/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, v.1, (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2014-2017 Cavium, Inc. * The contents of this file are subject to the terms of the Common Development * and Distribution License, v.1, (the "License"). * You may not use this file except in compliance with the License. * You can obtain a copy of the License at available * at http://opensource.org/licenses/CDDL-1.0 * See the License for the specific language governing permissions and * limitations under the License. */ /* include the precompiled configuration values - only once */ #include "bcm_osal.h" #include "ecore_hsi_common.h" #include "ecore.h" #include "ecore_hw.h" #include "ecore_status.h" #include "ecore_rt_defs.h" #include "ecore_init_fw_funcs.h" #ifndef CONFIG_ECORE_BINARY_FW #ifdef CONFIG_ECORE_ZIPPED_FW #include "ecore_init_values_zipped.h" #else #include "ecore_init_values.h" #endif #endif #include "ecore_iro_values.h" #include "ecore_sriov.h" #include "ecore_gtt_values.h" #include "reg_addr.h" #include "ecore_init_ops.h" #define ECORE_INIT_MAX_POLL_COUNT 100 #define ECORE_INIT_POLL_PERIOD_US 500 void ecore_init_iro_array(struct ecore_dev *p_dev) { p_dev->iro_arr = iro_arr; } /* Runtime configuration helpers */ void ecore_init_clear_rt_data(struct ecore_hwfn *p_hwfn) { int i; for (i = 0; i < RUNTIME_ARRAY_SIZE; i++) p_hwfn->rt_data.b_valid[i] = false; } void ecore_init_store_rt_reg(struct ecore_hwfn *p_hwfn, u32 rt_offset, u32 val) { p_hwfn->rt_data.init_val[rt_offset] = val; p_hwfn->rt_data.b_valid[rt_offset] = true; } void ecore_init_store_rt_agg(struct ecore_hwfn *p_hwfn, u32 rt_offset, u32 *p_val, osal_size_t size) { osal_size_t i; for (i = 0; i < size / sizeof(u32); i++) { p_hwfn->rt_data.init_val[rt_offset + i] = p_val[i]; p_hwfn->rt_data.b_valid[rt_offset + i] = true; } } static enum _ecore_status_t ecore_init_rt(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u32 addr, u16 rt_offset, u16 size, bool b_must_dmae) { u32 *p_init_val = &p_hwfn->rt_data.init_val[rt_offset]; bool *p_valid = &p_hwfn->rt_data.b_valid[rt_offset]; u16 i, segment; enum _ecore_status_t rc = ECORE_SUCCESS; /* Since not all RT entries are initialized, go over the RT and * for each segment of initialized values use DMA. */ for (i = 0; i < size; i++) { if (!p_valid[i]) continue; /* In case there isn't any wide-bus configuration here, * simply write the data instead of using dmae. */ if (!b_must_dmae) { ecore_wr(p_hwfn, p_ptt, addr + (i << 2), p_init_val[i]); continue; } /* Start of a new segment */ for (segment = 1; i + segment < size; segment++) if (!p_valid[i + segment]) break; rc = ecore_dmae_host2grc(p_hwfn, p_ptt, (osal_uintptr_t)(p_init_val + i), addr + (i << 2), segment, 0); if (rc != ECORE_SUCCESS) return rc; /* Jump over the entire segment, including invalid entry */ i += segment; } return rc; } enum _ecore_status_t ecore_init_alloc(struct ecore_hwfn *p_hwfn) { struct ecore_rt_data *rt_data = &p_hwfn->rt_data; if (IS_VF(p_hwfn->p_dev)) return ECORE_SUCCESS; rt_data->b_valid = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(bool) * RUNTIME_ARRAY_SIZE); if (!rt_data->b_valid) return ECORE_NOMEM; rt_data->init_val = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(u32) * RUNTIME_ARRAY_SIZE); if (!rt_data->init_val) { OSAL_FREE(p_hwfn->p_dev, rt_data->b_valid); rt_data->b_valid = OSAL_NULL; return ECORE_NOMEM; } return ECORE_SUCCESS; } void ecore_init_free(struct ecore_hwfn *p_hwfn) { OSAL_FREE(p_hwfn->p_dev, p_hwfn->rt_data.init_val); p_hwfn->rt_data.init_val = OSAL_NULL; OSAL_FREE(p_hwfn->p_dev, p_hwfn->rt_data.b_valid); p_hwfn->rt_data.b_valid = OSAL_NULL; } static enum _ecore_status_t ecore_init_array_dmae(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u32 addr, u32 dmae_data_offset, u32 size, const u32 *p_buf, bool b_must_dmae, bool b_can_dmae) { enum _ecore_status_t rc = ECORE_SUCCESS; /* Perform DMAE only for lengthy enough sections or for wide-bus */ #ifndef ASIC_ONLY if ((CHIP_REV_IS_SLOW(p_hwfn->p_dev) && (size < 16)) || !b_can_dmae || (!b_must_dmae && (size < 16))) { #else if (!b_can_dmae || (!b_must_dmae && (size < 16))) { #endif const u32 *data = p_buf + dmae_data_offset; u32 i; for (i = 0; i < size; i++) ecore_wr(p_hwfn, p_ptt, addr + (i << 2), data[i]); } else { rc = ecore_dmae_host2grc(p_hwfn, p_ptt, (osal_uintptr_t)(p_buf + dmae_data_offset), addr, size, 0); } return rc; } static enum _ecore_status_t ecore_init_fill_dmae(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u32 addr, u32 fill, u32 fill_count) { static u32 zero_buffer[DMAE_MAX_RW_SIZE]; OSAL_MEMSET(zero_buffer, 0, sizeof(u32) * DMAE_MAX_RW_SIZE); return ecore_dmae_host2grc(p_hwfn, p_ptt, (osal_uintptr_t)(&(zero_buffer[0])), addr, fill_count, ECORE_DMAE_FLAG_RW_REPL_SRC); } static void ecore_init_fill(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u32 addr, u32 fill, u32 fill_count) { u32 i; for (i = 0; i < fill_count; i++, addr += sizeof(u32)) ecore_wr(p_hwfn, p_ptt, addr, fill); } static enum _ecore_status_t ecore_init_cmd_array(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, struct init_write_op *cmd, bool b_must_dmae, bool b_can_dmae) { u32 dmae_array_offset = OSAL_LE32_TO_CPU(cmd->args.array_offset); u32 data = OSAL_LE32_TO_CPU(cmd->data); u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2; #ifdef CONFIG_ECORE_ZIPPED_FW u32 offset, output_len, input_len, max_size; #endif struct ecore_dev *p_dev = p_hwfn->p_dev; union init_array_hdr *hdr; const u32 *array_data; enum _ecore_status_t rc = ECORE_SUCCESS; u32 size; array_data = p_dev->fw_data->arr_data; hdr = (union init_array_hdr *) (array_data + dmae_array_offset); data = OSAL_LE32_TO_CPU(hdr->raw.data); switch (GET_FIELD(data, INIT_ARRAY_RAW_HDR_TYPE)) { case INIT_ARR_ZIPPED: #ifdef CONFIG_ECORE_ZIPPED_FW offset = dmae_array_offset + 1; input_len = GET_FIELD(data, INIT_ARRAY_ZIPPED_HDR_ZIPPED_SIZE); max_size = MAX_ZIPPED_SIZE * 4; OSAL_MEMSET(p_hwfn->unzip_buf, 0, max_size); output_len = OSAL_UNZIP_DATA(p_hwfn, input_len, (u8 *)&array_data[offset], max_size, (u8 *)p_hwfn->unzip_buf); if (output_len) { rc = ecore_init_array_dmae(p_hwfn, p_ptt, addr, 0, output_len, p_hwfn->unzip_buf, b_must_dmae, b_can_dmae); } else { DP_NOTICE(p_hwfn, true, "Failed to unzip dmae data\n"); rc = ECORE_INVAL; } #else DP_NOTICE(p_hwfn, true, "Using zipped firmware without config enabled\n"); rc = ECORE_INVAL; #endif break; case INIT_ARR_PATTERN: { u32 repeats = GET_FIELD(data, INIT_ARRAY_PATTERN_HDR_REPETITIONS); u32 i; size = GET_FIELD(data, INIT_ARRAY_PATTERN_HDR_PATTERN_SIZE); for (i = 0; i < repeats; i++, addr += size << 2) { rc = ecore_init_array_dmae(p_hwfn, p_ptt, addr, dmae_array_offset + 1, size, array_data, b_must_dmae, b_can_dmae); if (rc) break; } break; } case INIT_ARR_STANDARD: size = GET_FIELD(data, INIT_ARRAY_STANDARD_HDR_SIZE); rc = ecore_init_array_dmae(p_hwfn, p_ptt, addr, dmae_array_offset + 1, size, array_data, b_must_dmae, b_can_dmae); break; } return rc; } /* init_ops write command */ static enum _ecore_status_t ecore_init_cmd_wr(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, struct init_write_op *p_cmd, bool b_can_dmae) { u32 data = OSAL_LE32_TO_CPU(p_cmd->data); bool b_must_dmae = GET_FIELD(data, INIT_WRITE_OP_WIDE_BUS); u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2; enum _ecore_status_t rc = ECORE_SUCCESS; /* Sanitize */ if (b_must_dmae && !b_can_dmae) { DP_NOTICE(p_hwfn, true, "Need to write to %08x for Wide-bus but DMAE isn't allowed\n", addr); return ECORE_INVAL; } switch (GET_FIELD(data, INIT_WRITE_OP_SOURCE)) { case INIT_SRC_INLINE: data = OSAL_LE32_TO_CPU(p_cmd->args.inline_val); ecore_wr(p_hwfn, p_ptt, addr, data); break; case INIT_SRC_ZEROS: data = OSAL_LE32_TO_CPU(p_cmd->args.zeros_count); if (b_must_dmae || (b_can_dmae && (data >= 64))) rc = ecore_init_fill_dmae(p_hwfn, p_ptt, addr, 0, data); else ecore_init_fill(p_hwfn, p_ptt, addr, 0, data); break; case INIT_SRC_ARRAY: rc = ecore_init_cmd_array(p_hwfn, p_ptt, p_cmd, b_must_dmae, b_can_dmae); break; case INIT_SRC_RUNTIME: ecore_init_rt(p_hwfn, p_ptt, addr, OSAL_LE16_TO_CPU(p_cmd->args.runtime.offset), OSAL_LE16_TO_CPU(p_cmd->args.runtime.size), b_must_dmae); break; } return rc; } static OSAL_INLINE bool comp_eq(u32 val, u32 expected_val) { return (val == expected_val); } static OSAL_INLINE bool comp_and(u32 val, u32 expected_val) { return (val & expected_val) == expected_val; } static OSAL_INLINE bool comp_or(u32 val, u32 expected_val) { return (val | expected_val) > 0; } /* init_ops read/poll commands */ static void ecore_init_cmd_rd(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, struct init_read_op *cmd) { bool (*comp_check)(u32 val, u32 expected_val); u32 delay = ECORE_INIT_POLL_PERIOD_US, val; u32 data, addr, poll; int i; data = OSAL_LE32_TO_CPU(cmd->op_data); addr = GET_FIELD(data, INIT_READ_OP_ADDRESS) << 2; poll = GET_FIELD(data, INIT_READ_OP_POLL_TYPE); #ifndef ASIC_ONLY if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) delay *= 100; #endif val = ecore_rd(p_hwfn, p_ptt, addr); if (poll == INIT_POLL_NONE) return; switch (poll) { case INIT_POLL_EQ: comp_check = comp_eq; break; case INIT_POLL_OR: comp_check = comp_or; break; case INIT_POLL_AND: comp_check = comp_and; break; default: DP_ERR(p_hwfn, "Invalid poll comparison type %08x\n", cmd->op_data); return; } data = OSAL_LE32_TO_CPU(cmd->expected_val); for (i = 0; i < ECORE_INIT_MAX_POLL_COUNT && !comp_check(val, data); i++) { OSAL_UDELAY(delay); val = ecore_rd(p_hwfn, p_ptt, addr); } if (i == ECORE_INIT_MAX_POLL_COUNT) DP_ERR(p_hwfn, "Timeout when polling reg: 0x%08x [ Waiting-for: %08x Got: %08x (comparsion %08x)]\n", addr, OSAL_LE32_TO_CPU(cmd->expected_val), val, OSAL_LE32_TO_CPU(cmd->op_data)); } /* init_ops callbacks entry point */ static void ecore_init_cmd_cb(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, struct init_callback_op *p_cmd) { DP_NOTICE(p_hwfn, true, "Currently init values have no need of callbacks\n"); } static u8 ecore_init_cmd_mode_match(struct ecore_hwfn *p_hwfn, u16 *p_offset, int modes) { struct ecore_dev *p_dev = p_hwfn->p_dev; const u8 *modes_tree_buf; u8 arg1, arg2, tree_val; modes_tree_buf = p_dev->fw_data->modes_tree_buf; tree_val = modes_tree_buf[(*p_offset)++]; switch(tree_val) { case INIT_MODE_OP_NOT: return ecore_init_cmd_mode_match(p_hwfn, p_offset, modes) ^ 1; case INIT_MODE_OP_OR: arg1 = ecore_init_cmd_mode_match(p_hwfn, p_offset, modes); arg2 = ecore_init_cmd_mode_match(p_hwfn, p_offset, modes); return arg1 | arg2; case INIT_MODE_OP_AND: arg1 = ecore_init_cmd_mode_match(p_hwfn, p_offset, modes); arg2 = ecore_init_cmd_mode_match(p_hwfn, p_offset, modes); return arg1 & arg2; default: tree_val -= MAX_INIT_MODE_OPS; return (modes & (1 << tree_val)) ? 1 : 0; } } static u32 ecore_init_cmd_mode(struct ecore_hwfn *p_hwfn, struct init_if_mode_op *p_cmd, int modes) { u16 offset = OSAL_LE16_TO_CPU(p_cmd->modes_buf_offset); if (ecore_init_cmd_mode_match(p_hwfn, &offset, modes)) return 0; else return GET_FIELD(OSAL_LE32_TO_CPU(p_cmd->op_data), INIT_IF_MODE_OP_CMD_OFFSET); } static u32 ecore_init_cmd_phase(struct ecore_hwfn *p_hwfn, struct init_if_phase_op *p_cmd, u32 phase, u32 phase_id) { u32 data = OSAL_LE32_TO_CPU(p_cmd->phase_data); if (!(GET_FIELD(data, INIT_IF_PHASE_OP_PHASE) == phase && (GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == ANY_PHASE_ID || GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == phase_id))) return GET_FIELD(OSAL_LE32_TO_CPU(p_cmd->op_data), INIT_IF_PHASE_OP_CMD_OFFSET); else return 0; } enum _ecore_status_t ecore_init_run(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, int phase, int phase_id, int modes) { struct ecore_dev *p_dev = p_hwfn->p_dev; u32 cmd_num, num_init_ops; union init_op *init_ops; bool b_dmae = false; enum _ecore_status_t rc = ECORE_SUCCESS; num_init_ops = p_dev->fw_data->init_ops_size; init_ops = p_dev->fw_data->init_ops; #ifdef CONFIG_ECORE_ZIPPED_FW p_hwfn->unzip_buf = OSAL_ZALLOC(p_hwfn->p_dev, GFP_ATOMIC, MAX_ZIPPED_SIZE * 4); if (!p_hwfn->unzip_buf) { DP_NOTICE(p_hwfn, true, "Failed to allocate unzip buffer\n"); return ECORE_NOMEM; } #endif for (cmd_num = 0; cmd_num < num_init_ops; cmd_num++) { union init_op *cmd = &init_ops[cmd_num]; u32 data = OSAL_LE32_TO_CPU(cmd->raw.op_data); switch (GET_FIELD(data, INIT_CALLBACK_OP_OP)) { case INIT_OP_WRITE: rc = ecore_init_cmd_wr(p_hwfn, p_ptt, &cmd->write, b_dmae); break; case INIT_OP_READ: ecore_init_cmd_rd(p_hwfn, p_ptt, &cmd->read); break; case INIT_OP_IF_MODE: cmd_num += ecore_init_cmd_mode(p_hwfn, &cmd->if_mode, modes); break; case INIT_OP_IF_PHASE: cmd_num += ecore_init_cmd_phase(p_hwfn, &cmd->if_phase, phase, phase_id); b_dmae = GET_FIELD(data, INIT_IF_PHASE_OP_DMAE_ENABLE); break; case INIT_OP_DELAY: /* ecore_init_run is always invoked from * sleep-able context */ OSAL_UDELAY(cmd->delay.delay); break; case INIT_OP_CALLBACK: ecore_init_cmd_cb(p_hwfn, p_ptt, &cmd->callback); break; } if (rc) break; } #ifdef CONFIG_ECORE_ZIPPED_FW OSAL_FREE(p_hwfn->p_dev, p_hwfn->unzip_buf); p_hwfn->unzip_buf = OSAL_NULL; #endif return rc; } void ecore_gtt_init(struct ecore_hwfn *p_hwfn) { u32 gtt_base; u32 i; #ifndef ASIC_ONLY if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) { /* This is done by MFW on ASIC; regardless, this should only * be done once per chip [i.e., common]. Implementation is * not too bright, but it should work on the simple FPGA/EMUL * scenarios. */ static bool initialized = false; int poll_cnt = 500; u32 val; /* initialize PTT/GTT (poll for completion) */ if (!initialized) { ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_START_INIT_PTT_GTT, 1); initialized = true; } do { /* ptt might be overrided by HW until this is done */ OSAL_UDELAY(10); ecore_ptt_invalidate(p_hwfn); val = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_INIT_DONE_PTT_GTT); } while ((val != 1) && --poll_cnt); if (!poll_cnt) DP_ERR(p_hwfn, "PGLUE_B_REG_INIT_DONE didn't complete\n"); } #endif /* Set the global windows */ gtt_base = PXP_PF_WINDOW_ADMIN_START + PXP_PF_WINDOW_ADMIN_GLOBAL_START; for (i = 0; i < OSAL_ARRAY_SIZE(pxp_global_win); i++) if (pxp_global_win[i]) REG_WR(p_hwfn, gtt_base + i * PXP_GLOBAL_ENTRY_SIZE, pxp_global_win[i]); } enum _ecore_status_t ecore_init_fw_data(struct ecore_dev *p_dev, const u8 *data) { struct ecore_fw_data *fw = p_dev->fw_data; #ifdef CONFIG_ECORE_BINARY_FW struct bin_buffer_hdr *buf_hdr; u32 offset, len; if (!data) { DP_NOTICE(p_dev, true, "Invalid fw data\n"); return ECORE_INVAL; } buf_hdr = (struct bin_buffer_hdr *)data; offset = buf_hdr[BIN_BUF_INIT_FW_VER_INFO].offset; fw->fw_ver_info = (struct fw_ver_info *)(data + offset); offset = buf_hdr[BIN_BUF_INIT_CMD].offset; fw->init_ops = (union init_op *)(data + offset); offset = buf_hdr[BIN_BUF_INIT_VAL].offset; fw->arr_data = (u32 *)(data + offset); offset = buf_hdr[BIN_BUF_INIT_MODE_TREE].offset; fw->modes_tree_buf = (u8 *)(data + offset); len = buf_hdr[BIN_BUF_INIT_CMD].length; fw->init_ops_size = len / sizeof(struct init_raw_op); #else fw->init_ops = (union init_op *)init_ops; fw->arr_data = (u32 *)init_val; fw->modes_tree_buf = (u8 *)modes_tree_buf; fw->init_ops_size = init_ops_size; #endif return ECORE_SUCCESS; }