,qede->instance); int ret = DDI_SUCCESS; enum qede_filter_rx_mode_type mode; mutex_enter(&qede->drv_lock); if (qede->qede_state == QEDE_STATE_SUSPENDED) { ret = ECANCELED; goto exit; } if (on) { qede_info(qede, "Entering promiscuous mode"); mode = QEDE_FILTER_RX_MODE_PROMISC; qede->params.promisc_fl = B_TRUE; } else { qede_info(qede, "Leaving promiscuous mode"); if(qede->params.multi_promisc_fl == B_TRUE) { mode = QEDE_FILTER_RX_MODE_MULTI_PROMISC; } else { mode = QEDE_FILTER_RX_MODE_REGULAR; } qede->params.promisc_fl = B_FALSE; } ret = qede_set_filter_rx_mode(qede, mode); exit: mutex_exit(&qede->drv_lock); return (ret); } int qede_set_rx_mac_mcast(qede_t *qede, enum ecore_filter_opcode opcode, uint8_t *mac, int mc_cnt) { struct ecore_filter_mcast cmd; int i; memset(&cmd, 0, sizeof(cmd)); cmd.opcode = opcode; cmd.num_mc_addrs = mc_cnt; for (i = 0; i < mc_cnt; i++, mac += ETH_ALLEN) { COPY_ETH_ADDRESS(mac, cmd.mac[i]); } return (ecore_filter_mcast_cmd(&qede->edev, &cmd, ECORE_SPQ_MODE_CB, NULL)); } int qede_set_filter_rx_mode(qede_t * qede, enum qede_filter_rx_mode_type type) { struct ecore_filter_accept_flags flg; memset(&flg, 0, sizeof(flg)); flg.update_rx_mode_config = 1; flg.update_tx_mode_config = 1; flg.rx_accept_filter = ECORE_ACCEPT_UCAST_MATCHED | ECORE_ACCEPT_MCAST_MATCHED | ECORE_ACCEPT_BCAST; flg.tx_accept_filter = ECORE_ACCEPT_UCAST_MATCHED | ECORE_ACCEPT_MCAST_MATCHED | ECORE_ACCEPT_BCAST; if (type == QEDE_FILTER_RX_MODE_PROMISC) flg.rx_accept_filter |= ECORE_ACCEPT_UCAST_UNMATCHED | ECORE_ACCEPT_MCAST_UNMATCHED; else if (type == QEDE_FILTER_RX_MODE_MULTI_PROMISC) flg.rx_accept_filter |= ECORE_ACCEPT_MCAST_UNMATCHED; qede_info(qede, "rx_mode rx_filter=0x%x tx_filter=0x%x type=0x%x\n", flg.rx_accept_filter, flg.tx_accept_filter, type); return (ecore_filter_accept_cmd(&qede->edev, 0, flg, 0, /* update_accept_any_vlan */ 0, /* accept_any_vlan */ ECORE_SPQ_MODE_CB, NULL)); } int qede_multicast(qede_t *qede, boolean_t flag, const uint8_t *ptr_mcaddr) { int i, ret = DDI_SUCCESS; qede_mcast_list_entry_t *ptr_mlist; qede_mcast_list_entry_t *ptr_entry; int mc_cnt; unsigned char *mc_macs, *tmpmc; size_t size; boolean_t mcmac_exists = B_FALSE; enum qede_filter_rx_mode_type mode; if (!ptr_mcaddr) { cmn_err(CE_NOTE, "Removing all multicast"); } else { cmn_err(CE_NOTE, "qede=%p %s multicast: %02x:%02x:%02x:%02x:%02x:%02x", qede, (flag) ? "Adding" : "Removing", ptr_mcaddr[0], ptr_mcaddr[1],ptr_mcaddr[2],ptr_mcaddr[3],ptr_mcaddr[4], ptr_mcaddr[5]); } if (flag && (ptr_mcaddr == NULL)) { cmn_err(CE_WARN, "ERROR: Multicast address not specified"); return EINVAL; } /* exceeds addition of mcaddr above limit */ if (flag && (qede->mc_cnt >= MAX_MC_SOFT_LIMIT)) { qede_info(qede, "Cannot add more than MAX_MC_SOFT_LIMIT"); return ENOENT; } size = MAX_MC_SOFT_LIMIT * ETH_ALLEN; mc_macs = kmem_zalloc(size, KM_NOSLEEP); if (!mc_macs) { cmn_err(CE_WARN, "ERROR: Failed to allocate for mc_macs"); return EINVAL; } tmpmc = mc_macs; /* remove all multicast - as flag not set and mcaddr not specified*/ if (!flag && (ptr_mcaddr == NULL)) { QEDE_LIST_FOR_EACH_ENTRY(ptr_entry, &qede->mclist.head, qede_mcast_list_entry_t, mclist_entry) { if (ptr_entry != NULL) { QEDE_LIST_REMOVE(&ptr_entry->mclist_entry, &qede->mclist.head); kmem_free(ptr_entry, sizeof (qede_mcast_list_entry_t) + ETH_ALLEN); } } ret = qede_set_rx_mac_mcast(qede, ECORE_FILTER_REMOVE, mc_macs, 1); qede->mc_cnt = 0; goto exit; } QEDE_LIST_FOR_EACH_ENTRY(ptr_entry, &qede->mclist.head, qede_mcast_list_entry_t, mclist_entry) { if ((ptr_entry != NULL) && IS_ETH_ADDRESS_EQUAL(ptr_mcaddr, ptr_entry->mac)) { mcmac_exists = B_TRUE; break; } } if (flag && mcmac_exists) { ret = DDI_SUCCESS; goto exit; } else if (!flag && !mcmac_exists) { ret = DDI_SUCCESS; goto exit; } if (flag) { ptr_entry = kmem_zalloc((sizeof (qede_mcast_list_entry_t) + ETH_ALLEN), KM_NOSLEEP); ptr_entry->mac = (uint8_t *)ptr_entry + sizeof (qede_mcast_list_entry_t); COPY_ETH_ADDRESS(ptr_mcaddr, ptr_entry->mac); QEDE_LIST_ADD(&ptr_entry->mclist_entry, &qede->mclist.head); } else { QEDE_LIST_REMOVE(&ptr_entry->mclist_entry, &qede->mclist.head); kmem_free(ptr_entry, sizeof(qede_mcast_list_entry_t) + ETH_ALLEN); } mc_cnt = 0; QEDE_LIST_FOR_EACH_ENTRY(ptr_entry, &qede->mclist.head, qede_mcast_list_entry_t, mclist_entry) { COPY_ETH_ADDRESS(ptr_entry->mac, tmpmc); tmpmc += ETH_ALLEN; mc_cnt++; } qede->mc_cnt = mc_cnt; if (mc_cnt <=64) { ret = qede_set_rx_mac_mcast(qede, ECORE_FILTER_ADD, (unsigned char *)mc_macs, mc_cnt); if ((qede->params.multi_promisc_fl == B_TRUE) && (qede->params.promisc_fl == B_FALSE)) { mode = QEDE_FILTER_RX_MODE_REGULAR; ret = qede_set_filter_rx_mode(qede, mode); } qede->params.multi_promisc_fl = B_FALSE; } else { if ((qede->params.multi_promisc_fl == B_FALSE) && (qede->params.promisc_fl == B_FALSE)) { ret = qede_set_filter_rx_mode(qede, QEDE_FILTER_RX_MODE_MULTI_PROMISC); } qede->params.multi_promisc_fl = B_TRUE; qede_info(qede, "mode is MULTI_PROMISC"); } exit: kmem_free(mc_macs, size); qede_info(qede, "multicast ret %d mc_cnt %d\n", ret, qede->mc_cnt); return (ret); } /* * This function is used to enable or disable multicast packet reception for * particular multicast addresses. * (flag) TRUE = add, FALSE = remove */ static int qede_mac_multicast(void *arg, boolean_t flag, const uint8_t * mcast_addr) { qede_t *qede = (qede_t *)arg; int ret = DDI_SUCCESS; mutex_enter(&qede->gld_lock); if(qede->qede_state != QEDE_STATE_STARTED) { mutex_exit(&qede->gld_lock); return (EAGAIN); } ret = qede_multicast(qede, flag, mcast_addr); mutex_exit(&qede->gld_lock); return (ret); } int qede_clear_filters(qede_t *qede) { int ret = 0; int i; if ((qede->params.promisc_fl == B_TRUE) || (qede->params.multi_promisc_fl == B_TRUE)) { ret = qede_set_filter_rx_mode(qede, QEDE_FILTER_RX_MODE_REGULAR); if (ret) { qede_info(qede, "qede_clear_filters failed to set rx_mode"); } } for (i=0; i < qede->ucst_total; i++) { if (qede->ucst_mac[i].set) { qede_rem_macaddr(qede, qede->ucst_mac[i].mac_addr.ether_addr_octet); } } qede_multicast(qede, B_FALSE, NULL); return (ret); } #ifdef NO_CROSSBOW static int qede_mac_unicast(void *arg, const uint8_t * mac_addr) { qede_t *qede = (qede_t *)arg; return 0; } static mblk_t * qede_mac_tx(void *arg, mblk_t * mblk) { qede_t *qede = (qede_t *)arg; qede_fastpath_t *fp = &qede->fp_array[0]; mblk = qede_ring_tx((void *)fp, mblk); return (mblk); } #endif /* NO_CROSSBOW */ static lb_property_t loopmodes[] = { { normal, "normal", QEDE_LOOP_NONE }, { internal, "internal", QEDE_LOOP_INTERNAL }, { external, "external", QEDE_LOOP_EXTERNAL }, }; /* * Set Loopback mode */ static enum ioc_reply qede_set_loopback_mode(qede_t *qede, uint32_t mode) { int i = 0; struct ecore_dev *edev = &qede->edev; struct ecore_hwfn *hwfn; struct ecore_ptt *ptt = NULL; struct ecore_mcp_link_params *link_params; hwfn = &edev->hwfns[0]; link_params = ecore_mcp_get_link_params(hwfn); ptt = ecore_ptt_acquire(hwfn); switch(mode) { default: qede_info(qede, "unknown loopback mode !!"); ecore_ptt_release(hwfn, ptt); return IOC_INVAL; case QEDE_LOOP_NONE: ecore_mcp_set_link(hwfn, ptt, 0); while (qede->params.link_state && i < 5000) { OSAL_MSLEEP(1); i++; } i = 0; link_params->loopback_mode = ETH_LOOPBACK_NONE; qede->loop_back_mode = QEDE_LOOP_NONE; (void) ecore_mcp_set_link(hwfn, ptt, 1); ecore_ptt_release(hwfn, ptt); while (!qede->params.link_state && i < 5000) { OSAL_MSLEEP(1); i++; } return IOC_REPLY; case QEDE_LOOP_INTERNAL: qede_print("!%s(%d) : loopback mode (INTERNAL) is set!", __func__, qede->instance); ecore_mcp_set_link(hwfn, ptt, 0); while(qede->params.link_state && i < 5000) { OSAL_MSLEEP(1); i++; } i = 0; link_params->loopback_mode = ETH_LOOPBACK_INT_PHY; qede->loop_back_mode = QEDE_LOOP_INTERNAL; (void) ecore_mcp_set_link(hwfn, ptt, 1); ecore_ptt_release(hwfn, ptt); while(!qede->params.link_state && i < 5000) { OSAL_MSLEEP(1); i++; } return IOC_REPLY; case QEDE_LOOP_EXTERNAL: qede_print("!%s(%d) : External loopback mode is not supported", __func__, qede->instance); ecore_ptt_release(hwfn, ptt); return IOC_INVAL; } } static int qede_ioctl_pcicfg_rd(qede_t *qede, u32 addr, void *data, int len) { u32 crb, actual_crb; uint32_t ret = 0; int cap_offset = 0, cap_id = 0, next_cap = 0; ddi_acc_handle_t pci_cfg_handle = qede->pci_cfg_handle; qede_ioctl_data_t * data1 = (qede_ioctl_data_t *) data; cap_offset = pci_config_get8(pci_cfg_handle, PCI_CONF_CAP_PTR); while (cap_offset != 0) { /* Check for an invalid PCI read. */ if (cap_offset == PCI_EINVAL8) { return DDI_FAILURE; } cap_id = pci_config_get8(pci_cfg_handle, cap_offset); if (cap_id == PCI_CAP_ID_PCI_E) { /* PCIe expr capab struct found */ break; } else { next_cap = pci_config_get8(pci_cfg_handle, cap_offset + 1); cap_offset = next_cap; } } switch (len) { case 1: ret = pci_config_get8(qede->pci_cfg_handle, addr); (void) memcpy(data, &ret, sizeof(uint8_t)); break; case 2: ret = pci_config_get16(qede->pci_cfg_handle, addr); (void) memcpy(data, &ret, sizeof(uint16_t)); break; case 4: ret = pci_config_get32(qede->pci_cfg_handle, addr); (void) memcpy(data, &ret, sizeof(uint32_t)); break; default: cmn_err(CE_WARN, "bad length for pci config read\n"); return (1); } return (0); } static int qede_ioctl_pcicfg_wr(qede_t *qede, u32 addr, void *data, int len) { uint16_t ret = 0; int cap_offset = 0, cap_id = 0, next_cap = 0; qede_ioctl_data_t * data1 = (qede_ioctl_data_t *) data; ddi_acc_handle_t pci_cfg_handle = qede->pci_cfg_handle; #if 1 cap_offset = pci_config_get8(pci_cfg_handle, PCI_CONF_CAP_PTR); while (cap_offset != 0) { cap_id = pci_config_get8(pci_cfg_handle, cap_offset); if (cap_id == PCI_CAP_ID_PCI_E) { /* PCIe expr capab struct found */ break; } else { next_cap = pci_config_get8(pci_cfg_handle, cap_offset + 1); cap_offset = next_cap; } } #endif switch(len) { case 1: pci_config_put8(qede->pci_cfg_handle, addr, *(char *)&(data)); break; case 2: ret = pci_config_get16(qede->pci_cfg_handle, addr); ret = ret | *(uint16_t *)data1->uabc; pci_config_put16(qede->pci_cfg_handle, addr, ret); break; case 4: pci_config_put32(qede->pci_cfg_handle, addr, *(uint32_t *)data1->uabc); break; default: return (1); } return (0); } static int qede_ioctl_rd_wr_reg(qede_t *qede, void *data) { struct ecore_hwfn *p_hwfn; struct ecore_dev *edev = &qede->edev; struct ecore_ptt *ptt; qede_ioctl_data_t *data1 = (qede_ioctl_data_t *)data; uint32_t ret = 0; uint8_t cmd = (uint8_t) data1->unused1; uint32_t addr = data1->off; uint32_t val = *(uint32_t *)&data1->uabc[1]; uint32_t hwfn_index = *(uint32_t *)&data1->uabc[5]; uint32_t *reg_addr; if (hwfn_index > qede->num_hwfns) { cmn_err(CE_WARN, "invalid hwfn index from application\n"); return (EINVAL); } p_hwfn = &edev->hwfns[hwfn_index]; switch(cmd) { case QEDE_REG_READ: ret = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, addr); (void) memcpy(data1->uabc, &ret, sizeof(uint32_t)); break; case QEDE_REG_WRITE: ecore_wr(p_hwfn, p_hwfn->p_main_ptt, addr, val); break; default: cmn_err(CE_WARN, "wrong command in register read/write from application\n"); break; } return (ret); } static int qede_ioctl_rd_wr_nvram(qede_t *qede, mblk_t *mp) { qede_nvram_data_t *data1 = (qede_nvram_data_t *)(mp->b_cont->b_rptr); qede_nvram_data_t *data2, *next_data; struct ecore_dev *edev = &qede->edev; uint32_t hdr_size = 24, bytes_to_copy, copy_len = 0; uint32_t copy_len1 = 0; uint32_t addr = data1->off; uint32_t size = data1->size, i, buf_size; uint8_t cmd, cmd2; uint8_t *buf, *tmp_buf; mblk_t *mp1; cmd = (uint8_t)data1->unused1; switch(cmd) { case QEDE_NVRAM_CMD_READ: buf = kmem_zalloc(size, GFP_KERNEL); if(buf == NULL) { cmn_err(CE_WARN, "memory allocation failed" " in nvram read ioctl\n"); return (DDI_FAILURE); } (void) ecore_mcp_nvm_read(edev, addr, buf, data1->size); copy_len = (MBLKL(mp->b_cont)) - hdr_size; if(copy_len > size) { (void) memcpy(data1->uabc, buf, size); kmem_free(buf, size); //OSAL_FREE(edev, buf); break; } (void) memcpy(data1->uabc, buf, copy_len); bytes_to_copy = size - copy_len; tmp_buf = ((uint8_t *)buf) + copy_len; copy_len1 = copy_len; mp1 = mp->b_cont; mp1 = mp1->b_cont; while (mp1) { copy_len = MBLKL(mp1); if(mp1->b_cont == NULL) { copy_len = MBLKL(mp1) - 4; } data2 = (qede_nvram_data_t *)mp1->b_rptr; if (copy_len > bytes_to_copy) { (void) memcpy(data2->uabc, tmp_buf, bytes_to_copy); kmem_free(buf, size); //OSAL_FREE(edev, buf); break; } (void) memcpy(data2->uabc, tmp_buf, copy_len); tmp_buf = tmp_buf + copy_len; copy_len += copy_len; mp1 = mp1->b_cont; bytes_to_copy = bytes_to_copy - copy_len; } kmem_free(buf, size); //OSAL_FREE(edev, buf); break; case QEDE_NVRAM_CMD_WRITE: cmd2 = (uint8_t )data1->cmd2; size = data1->size; addr = data1->off; buf_size = size; //data1->buf_size; //buf_size = data1->buf_size; switch(cmd2){ case START_NVM_WRITE: buf = kmem_zalloc(size, GFP_KERNEL); //buf = qede->reserved_buf; qede->nvm_buf_size = data1->size; if(buf == NULL) { cmn_err(CE_WARN, "memory allocation failed in START_NVM_WRITE\n"); return DDI_FAILURE; } qede->nvm_buf_start = buf; cmn_err(CE_NOTE, "buf = %p, size = %x\n", qede->nvm_buf_start, size); qede->nvm_buf = buf; qede->copy_len = 0; //tmp_buf = buf + addr; break; case ACCUMULATE_NVM_BUF: tmp_buf = qede->nvm_buf; copy_len = MBLKL(mp->b_cont) - hdr_size; if(copy_len > buf_size) { if (buf_size < qede->nvm_buf_size) { (void) memcpy(tmp_buf, data1->uabc, buf_size); qede->copy_len = qede->copy_len + buf_size; } else { (void) memcpy(tmp_buf, data1->uabc, qede->nvm_buf_size); qede->copy_len = qede->copy_len + qede->nvm_buf_size; } tmp_buf = tmp_buf + buf_size; qede->nvm_buf = tmp_buf; //qede->copy_len = qede->copy_len + buf_size; cmn_err(CE_NOTE, "buf_size from app = %x\n", copy_len); break; } (void) memcpy(tmp_buf, data1->uabc, copy_len); tmp_buf = tmp_buf + copy_len; bytes_to_copy = buf_size - copy_len; mp1 = mp->b_cont; mp1 = mp1->b_cont; copy_len1 = copy_len; while (mp1) { copy_len = MBLKL(mp1); if (mp1->b_cont == NULL) { copy_len = MBLKL(mp1) - 4; } next_data = (qede_nvram_data_t *) mp1->b_rptr; if (copy_len > bytes_to_copy){ (void) memcpy(tmp_buf, next_data->uabc, bytes_to_copy); qede->copy_len = qede->copy_len + bytes_to_copy; break; } (void) memcpy(tmp_buf, next_data->uabc, copy_len); qede->copy_len = qede->copy_len + copy_len; tmp_buf = tmp_buf + copy_len; copy_len = copy_len1 + copy_len; bytes_to_copy = bytes_to_copy - copy_len; mp1 = mp1->b_cont; } qede->nvm_buf = tmp_buf; break; case STOP_NVM_WRITE: //qede->nvm_buf = tmp_buf; break; case READ_BUF: tmp_buf = (uint8_t *)qede->nvm_buf_start; for(i = 0; i < size ; i++){ cmn_err(CE_NOTE, "buff (%d) : %d\n", i, *tmp_buf); tmp_buf ++; } break; } break; case QEDE_NVRAM_CMD_PUT_FILE_DATA: tmp_buf = qede->nvm_buf_start; (void) ecore_mcp_nvm_write(edev, ECORE_PUT_FILE_DATA, addr, tmp_buf, size); kmem_free(qede->nvm_buf_start, size); //OSAL_FREE(edev, tmp_buf); cmn_err(CE_NOTE, "total size = %x, copied size = %x\n", qede->nvm_buf_size, qede->copy_len); tmp_buf = NULL; qede->nvm_buf = NULL; qede->nvm_buf_start = NULL; break; case QEDE_NVRAM_CMD_SET_SECURE_MODE: (void) ecore_mcp_nvm_set_secure_mode(edev, addr); break; case QEDE_NVRAM_CMD_DEL_FILE: (void) ecore_mcp_nvm_del_file(edev, addr); break; case QEDE_NVRAM_CMD_PUT_FILE_BEGIN: (void) ecore_mcp_nvm_put_file_begin(edev, addr); break; case QEDE_NVRAM_CMD_GET_NVRAM_RESP: buf = kmem_zalloc(size, KM_SLEEP); (void) ecore_mcp_nvm_resp(edev, buf); (void)memcpy(data1->uabc, buf, size); kmem_free(buf, size); break; default: cmn_err(CE_WARN, "wrong command in NVRAM read/write from application\n"); break; } return (DDI_SUCCESS); } static int qede_get_func_info(qede_t *qede, void *data) { qede_link_output_t link_op; qede_func_info_t func_info; qede_ioctl_data_t *data1 = (qede_ioctl_data_t *)data; struct ecore_dev *edev = &qede->edev; struct ecore_hwfn *hwfn; struct ecore_mcp_link_params params; struct ecore_mcp_link_state link; hwfn = &edev->hwfns[0]; if(hwfn == NULL){ cmn_err(CE_WARN, "(%s) : cannot acquire hwfn\n", __func__); return (DDI_FAILURE); } memcpy(¶ms, &hwfn->mcp_info->link_input, sizeof(params)); memcpy(&link, &hwfn->mcp_info->link_output, sizeof(link)); if(link.link_up) { link_op.link_up = true; } link_op.supported_caps = SUPPORTED_FIBRE; if(params.speed.autoneg) { link_op.supported_caps |= SUPPORTED_Autoneg; } if(params.pause.autoneg || (params.pause.forced_rx && params.pause.forced_tx)) { link_op.supported_caps |= SUPPORTED_Asym_Pause; } if (params.pause.autoneg || params.pause.forced_rx || params.pause.forced_tx) { link_op.supported_caps |= SUPPORTED_Pause; } if (params.speed.advertised_speeds & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G) { link_op.supported_caps |= SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full; } if (params.speed.advertised_speeds & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G) { link_op.supported_caps |= SUPPORTED_10000baseKR_Full; } if (params.speed.advertised_speeds & NVM_CFG1_PORT_DRV_LINK_SPEED_40G) { link_op.supported_caps |= SUPPORTED_40000baseLR4_Full; } link_op.advertised_caps = link_op.supported_caps; if(link.link_up) { link_op.speed = link.speed; } else { link_op.speed = 0; } link_op.duplex = DUPLEX_FULL; link_op.port = PORT_FIBRE; link_op.autoneg = params.speed.autoneg; /* Link partner capabilities */ if (link.partner_adv_speed & ECORE_LINK_PARTNER_SPEED_1G_HD) { link_op.lp_caps |= SUPPORTED_1000baseT_Half; } if (link.partner_adv_speed & ECORE_LINK_PARTNER_SPEED_1G_FD) { link_op.lp_caps |= SUPPORTED_1000baseT_Full; } if (link.partner_adv_speed & ECORE_LINK_PARTNER_SPEED_10G) { link_op.lp_caps |= SUPPORTED_10000baseKR_Full; } if (link.partner_adv_speed & ECORE_LINK_PARTNER_SPEED_20G) { link_op.lp_caps |= SUPPORTED_20000baseKR2_Full; } if (link.partner_adv_speed & ECORE_LINK_PARTNER_SPEED_40G) { link_op.lp_caps |= SUPPORTED_40000baseLR4_Full; } if (link.an_complete) { link_op.lp_caps |= SUPPORTED_Autoneg; } if (link.partner_adv_pause) { link_op.lp_caps |= SUPPORTED_Pause; } if (link.partner_adv_pause == ECORE_LINK_PARTNER_ASYMMETRIC_PAUSE || link.partner_adv_pause == ECORE_LINK_PARTNER_BOTH_PAUSE) { link_op.lp_caps |= SUPPORTED_Asym_Pause; } func_info.supported = link_op.supported_caps; func_info.advertising = link_op.advertised_caps; func_info.speed = link_op.speed; func_info.duplex = link_op.duplex; func_info.port = qede->pci_func & 0x1; func_info.autoneg = link_op.autoneg; (void) memcpy(data1->uabc, &func_info, sizeof(qede_func_info_t)); return (0); } static int qede_do_ioctl(qede_t *qede, queue_t *q, mblk_t *mp) { qede_ioctl_data_t *up_data; qede_driver_info_t driver_info; struct ecore_dev *edev = &qede->edev; struct ecore_hwfn *hwfn; struct ecore_ptt *ptt = NULL; struct mcp_file_att attrib; uint32_t flash_size; uint32_t mcp_resp, mcp_param, txn_size; uint32_t cmd, size, ret = 0; uint64_t off; int * up_data1; void * ptr; mblk_t *mp1 = mp; char mac_addr[32]; up_data = (qede_ioctl_data_t *)(mp->b_cont->b_rptr); cmd = up_data->cmd; off = up_data->off; size = up_data->size; switch (cmd) { case QEDE_DRV_INFO: hwfn = &edev->hwfns[0]; ptt = ecore_ptt_acquire(hwfn); snprintf(driver_info.drv_name, MAX_QEDE_NAME_LEN, "%s", "qede"); snprintf(driver_info.drv_version, QEDE_STR_SIZE, "v:%s", qede->version); snprintf(driver_info.mfw_version, QEDE_STR_SIZE, "%s", qede->versionMFW); snprintf(driver_info.stormfw_version, QEDE_STR_SIZE, "%s", qede->versionFW); snprintf(driver_info.bus_info, QEDE_STR_SIZE, "%s", qede->bus_dev_func); /* * calling ecore_mcp_nvm_rd_cmd to find the flash length, i * 0x08 is equivalent of NVM_TYPE_MFW_TRACE1 */ ecore_mcp_get_flash_size(hwfn, ptt, &flash_size); driver_info.eeprom_dump_len = flash_size; (void) memcpy(up_data->uabc, &driver_info, sizeof (qede_driver_info_t)); up_data->size = sizeof (qede_driver_info_t); ecore_ptt_release(hwfn, ptt); break; case QEDE_RD_PCICFG: ret = qede_ioctl_pcicfg_rd(qede, off, up_data->uabc, size); break; case QEDE_WR_PCICFG: ret = qede_ioctl_pcicfg_wr(qede, off, up_data, size); break; case QEDE_RW_REG: ret = qede_ioctl_rd_wr_reg(qede, (void *)up_data); break; case QEDE_RW_NVRAM: ret = qede_ioctl_rd_wr_nvram(qede, mp1); break; case QEDE_FUNC_INFO: ret = qede_get_func_info(qede, (void *)up_data); break; case QEDE_MAC_ADDR: snprintf(mac_addr, sizeof(mac_addr), "%02x:%02x:%02x:%02x:%02x:%02x", qede->ether_addr[0], qede->ether_addr[1], qede->ether_addr[2], qede->ether_addr[3], qede->ether_addr[4], qede->ether_addr[5]); (void) memcpy(up_data->uabc, &mac_addr, sizeof(mac_addr)); break; } //if (cmd == QEDE_RW_NVRAM) { // miocack (q, mp, (sizeof(qede_ioctl_data_t)), 0); // return IOC_REPLY; //} miocack (q, mp, (sizeof(qede_ioctl_data_t)), ret); //miocack (q, mp, 0, ret); return (IOC_REPLY); } static void qede_ioctl(qede_t *qede, int cmd, queue_t *q, mblk_t *mp) { void *ptr; switch(cmd) { case QEDE_CMD: (void) qede_do_ioctl(qede, q, mp); break; default : cmn_err(CE_WARN, "qede ioctl command %x not supported\n", cmd); break; } return; } enum ioc_reply qede_loopback_ioctl(qede_t *qede, queue_t *wq, mblk_t *mp, struct iocblk *iocp) { lb_info_sz_t *lb_info_size; lb_property_t *lb_prop; uint32_t *lb_mode; int cmd; /* * Validate format of ioctl */ if(mp->b_cont == NULL) { return IOC_INVAL; } cmd = iocp->ioc_cmd; switch(cmd) { default: qede_print("!%s(%d): unknown ioctl command %x\n", __func__, qede->instance, cmd); return IOC_INVAL; case LB_GET_INFO_SIZE: if (iocp->ioc_count != sizeof(lb_info_sz_t)) { qede_info(qede, "error: ioc_count %d, sizeof %d", iocp->ioc_count, sizeof(lb_info_sz_t)); return IOC_INVAL; } lb_info_size = (void *)mp->b_cont->b_rptr; *lb_info_size = sizeof(loopmodes); return IOC_REPLY; case LB_GET_INFO: if (iocp->ioc_count != sizeof (loopmodes)) { qede_info(qede, "error: iocp->ioc_count %d, sizepof %d", iocp->ioc_count, sizeof (loopmodes)); return (IOC_INVAL); } lb_prop = (void *)mp->b_cont->b_rptr; bcopy(loopmodes, lb_prop, sizeof (loopmodes)); return IOC_REPLY; case LB_GET_MODE: if (iocp->ioc_count != sizeof (uint32_t)) { qede_info(qede, "iocp->ioc_count %d, sizeof : %d\n", iocp->ioc_count, sizeof (uint32_t)); return (IOC_INVAL); } lb_mode = (void *)mp->b_cont->b_rptr; *lb_mode = qede->loop_back_mode; return IOC_REPLY; case LB_SET_MODE: if (iocp->ioc_count != sizeof (uint32_t)) { qede_info(qede, "iocp->ioc_count %d, sizeof : %d\n", iocp->ioc_count, sizeof (uint32_t)); return (IOC_INVAL); } lb_mode = (void *)mp->b_cont->b_rptr; return (qede_set_loopback_mode(qede,*lb_mode)); } } static void qede_mac_ioctl(void * arg, queue_t * wq, mblk_t * mp) { int err, cmd; qede_t * qede = (qede_t *)arg; struct iocblk *iocp = (struct iocblk *) (uintptr_t)mp->b_rptr; enum ioc_reply status = IOC_DONE; boolean_t need_privilege = B_TRUE; iocp->ioc_error = 0; cmd = iocp->ioc_cmd; mutex_enter(&qede->drv_lock); if ((qede->qede_state == QEDE_STATE_SUSPENDING) || (qede->qede_state == QEDE_STATE_SUSPENDED)) { mutex_exit(&qede->drv_lock); miocnak(wq, mp, 0, EINVAL); return; } switch(cmd) { case QEDE_CMD: break; case LB_GET_INFO_SIZE: case LB_GET_INFO: case LB_GET_MODE: need_privilege = B_FALSE; case LB_SET_MODE: break; default: qede_print("!%s(%d) unknown ioctl command %x\n", __func__, qede->instance, cmd); miocnak(wq, mp, 0, EINVAL); mutex_exit(&qede->drv_lock); return; } if(need_privilege) { err = secpolicy_net_config(iocp->ioc_cr, B_FALSE); if(err){ qede_info(qede, "secpolicy() failed"); miocnak(wq, mp, 0, err); mutex_exit(&qede->drv_lock); return; } } switch (cmd) { default: qede_print("!%s(%d) : unknown ioctl command %x\n", __func__, qede->instance, cmd); status = IOC_INVAL; mutex_exit(&qede->drv_lock); return; case LB_GET_INFO_SIZE: case LB_GET_INFO: case LB_GET_MODE: case LB_SET_MODE: status = qede_loopback_ioctl(qede, wq, mp, iocp); break; case QEDE_CMD: qede_ioctl(qede, cmd, wq, mp); status = IOC_DONE; break; } switch(status){ default: qede_print("!%s(%d) : invalid status from ioctl", __func__,qede->instance); break; case IOC_DONE: /* * OK, Reply already sent */ break; case IOC_REPLY: mp->b_datap->db_type = iocp->ioc_error == 0 ? M_IOCACK : M_IOCNAK; qreply(wq, mp); break; case IOC_INVAL: mutex_exit(&qede->drv_lock); //miocack(wq, mp, 0, 0); miocnak(wq, mp, 0, iocp->ioc_error == 0 ? EINVAL : iocp->ioc_error); return; } mutex_exit(&qede->drv_lock); } extern ddi_dma_attr_t qede_buf2k_dma_attr_txbuf; extern ddi_dma_attr_t qede_dma_attr_rxbuf; extern ddi_dma_attr_t qede_dma_attr_desc; static boolean_t qede_mac_get_capability(void *arg, mac_capab_t capability, void * cap_data) { qede_t * qede = (qede_t *)arg; uint32_t *txflags = cap_data; boolean_t ret = B_FALSE; switch (capability) { case MAC_CAPAB_HCKSUM: { u32 *tx_flags = cap_data; /* * Check if checksum is enabled on * tx and advertise the cksum capab * to mac layer accordingly. On Rx * side checksummed packets are * reveiced anyway */ qede_info(qede, "%s tx checksum offload", (qede->checksum == DEFAULT_CKSUM_OFFLOAD) ? "Enabling": "Disabling"); if (qede->checksum != DEFAULT_CKSUM_OFFLOAD) { ret = B_FALSE; break; } /* * Hardware does not support ICMPv6 checksumming. Right now the * GLDv3 doesn't provide us a way to specify that we don't * support that. As such, we cannot indicate * HCKSUM_INET_FULL_V6. */ *tx_flags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM; ret = B_TRUE; break; } case MAC_CAPAB_LSO: { mac_capab_lso_t *cap_lso = (mac_capab_lso_t *)cap_data; qede_info(qede, "%s large segmentation offload", qede->lso_enable ? "Enabling": "Disabling"); if (qede->lso_enable) { cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4; cap_lso->lso_basic_tcp_ipv4.lso_max = QEDE_LSO_MAXLEN; ret = B_TRUE; } break; } case MAC_CAPAB_RINGS: { #ifndef NO_CROSSBOW mac_capab_rings_t *cap_rings = cap_data; #ifndef ILLUMOS cap_rings->mr_version = MAC_RINGS_VERSION_1; #endif switch (cap_rings->mr_type) { case MAC_RING_TYPE_RX: #ifndef ILLUMOS cap_rings->mr_flags = MAC_RINGS_VLAN_TRANSPARENT; #endif cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC; //cap_rings->mr_rnum = 1; /* qede variable */ cap_rings->mr_rnum = qede->num_fp; /* qede variable */ cap_rings->mr_gnum = 1; cap_rings->mr_rget = qede_fill_ring; cap_rings->mr_gget = qede_fill_group; cap_rings->mr_gaddring = NULL; cap_rings->mr_gremring = NULL; #ifndef ILLUMOS cap_rings->mr_ggetringtc = NULL; #endif ret = B_TRUE; break; case MAC_RING_TYPE_TX: #ifndef ILLUMOS cap_rings->mr_flags = MAC_RINGS_VLAN_TRANSPARENT; #endif cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC; //cap_rings->mr_rnum = 1; cap_rings->mr_rnum = qede->num_fp; cap_rings->mr_gnum = 0; cap_rings->mr_rget = qede_fill_ring; cap_rings->mr_gget = qede_fill_group; cap_rings->mr_gaddring = NULL; cap_rings->mr_gremring = NULL; #ifndef ILLUMOS cap_rings->mr_ggetringtc = NULL; #endif ret = B_TRUE; break; default: ret = B_FALSE; break; } #endif break; /* CASE MAC_CAPAB_RINGS */ } #ifdef ILLUMOS case MAC_CAPAB_TRANSCEIVER: { mac_capab_transceiver_t *mct = cap_data; mct->mct_flags = 0; mct->mct_ntransceivers = qede->edev.num_hwfns; mct->mct_info = qede_transceiver_info; mct->mct_read = qede_transceiver_read; ret = B_TRUE; break; } #endif default: break; } return (ret); } int qede_configure_link(qede_t *qede, bool op); static int qede_mac_set_property(void * arg, const char * pr_name, mac_prop_id_t pr_num, uint_t pr_valsize, const void * pr_val) { qede_t * qede = (qede_t *)arg; struct ecore_mcp_link_params *link_params; struct ecore_dev *edev = &qede->edev; struct ecore_hwfn *hwfn; int ret_val = 0, i; uint32_t option; mutex_enter(&qede->gld_lock); switch (pr_num) { case MAC_PROP_MTU: bcopy(pr_val, &option, sizeof (option)); if(option == qede->mtu) { ret_val = 0; break; } if ((option != DEFAULT_JUMBO_MTU) && (option != DEFAULT_MTU)) { ret_val = EINVAL; break; } if(qede->qede_state == QEDE_STATE_STARTED) { ret_val = EBUSY; break; } ret_val = mac_maxsdu_update(qede->mac_handle, qede->mtu); if (ret_val == 0) { qede->mtu = option; if (option == DEFAULT_JUMBO_MTU) { qede->jumbo_enable = B_TRUE; } else { qede->jumbo_enable = B_FALSE; } hwfn = ECORE_LEADING_HWFN(edev); hwfn->hw_info.mtu = qede->mtu; ret_val = ecore_mcp_ov_update_mtu(hwfn, hwfn->p_main_ptt, hwfn->hw_info.mtu); if (ret_val != ECORE_SUCCESS) { qede_print("!%s(%d): MTU change %d option %d" "FAILED", __func__,qede->instance, qede->mtu, option); break; } qede_print("!%s(%d): MTU changed %d MTU option" " %d hwfn %d", __func__,qede->instance, qede->mtu, option, hwfn->hw_info.mtu); } break; case MAC_PROP_EN_10GFDX_CAP: hwfn = &edev->hwfns[0]; link_params = ecore_mcp_get_link_params(hwfn); if (*(uint8_t *) pr_val) { link_params->speed.autoneg = 0; link_params->speed.forced_speed = 10000; link_params->speed.advertised_speeds = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; qede->forced_speed_10G = *(uint8_t *)pr_val; } else { memcpy(link_params, &qede->link_input_params.default_link_params, sizeof (struct ecore_mcp_link_params)); qede->forced_speed_10G = *(uint8_t *)pr_val; } if (qede->qede_state == QEDE_STATE_STARTED) { qede_configure_link(qede,1); } else { mutex_exit(&qede->gld_lock); return (0); } break; default: ret_val = ENOTSUP; break; } mutex_exit(&qede->gld_lock); return (ret_val); } static void qede_mac_stop(void *arg) { qede_t *qede = (qede_t *)arg; int status; qede_print("!%s(%d): called", __func__,qede->instance); mutex_enter(&qede->drv_lock); status = qede_stop(qede); if (status != DDI_SUCCESS) { qede_print("!%s(%d): qede_stop " "FAILED", __func__,qede->instance); } mac_link_update(qede->mac_handle, LINK_STATE_UNKNOWN); mutex_exit(&qede->drv_lock); } static int qede_mac_start(void *arg) { qede_t *qede = (qede_t *)arg; int status; qede_print("!%s(%d): called", __func__,qede->instance); if (!mutex_tryenter(&qede->drv_lock)) { return (EAGAIN); } if (qede->qede_state == QEDE_STATE_SUSPENDED) { mutex_exit(&qede->drv_lock); return (ECANCELED); } status = qede_start(qede); if (status != DDI_SUCCESS) { mutex_exit(&qede->drv_lock); return (EIO); } mutex_exit(&qede->drv_lock); #ifdef DBLK_DMA_PREMAP qede->pm_handle = mac_pmh_tx_get(qede->mac_handle); #endif return (0); } static int qede_mac_get_property(void *arg, const char *pr_name, mac_prop_id_t pr_num, uint_t pr_valsize, void *pr_val) { qede_t *qede = (qede_t *)arg; struct ecore_dev *edev = &qede->edev; link_state_t link_state; link_duplex_t link_duplex; uint64_t link_speed; link_flowctrl_t link_flowctrl; struct qede_link_cfg link_cfg; qede_link_cfg_t *hw_cfg = &qede->hwinit; int ret_val = 0; memset(&link_cfg, 0, sizeof (struct qede_link_cfg)); qede_get_link_info(&edev->hwfns[0], &link_cfg); switch (pr_num) { case MAC_PROP_MTU: ASSERT(pr_valsize >= sizeof(uint32_t)); bcopy(&qede->mtu, pr_val, sizeof(uint32_t)); break; case MAC_PROP_DUPLEX: ASSERT(pr_valsize >= sizeof(link_duplex_t)); link_duplex = (qede->props.link_duplex) ? LINK_DUPLEX_FULL : LINK_DUPLEX_HALF; bcopy(&link_duplex, pr_val, sizeof(link_duplex_t)); break; case MAC_PROP_SPEED: ASSERT(pr_valsize >= sizeof(link_speed)); link_speed = (qede->props.link_speed * 1000000ULL); bcopy(&link_speed, pr_val, sizeof(link_speed)); break; case MAC_PROP_STATUS: ASSERT(pr_valsize >= sizeof(link_state_t)); link_state = (qede->params.link_state) ? LINK_STATE_UP : LINK_STATE_DOWN; bcopy(&link_state, pr_val, sizeof(link_state_t)); qede_info(qede, "mac_prop_status %d\n", link_state); break; case MAC_PROP_AUTONEG: *(uint8_t *)pr_val = link_cfg.autoneg; break; case MAC_PROP_FLOWCTRL: ASSERT(pr_valsize >= sizeof(link_flowctrl_t)); /* * illumos does not have the notion of LINK_FLOWCTRL_AUTO at this time. */ #ifndef ILLUMOS if (link_cfg.pause_cfg & QEDE_LINK_PAUSE_AUTONEG_ENABLE) { link_flowctrl = LINK_FLOWCTRL_AUTO; } #endif if (!(link_cfg.pause_cfg & QEDE_LINK_PAUSE_RX_ENABLE) && !(link_cfg.pause_cfg & QEDE_LINK_PAUSE_TX_ENABLE)) { link_flowctrl = LINK_FLOWCTRL_NONE; } if ((link_cfg.pause_cfg & QEDE_LINK_PAUSE_RX_ENABLE) && !(link_cfg.pause_cfg & QEDE_LINK_PAUSE_TX_ENABLE)) { link_flowctrl = LINK_FLOWCTRL_RX; } if (!(link_cfg.pause_cfg & QEDE_LINK_PAUSE_RX_ENABLE) && (link_cfg.pause_cfg & QEDE_LINK_PAUSE_TX_ENABLE)) { link_flowctrl = LINK_FLOWCTRL_TX; } if ((link_cfg.pause_cfg & QEDE_LINK_PAUSE_RX_ENABLE) && (link_cfg.pause_cfg & QEDE_LINK_PAUSE_TX_ENABLE)) { link_flowctrl = LINK_FLOWCTRL_BI; } bcopy(&link_flowctrl, pr_val, sizeof (link_flowctrl_t)); break; case MAC_PROP_ADV_10GFDX_CAP: *(uint8_t *)pr_val = link_cfg.adv_capab.param_10000fdx; break; case MAC_PROP_EN_10GFDX_CAP: *(uint8_t *)pr_val = qede->forced_speed_10G; break; case MAC_PROP_PRIVATE: default: return (ENOTSUP); } return (0); } static void qede_mac_property_info(void *arg, const char *pr_name, mac_prop_id_t pr_num, mac_prop_info_handle_t prh) { qede_t *qede = (qede_t *)arg; qede_link_props_t *def_cfg = &qede_def_link_props; link_flowctrl_t link_flowctrl; switch (pr_num) { case MAC_PROP_STATUS: case MAC_PROP_SPEED: case MAC_PROP_DUPLEX: mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); break; case MAC_PROP_MTU: mac_prop_info_set_range_uint32(prh, MIN_MTU, MAX_MTU); break; case MAC_PROP_AUTONEG: mac_prop_info_set_default_uint8(prh, def_cfg->autoneg); break; case MAC_PROP_FLOWCTRL: if (!def_cfg->pause) { link_flowctrl = LINK_FLOWCTRL_NONE; } else { link_flowctrl = LINK_FLOWCTRL_BI; } mac_prop_info_set_default_link_flowctrl(prh, link_flowctrl); break; case MAC_PROP_EN_10GFDX_CAP: mac_prop_info_set_perm(prh, MAC_PROP_PERM_RW); break; case MAC_PROP_ADV_10GFDX_CAP: mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); break; default: mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); break; } } static mac_callbacks_t qede_callbacks = { ( MC_IOCTL /* | MC_RESOURCES */ | MC_SETPROP | MC_GETPROP | MC_PROPINFO | MC_GETCAPAB ), qede_mac_stats, qede_mac_start, qede_mac_stop, qede_mac_promiscuous, qede_mac_multicast, NULL, #ifndef NO_CROSSBOW NULL, #else qede_mac_tx, #endif NULL, /* qede_mac_resources, */ qede_mac_ioctl, qede_mac_get_capability, NULL, NULL, qede_mac_set_property, qede_mac_get_property, #ifdef MC_PROPINFO qede_mac_property_info #endif }; boolean_t qede_gld_init(qede_t *qede) { int status, ret; mac_register_t *macp; macp = mac_alloc(MAC_VERSION); if (macp == NULL) { cmn_err(CE_NOTE, "%s: mac_alloc() failed\n", __func__); return (B_FALSE); } macp->m_driver = qede; macp->m_dip = qede->dip; macp->m_instance = qede->instance; macp->m_priv_props = NULL; macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; macp->m_src_addr = qede->ether_addr; macp->m_callbacks = &qede_callbacks; macp->m_min_sdu = 0; macp->m_max_sdu = qede->mtu; macp->m_margin = VLAN_TAGSZ; #ifdef ILLUMOS macp->m_v12n = MAC_VIRT_LEVEL1; #endif status = mac_register(macp, &qede->mac_handle); if (status != 0) { cmn_err(CE_NOTE, "%s: mac_register() failed\n", __func__); } mac_free(macp); if (status == 0) { return (B_TRUE); } return (B_FALSE); } boolean_t qede_gld_fini(qede_t * qede) { return (B_TRUE); } void qede_link_update(qede_t * qede, link_state_t state) { mac_link_update(qede->mac_handle, state); }