/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, v.1, (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2014-2017 Cavium, Inc. * The contents of this file are subject to the terms of the Common Development * and Distribution License, v.1, (the "License"). * You may not use this file except in compliance with the License. * You can obtain a copy of the License at available * at http://opensource.org/licenses/CDDL-1.0 * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __ECORE_RDMA_API_H__ #define __ECORE_RDMA_API_H__ #ifndef LINUX_REMOVE #define ETH_ALEN 6 #endif #ifndef __EXTRACT__LINUX__ enum ecore_roce_ll2_tx_dest { ECORE_ROCE_LL2_TX_DEST_NW /* Light L2 TX Destination to the Network */, ECORE_ROCE_LL2_TX_DEST_LB /* Light L2 TX Destination to the Loopback */, ECORE_ROCE_LL2_TX_DEST_MAX }; /* HW/FW RoCE Limitations (external. For internal see ecore_roce.h) */ /* CNQ size Limitation * The CNQ size should be set as twice the amount of CQs, since for each CQ one * element may be inserted into the CNQ and another element is used per CQ to * accommodate for a possible race in the arm mechanism. * The FW supports a CNQ of 64k-1 and this apparently causes an issue - notice * that the number of QPs can reach 32k giving 64k CQs and 128k CNQ elements. * Luckily the FW can buffer CNQ elements avoiding an overflow, on the expense * of performance. */ #define ECORE_RDMA_MAX_CNQ_SIZE (0xFFFF) /* 2^16 - 1 */ /* rdma interface */ enum ecore_rdma_tid_type { ECORE_RDMA_TID_REGISTERED_MR, ECORE_RDMA_TID_FMR, ECORE_RDMA_TID_MW_TYPE1, ECORE_RDMA_TID_MW_TYPE2A }; enum ecore_roce_qp_state { ECORE_ROCE_QP_STATE_RESET, /* Reset */ ECORE_ROCE_QP_STATE_INIT, /* Initialized */ ECORE_ROCE_QP_STATE_RTR, /* Ready to Receive */ ECORE_ROCE_QP_STATE_RTS, /* Ready to Send */ ECORE_ROCE_QP_STATE_SQD, /* Send Queue Draining */ ECORE_ROCE_QP_STATE_ERR, /* Error */ ECORE_ROCE_QP_STATE_SQE /* Send Queue Error */ }; typedef void (*affiliated_event_t)(void *context, u8 fw_event_code, void *fw_handle); typedef void (*unaffiliated_event_t)(void *context, u8 event_code); struct ecore_rdma_events { void *context; affiliated_event_t affiliated_event; unaffiliated_event_t unaffiliated_event; }; struct ecore_rdma_device { /* Vendor specific information */ u32 vendor_id; u32 vendor_part_id; u32 hw_ver; u64 fw_ver; u64 node_guid; /* node GUID */ u64 sys_image_guid; /* System image GUID */ u8 max_cnq; u8 max_sge; /* The maximum number of scatter/gather entries * per Work Request supported */ u8 max_srq_sge; /* The maximum number of scatter/gather entries * per Work Request supported for SRQ */ u16 max_inline; u32 max_wqe; /* The maximum number of outstanding work * requests on any Work Queue supported */ u32 max_srq_wqe; /* The maximum number of outstanding work * requests on any Work Queue supported for SRQ */ u8 max_qp_resp_rd_atomic_resc; /* The maximum number of RDMA Reads * & atomic operation that can be * outstanding per QP */ u8 max_qp_req_rd_atomic_resc; /* The maximum depth per QP for * initiation of RDMA Read * & atomic operations */ u64 max_dev_resp_rd_atomic_resc; u32 max_cq; u32 max_qp; u32 max_srq; /* Maximum number of SRQs */ u32 max_mr; /* Maximum number of MRs supported by this device */ u64 max_mr_size; /* Size (in bytes) of the largest contiguous memory * block that can be registered by this device */ u32 max_cqe; u32 max_mw; /* The maximum number of memory windows supported */ u32 max_fmr; u32 max_mr_mw_fmr_pbl; u64 max_mr_mw_fmr_size; u32 max_pd; /* The maximum number of protection domains supported */ u32 max_ah; u8 max_pkey; u16 max_srq_wr; /* Maximum number of WRs per SRQ */ u8 max_stats_queues; /* Maximum number of statistics queues */ u32 dev_caps; /* Abilty to support RNR-NAK generation */ #define ECORE_RDMA_DEV_CAP_RNR_NAK_MASK 0x1 #define ECORE_RDMA_DEV_CAP_RNR_NAK_SHIFT 0 /* Abilty to support shutdown port */ #define ECORE_RDMA_DEV_CAP_SHUTDOWN_PORT_MASK 0x1 #define ECORE_RDMA_DEV_CAP_SHUTDOWN_PORT_SHIFT 1 /* Abilty to support port active event */ #define ECORE_RDMA_DEV_CAP_PORT_ACTIVE_EVENT_MASK 0x1 #define ECORE_RDMA_DEV_CAP_PORT_ACTIVE_EVENT_SHIFT 2 /* Abilty to support port change event */ #define ECORE_RDMA_DEV_CAP_PORT_CHANGE_EVENT_MASK 0x1 #define ECORE_RDMA_DEV_CAP_PORT_CHANGE_EVENT_SHIFT 3 /* Abilty to support system image GUID */ #define ECORE_RDMA_DEV_CAP_SYS_IMAGE_MASK 0x1 #define ECORE_RDMA_DEV_CAP_SYS_IMAGE_SHIFT 4 /* Abilty to support bad P_Key counter support */ #define ECORE_RDMA_DEV_CAP_BAD_PKEY_CNT_MASK 0x1 #define ECORE_RDMA_DEV_CAP_BAD_PKEY_CNT_SHIFT 5 /* Abilty to support atomic operations */ #define ECORE_RDMA_DEV_CAP_ATOMIC_OP_MASK 0x1 #define ECORE_RDMA_DEV_CAP_ATOMIC_OP_SHIFT 6 #define ECORE_RDMA_DEV_CAP_RESIZE_CQ_MASK 0x1 #define ECORE_RDMA_DEV_CAP_RESIZE_CQ_SHIFT 7 /* Abilty to support modifying the maximum number of * outstanding work requests per QP */ #define ECORE_RDMA_DEV_CAP_RESIZE_MAX_WR_MASK 0x1 #define ECORE_RDMA_DEV_CAP_RESIZE_MAX_WR_SHIFT 8 /* Abilty to support automatic path migration */ #define ECORE_RDMA_DEV_CAP_AUTO_PATH_MIG_MASK 0x1 #define ECORE_RDMA_DEV_CAP_AUTO_PATH_MIG_SHIFT 9 /* Abilty to support the base memory management extensions */ #define ECORE_RDMA_DEV_CAP_BASE_MEMORY_EXT_MASK 0x1 #define ECORE_RDMA_DEV_CAP_BASE_MEMORY_EXT_SHIFT 10 #define ECORE_RDMA_DEV_CAP_BASE_QUEUE_EXT_MASK 0x1 #define ECORE_RDMA_DEV_CAP_BASE_QUEUE_EXT_SHIFT 11 /* Abilty to support multipile page sizes per memory region */ #define ECORE_RDMA_DEV_CAP_MULTI_PAGE_PER_MR_EXT_MASK 0x1 #define ECORE_RDMA_DEV_CAP_MULTI_PAGE_PER_MR_EXT_SHIFT 12 /* Abilty to support block list physical buffer list */ #define ECORE_RDMA_DEV_CAP_BLOCK_MODE_MASK 0x1 #define ECORE_RDMA_DEV_CAP_BLOCK_MODE_SHIFT 13 /* Abilty to support zero based virtual addresses */ #define ECORE_RDMA_DEV_CAP_ZBVA_MASK 0x1 #define ECORE_RDMA_DEV_CAP_ZBVA_SHIFT 14 /* Abilty to support local invalidate fencing */ #define ECORE_RDMA_DEV_CAP_LOCAL_INV_FENCE_MASK 0x1 #define ECORE_RDMA_DEV_CAP_LOCAL_INV_FENCE_SHIFT 15 /* Abilty to support Loopback on QP */ #define ECORE_RDMA_DEV_CAP_LB_INDICATOR_MASK 0x1 #define ECORE_RDMA_DEV_CAP_LB_INDICATOR_SHIFT 16 u64 page_size_caps; u8 dev_ack_delay; u32 reserved_lkey; /* Value of reserved L_key */ u32 bad_pkey_counter; /* Bad P_key counter support indicator */ struct ecore_rdma_events events; }; enum ecore_port_state { ECORE_RDMA_PORT_UP, ECORE_RDMA_PORT_DOWN, }; enum ecore_roce_capability { ECORE_ROCE_V1 = 1 << 0, ECORE_ROCE_V2 = 1 << 1, }; struct ecore_rdma_port { enum ecore_port_state port_state; int link_speed; u64 max_msg_size; u8 source_gid_table_len; void *source_gid_table_ptr; u8 pkey_table_len; void *pkey_table_ptr; u32 pkey_bad_counter; enum ecore_roce_capability capability; }; struct ecore_rdma_cnq_params { u8 num_pbl_pages; /* Number of pages in the PBL allocated * for this queue */ u64 pbl_ptr; /* Address to the first entry of the queue PBL */ }; /* The CQ Mode affects the CQ doorbell transaction size. * 64/32 bit machines should configure to 32/16 bits respectively. */ enum ecore_rdma_cq_mode { ECORE_RDMA_CQ_MODE_16_BITS, ECORE_RDMA_CQ_MODE_32_BITS, }; struct ecore_roce_dcqcn_params { u8 notification_point; u8 reaction_point; /* fields for notification point */ u32 cnp_send_timeout; /* fields for reaction point */ u32 rl_bc_rate; /* Byte Counter Limit. */ u16 rl_max_rate; /* Maximum rate in 1.6 Mbps resolution */ u16 rl_r_ai; /* Active increase rate */ u16 rl_r_hai; /* Hyper active increase rate */ u16 dcqcn_g; /* Alpha update gain in 1/64K resolution */ u32 dcqcn_k_us; /* Alpha update interval */ u32 dcqcn_timeout_us; }; #ifdef CONFIG_ECORE_IWARP #define ECORE_MPA_RTR_TYPE_NONE 0 /* No RTR type */ #define ECORE_MPA_RTR_TYPE_ZERO_SEND (1 << 0) #define ECORE_MPA_RTR_TYPE_ZERO_WRITE (1 << 1) #define ECORE_MPA_RTR_TYPE_ZERO_READ (1 << 2) enum ecore_mpa_rev { ECORE_MPA_REV1, ECORE_MPA_REV2, }; struct ecore_iwarp_params { u32 rcv_wnd_size; u16 ooo_num_rx_bufs; #define ECORE_IWARP_TS_EN (1 << 0) #define ECORE_IWARP_DA_EN (1 << 1) u8 flags; u8 crc_needed; enum ecore_mpa_rev mpa_rev; u8 mpa_rtr; u8 mpa_peer2peer; }; #endif struct ecore_roce_params { enum ecore_rdma_cq_mode cq_mode; struct ecore_roce_dcqcn_params dcqcn_params; u8 ll2_handle; /* required for UD QPs */ }; struct ecore_rdma_start_in_params { struct ecore_rdma_events *events; struct ecore_rdma_cnq_params cnq_pbl_list[128]; u8 desired_cnq; u16 max_mtu; u8 mac_addr[ETH_ALEN]; #ifdef CONFIG_ECORE_IWARP struct ecore_iwarp_params iwarp; #endif struct ecore_roce_params roce; }; struct ecore_rdma_add_user_out_params { /* output variables (given to miniport) */ u16 dpi; u64 dpi_addr; u64 dpi_phys_addr; u32 dpi_size; u16 wid_count; }; /*Returns the CQ CID or zero in case of failure */ struct ecore_rdma_create_cq_in_params { /* input variables (given by miniport) */ u32 cq_handle_lo; /* CQ handle to be written in CNQ */ u32 cq_handle_hi; u32 cq_size; u16 dpi; bool pbl_two_level; u64 pbl_ptr; u16 pbl_num_pages; u8 pbl_page_size_log; /* for the pages that contain the * pointers to the CQ pages */ u8 cnq_id; u16 int_timeout; }; #endif struct ecore_rdma_resize_cq_in_params { /* input variables (given by miniport) */ u16 icid; u32 cq_size; bool pbl_two_level; u64 pbl_ptr; u16 pbl_num_pages; u8 pbl_page_size_log; /* for the pages that contain the * pointers to the CQ pages */ }; #ifndef __EXTRACT__LINUX__ enum roce_mode { ROCE_V1, ROCE_V2_IPV4, ROCE_V2_IPV6, MAX_ROCE_MODE }; struct ecore_rdma_create_qp_in_params { /* input variables (given by miniport) */ u32 qp_handle_lo; /* QP handle to be written in CQE */ u32 qp_handle_hi; u32 qp_handle_async_lo; /* QP handle to be written in async event */ u32 qp_handle_async_hi; bool use_srq; bool signal_all; bool fmr_and_reserved_lkey; u16 pd; u16 dpi; u16 sq_cq_id; u16 sq_num_pages; u64 sq_pbl_ptr; /* Not relevant for iWARP */ u8 max_sq_sges; u16 rq_cq_id; u16 rq_num_pages; u64 rq_pbl_ptr; /* Not relevant for iWARP */ u16 srq_id; u8 stats_queue; }; struct ecore_rdma_create_qp_out_params { /* output variables (given to miniport) */ u32 qp_id; u16 icid; void *rq_pbl_virt; dma_addr_t rq_pbl_phys; void *sq_pbl_virt; dma_addr_t sq_pbl_phys; }; struct ecore_rdma_destroy_cq_in_params { /* input variables (given by miniport) */ u16 icid; }; struct ecore_rdma_destroy_cq_out_params { /* output variables, provided to the upper layer */ /* Sequence number of completion notification sent for the CQ on * the associated CNQ */ u16 num_cq_notif; }; /* ECORE GID can be used as IPv4/6 address in RoCE v2 */ union ecore_gid { u8 bytes[16]; u16 words[8]; u32 dwords[4]; u64 qwords[2]; u32 ipv4_addr; }; struct ecore_rdma_modify_qp_in_params { /* input variables (given by miniport) */ u32 modify_flags; #define ECORE_RDMA_MODIFY_QP_VALID_NEW_STATE_MASK 0x1 #define ECORE_RDMA_MODIFY_QP_VALID_NEW_STATE_SHIFT 0 #define ECORE_ROCE_MODIFY_QP_VALID_PKEY_MASK 0x1 #define ECORE_ROCE_MODIFY_QP_VALID_PKEY_SHIFT 1 #define ECORE_RDMA_MODIFY_QP_VALID_RDMA_OPS_EN_MASK 0x1 #define ECORE_RDMA_MODIFY_QP_VALID_RDMA_OPS_EN_SHIFT 2 #define ECORE_ROCE_MODIFY_QP_VALID_DEST_QP_MASK 0x1 #define ECORE_ROCE_MODIFY_QP_VALID_DEST_QP_SHIFT 3 #define ECORE_ROCE_MODIFY_QP_VALID_ADDRESS_VECTOR_MASK 0x1 #define ECORE_ROCE_MODIFY_QP_VALID_ADDRESS_VECTOR_SHIFT 4 #define ECORE_ROCE_MODIFY_QP_VALID_RQ_PSN_MASK 0x1 #define ECORE_ROCE_MODIFY_QP_VALID_RQ_PSN_SHIFT 5 #define ECORE_ROCE_MODIFY_QP_VALID_SQ_PSN_MASK 0x1 #define ECORE_ROCE_MODIFY_QP_VALID_SQ_PSN_SHIFT 6 #define ECORE_RDMA_MODIFY_QP_VALID_MAX_RD_ATOMIC_REQ_MASK 0x1 #define ECORE_RDMA_MODIFY_QP_VALID_MAX_RD_ATOMIC_REQ_SHIFT 7 #define ECORE_RDMA_MODIFY_QP_VALID_MAX_RD_ATOMIC_RESP_MASK 0x1 #define ECORE_RDMA_MODIFY_QP_VALID_MAX_RD_ATOMIC_RESP_SHIFT 8 #define ECORE_ROCE_MODIFY_QP_VALID_ACK_TIMEOUT_MASK 0x1 #define ECORE_ROCE_MODIFY_QP_VALID_ACK_TIMEOUT_SHIFT 9 #define ECORE_ROCE_MODIFY_QP_VALID_RETRY_CNT_MASK 0x1 #define ECORE_ROCE_MODIFY_QP_VALID_RETRY_CNT_SHIFT 10 #define ECORE_ROCE_MODIFY_QP_VALID_RNR_RETRY_CNT_MASK 0x1 #define ECORE_ROCE_MODIFY_QP_VALID_RNR_RETRY_CNT_SHIFT 11 #define ECORE_ROCE_MODIFY_QP_VALID_MIN_RNR_NAK_TIMER_MASK 0x1 #define ECORE_ROCE_MODIFY_QP_VALID_MIN_RNR_NAK_TIMER_SHIFT 12 #define ECORE_ROCE_MODIFY_QP_VALID_E2E_FLOW_CONTROL_EN_MASK 0x1 #define ECORE_ROCE_MODIFY_QP_VALID_E2E_FLOW_CONTROL_EN_SHIFT 13 #define ECORE_ROCE_MODIFY_QP_VALID_ROCE_MODE_MASK 0x1 #define ECORE_ROCE_MODIFY_QP_VALID_ROCE_MODE_SHIFT 14 enum ecore_roce_qp_state new_state; u16 pkey; bool incoming_rdma_read_en; bool incoming_rdma_write_en; bool incoming_atomic_en; bool e2e_flow_control_en; u32 dest_qp; u16 mtu; u8 traffic_class_tos; /* IPv6/GRH tc; IPv4 TOS */ u8 hop_limit_ttl; /* IPv6/GRH hop limit; IPv4 TTL */ u32 flow_label; /* ignored in IPv4 */ union ecore_gid sgid; /* GRH SGID; IPv4/6 Source IP */ union ecore_gid dgid; /* GRH DGID; IPv4/6 Destination IP */ u16 udp_src_port; /* RoCEv2 only */ u16 vlan_id; u32 rq_psn; u32 sq_psn; u8 max_rd_atomic_resp; u8 max_rd_atomic_req; u32 ack_timeout; u8 retry_cnt; u8 rnr_retry_cnt; u8 min_rnr_nak_timer; bool sqd_async; u8 remote_mac_addr[6]; u8 local_mac_addr[6]; bool use_local_mac; enum roce_mode roce_mode; }; struct ecore_rdma_query_qp_out_params { /* output variables (given to miniport) */ enum ecore_roce_qp_state state; u32 rq_psn; /* responder */ u32 sq_psn; /* requester */ bool draining; /* send queue is draining */ u16 mtu; u32 dest_qp; bool incoming_rdma_read_en; bool incoming_rdma_write_en; bool incoming_atomic_en; bool e2e_flow_control_en; union ecore_gid sgid; /* GRH SGID; IPv4/6 Source IP */ union ecore_gid dgid; /* GRH DGID; IPv4/6 Destination IP */ u32 flow_label; /* ignored in IPv4 */ u8 hop_limit_ttl; /* IPv6/GRH hop limit; IPv4 TTL */ u8 traffic_class_tos; /* IPv6/GRH tc; IPv4 TOS */ u32 timeout; u8 rnr_retry; u8 retry_cnt; u8 min_rnr_nak_timer; u16 pkey_index; u8 max_rd_atomic; u8 max_dest_rd_atomic; bool sqd_async; }; struct ecore_rdma_register_tid_in_params { /* input variables (given by miniport) */ u32 itid; /* index only, 18 bit long, lkey = itid << 8 | key */ enum ecore_rdma_tid_type tid_type; u8 key; u16 pd; bool local_read; bool local_write; bool remote_read; bool remote_write; bool remote_atomic; bool mw_bind; u64 pbl_ptr; bool pbl_two_level; u8 pbl_page_size_log; /* for the pages that contain the pointers * to the MR pages */ u8 page_size_log; /* for the MR pages */ u32 fbo; u64 length; /* only lower 40 bits are valid */ u64 vaddr; bool zbva; bool phy_mr; bool dma_mr; /* DIF related fields */ bool dif_enabled; u64 dif_error_addr; u64 dif_runt_addr; }; struct ecore_rdma_create_srq_in_params { u64 pbl_base_addr; u64 prod_pair_addr; u16 num_pages; u16 pd_id; u16 page_size; }; struct ecore_rdma_create_srq_out_params { u16 srq_id; }; struct ecore_rdma_destroy_srq_in_params { u16 srq_id; }; struct ecore_rdma_modify_srq_in_params { u32 wqe_limit; u16 srq_id; }; #endif struct ecore_rdma_resize_cq_out_params { /* output variables, provided to the upper layer */ u32 prod; /* CQ producer value on old PBL */ u32 cons; /* CQ consumer value on old PBL */ }; struct ecore_rdma_resize_cnq_in_params { /* input variables (given by miniport) */ u32 cnq_id; u32 pbl_page_size_log; /* for the pages that contain the * pointers to the cnq pages */ u64 pbl_ptr; }; #ifndef __EXTRACT__LINUX__ struct ecore_rdma_stats_out_params { u64 sent_bytes; u64 sent_pkts; u64 rcv_bytes; u64 rcv_pkts; /* RoCE only */ u64 icrc_errors; /* wraps at 32 bits */ u64 retransmit_events; /* wraps at 32 bits */ u64 silent_drops; /* wraps at 16 bits */ u64 rnr_nacks_sent; /* wraps at 16 bits */ /* iWARP only */ u64 iwarp_tx_fast_rxmit_cnt; u64 iwarp_tx_slow_start_cnt; u64 unalign_rx_comp; }; struct ecore_rdma_counters_out_params { u64 pd_count; u64 max_pd; u64 dpi_count; u64 max_dpi; u64 cq_count; u64 max_cq; u64 qp_count; u64 max_qp; u64 tid_count; u64 max_tid; }; #endif enum _ecore_status_t ecore_rdma_add_user(void *rdma_cxt, struct ecore_rdma_add_user_out_params *out_params); enum _ecore_status_t ecore_rdma_alloc_pd(void *rdma_cxt, u16 *pd); enum _ecore_status_t ecore_rdma_alloc_tid(void *rdma_cxt, u32 *tid); enum _ecore_status_t ecore_rdma_create_cq(void *rdma_cxt, struct ecore_rdma_create_cq_in_params *params, u16 *icid); /* Returns a pointer to the responders' CID, which is also a pointer to the * ecore_qp_params struct. Returns NULL in case of failure. */ struct ecore_rdma_qp* ecore_rdma_create_qp(void *rdma_cxt, struct ecore_rdma_create_qp_in_params *in_params, struct ecore_rdma_create_qp_out_params *out_params); enum _ecore_status_t ecore_roce_create_ud_qp(void *rdma_cxt, struct ecore_rdma_create_qp_out_params *out_params); enum _ecore_status_t ecore_rdma_deregister_tid(void *rdma_cxt, u32 tid); enum _ecore_status_t ecore_rdma_destroy_cq(void *rdma_cxt, struct ecore_rdma_destroy_cq_in_params *in_params, struct ecore_rdma_destroy_cq_out_params *out_params); enum _ecore_status_t ecore_rdma_destroy_qp(void *rdma_cxt, struct ecore_rdma_qp *qp); enum _ecore_status_t ecore_roce_destroy_ud_qp(void *rdma_cxt, u16 cid); void ecore_rdma_free_pd(void *rdma_cxt, u16 pd); void ecore_rdma_free_tid(void *rdma_cxt, u32 tid); enum _ecore_status_t ecore_rdma_modify_qp(void *rdma_cxt, struct ecore_rdma_qp *qp, struct ecore_rdma_modify_qp_in_params *params); struct ecore_rdma_device* ecore_rdma_query_device(void *rdma_cxt); struct ecore_rdma_port* ecore_rdma_query_port(void *rdma_cxt); enum _ecore_status_t ecore_rdma_query_qp(void *rdma_cxt, struct ecore_rdma_qp *qp, struct ecore_rdma_query_qp_out_params *out_params); enum _ecore_status_t ecore_rdma_register_tid(void *rdma_cxt, struct ecore_rdma_register_tid_in_params *params); void ecore_rdma_remove_user(void *rdma_cxt, u16 dpi); enum _ecore_status_t ecore_rdma_resize_cnq(void *rdma_cxt, struct ecore_rdma_resize_cnq_in_params *in_params); /*Returns the CQ CID or zero in case of failure */ enum _ecore_status_t ecore_rdma_resize_cq(void *rdma_cxt, struct ecore_rdma_resize_cq_in_params *in_params, struct ecore_rdma_resize_cq_out_params *out_params); /* Before calling rdma_start upper layer (VBD/qed) should fill the * page-size and mtu in hwfn context */ enum _ecore_status_t ecore_rdma_start(void *p_hwfn, struct ecore_rdma_start_in_params *params); enum _ecore_status_t ecore_rdma_stop(void *rdma_cxt); enum _ecore_status_t ecore_rdma_query_stats(void *rdma_cxt, u8 stats_queue, struct ecore_rdma_stats_out_params *out_parms); enum _ecore_status_t ecore_rdma_query_counters(void *rdma_cxt, struct ecore_rdma_counters_out_params *out_parms); u32 ecore_rdma_get_sb_id(void *p_hwfn, u32 rel_sb_id); u32 ecore_rdma_query_cau_timer_res(void *p_hwfn); void ecore_rdma_cnq_prod_update(void *rdma_cxt, u8 cnq_index, u16 prod); void ecore_rdma_resc_free(struct ecore_hwfn *p_hwfn); #ifdef CONFIG_ECORE_IWARP /* iWARP API */ #ifndef __EXTRACT__LINUX__ enum ecore_iwarp_event_type { ECORE_IWARP_EVENT_MPA_REQUEST, /* Passive side request received */ ECORE_IWARP_EVENT_PASSIVE_COMPLETE, /* Passive side established * ( ack on mpa response ) */ ECORE_IWARP_EVENT_ACTIVE_COMPLETE, /* Active side reply received */ ECORE_IWARP_EVENT_DISCONNECT, ECORE_IWARP_EVENT_CLOSE, ECORE_IWARP_EVENT_IRQ_FULL, ECORE_IWARP_EVENT_RQ_EMPTY, ECORE_IWARP_EVENT_LLP_TIMEOUT, ECORE_IWARP_EVENT_REMOTE_PROTECTION_ERROR, ECORE_IWARP_EVENT_CQ_OVERFLOW, ECORE_IWARP_EVENT_QP_CATASTROPHIC, ECORE_IWARP_EVENT_ACTIVE_MPA_REPLY, ECORE_IWARP_EVENT_LOCAL_ACCESS_ERROR, ECORE_IWARP_EVENT_REMOTE_OPERATION_ERROR, ECORE_IWARP_EVENT_TERMINATE_RECEIVED }; enum ecore_tcp_ip_version { ECORE_TCP_IPV4, ECORE_TCP_IPV6, }; struct ecore_iwarp_cm_info { enum ecore_tcp_ip_version ip_version; u32 remote_ip[4]; u32 local_ip[4]; u16 remote_port; u16 local_port; u16 vlan; const void *private_data; u16 private_data_len; u8 ord; u8 ird; }; struct ecore_iwarp_cm_event_params { enum ecore_iwarp_event_type event; const struct ecore_iwarp_cm_info *cm_info; void *ep_context; /* To be passed to accept call */ int status; }; typedef int (*iwarp_event_handler)(void *context, struct ecore_iwarp_cm_event_params *event); /* Active Side Connect Flow: * upper layer driver calls ecore_iwarp_connect * Function is blocking: i.e. returns after tcp connection is established * After MPA connection is established ECORE_IWARP_EVENT_ACTIVE_COMPLETE event * will be passed to upperlayer driver using the event_cb passed in * ecore_iwarp_connect_in. Information of the established connection will be * initialized in event data. */ struct ecore_iwarp_connect_in { iwarp_event_handler event_cb; void *cb_context; struct ecore_rdma_qp *qp; struct ecore_iwarp_cm_info cm_info; u16 mss; u8 remote_mac_addr[6]; u8 local_mac_addr[6]; }; struct ecore_iwarp_connect_out { void *ep_context; }; /* Passive side connect flow: * upper layer driver calls ecore_iwarp_create_listen * once Syn packet that matches a ip/port that is listened on arrives, ecore * will offload the tcp connection. After MPA Request is received on the * offload connection, the event ECORE_IWARP_EVENT_MPA_REQUEST will be sent * to upper layer driver using the event_cb passed below. The event data * will be placed in event parameter. After upper layer driver processes the * event, ecore_iwarp_accept or ecore_iwarp_reject should be called to continue * MPA negotiation. Once negotiation is complete the event * ECORE_IWARP_EVENT_PASSIVE_COMPLETE will be passed to the event_cb passed * originally in ecore_iwarp_listen_in structure. */ struct ecore_iwarp_listen_in { iwarp_event_handler event_cb; /* Callback func for delivering events */ void *cb_context; /* passed to event_cb */ u32 max_backlog; /* Max num of pending incoming connection requests */ enum ecore_tcp_ip_version ip_version; u32 ip_addr[4]; u16 port; u16 vlan; }; struct ecore_iwarp_listen_out { void *handle; /* to be sent to destroy */ }; struct ecore_iwarp_accept_in { void *ep_context; /* From event data of ECORE_IWARP_EVENT_MPA_REQUEST */ void *cb_context; /* context to be passed to event_cb */ struct ecore_rdma_qp *qp; const void *private_data; u16 private_data_len; u8 ord; u8 ird; }; struct ecore_iwarp_reject_in { void *ep_context; /* From event data of ECORE_IWARP_EVENT_MPA_REQUEST */ void *cb_context; /* context to be passed to event_cb */ const void *private_data; u16 private_data_len; }; struct ecore_iwarp_send_rtr_in { void *ep_context; }; struct ecore_iwarp_tcp_abort_in { void *ep_context; }; #endif enum _ecore_status_t ecore_iwarp_connect(void *rdma_cxt, struct ecore_iwarp_connect_in *iparams, struct ecore_iwarp_connect_out *oparams); enum _ecore_status_t ecore_iwarp_create_listen(void *rdma_cxt, struct ecore_iwarp_listen_in *iparams, struct ecore_iwarp_listen_out *oparams); enum _ecore_status_t ecore_iwarp_accept(void *rdma_cxt, struct ecore_iwarp_accept_in *iparams); enum _ecore_status_t ecore_iwarp_reject(void *rdma_cxt, struct ecore_iwarp_reject_in *iparams); enum _ecore_status_t ecore_iwarp_destroy_listen(void *rdma_cxt, void *handle); enum _ecore_status_t ecore_iwarp_send_rtr(void *rdma_cxt, struct ecore_iwarp_send_rtr_in *iparams); enum _ecore_status_t ecore_iwarp_tcp_abort(void *rdma_cxt, struct ecore_iwarp_tcp_abort_in *iparams); #endif /* CONFIG_ECORE_IWARP */ #endif