/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, v.1, (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2014-2017 Cavium, Inc. * The contents of this file are subject to the terms of the Common Development * and Distribution License, v.1, (the "License"). * You may not use this file except in compliance with the License. * You can obtain a copy of the License at available * at http://opensource.org/licenses/CDDL-1.0 * See the License for the specific language governing permissions and * limitations under the License. */ #include "bcm_osal.h" #include "reg_addr.h" #include "common_hsi.h" #include "ecore_hsi_common.h" #include "ecore_hsi_eth.h" #include "tcp_common.h" #include "ecore_hsi_iscsi.h" #include "ecore_hsi_fcoe.h" #include "ecore_hsi_roce.h" #include "ecore_hsi_iwarp.h" #include "ecore_rt_defs.h" #include "ecore_status.h" #include "ecore.h" #include "ecore_init_ops.h" #include "ecore_init_fw_funcs.h" #include "ecore_cxt.h" #include "ecore_hw.h" #include "ecore_dev_api.h" #include "ecore_sriov.h" #include "ecore_roce.h" #include "ecore_mcp.h" /* Max number of connection types in HW (DQ/CDU etc.) */ #define MAX_CONN_TYPES PROTOCOLID_COMMON #define NUM_TASK_TYPES 2 #define NUM_TASK_PF_SEGMENTS 4 #define NUM_TASK_VF_SEGMENTS 1 /* Doorbell-Queue constants */ #define DQ_RANGE_SHIFT 4 #define DQ_RANGE_ALIGN (1 << DQ_RANGE_SHIFT) /* Searcher constants */ #define SRC_MIN_NUM_ELEMS 256 /* Timers constants */ #define TM_SHIFT 7 #define TM_ALIGN (1 << TM_SHIFT) #define TM_ELEM_SIZE 4 /* ILT constants */ /* If for some reason, HW P size is modified to be less than 32K, * special handling needs to be made for CDU initialization */ #ifdef CONFIG_ECORE_ROCE /* For RoCE we configure to 64K to cover for RoCE max tasks 256K purpose. Can be * optimized with resource management scheme */ #define ILT_DEFAULT_HW_P_SIZE 4 #else #define ILT_DEFAULT_HW_P_SIZE 3 #endif #define ILT_PAGE_IN_BYTES(hw_p_size) (1U << ((hw_p_size) + 12)) #define ILT_CFG_REG(cli, reg) PSWRQ2_REG_##cli##_##reg##_RT_OFFSET /* ILT entry structure */ #define ILT_ENTRY_PHY_ADDR_MASK 0x000FFFFFFFFFFFULL #define ILT_ENTRY_PHY_ADDR_SHIFT 0 #define ILT_ENTRY_VALID_MASK 0x1ULL #define ILT_ENTRY_VALID_SHIFT 52 #define ILT_ENTRY_IN_REGS 2 #define ILT_REG_SIZE_IN_BYTES 4 /* connection context union */ union conn_context { struct core_conn_context core_ctx; struct eth_conn_context eth_ctx; struct iscsi_conn_context iscsi_ctx; struct fcoe_conn_context fcoe_ctx; struct roce_conn_context roce_ctx; }; /* TYPE-0 task context - iSCSI, FCOE */ union type0_task_context { struct iscsi_task_context iscsi_ctx; struct fcoe_task_context fcoe_ctx; }; /* TYPE-1 task context - ROCE */ union type1_task_context { struct rdma_task_context roce_ctx; }; struct src_ent { u8 opaque[56]; u64 next; }; #define CDUT_SEG_ALIGNMET 3 /* in 4k chunks */ #define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12)) #define CONN_CXT_SIZE(p_hwfn) \ ALIGNED_TYPE_SIZE(union conn_context, p_hwfn) #define SRQ_CXT_SIZE (sizeof(struct rdma_srq_context)) #define TYPE0_TASK_CXT_SIZE(p_hwfn) \ ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn) /* Alignment is inherent to the type1_task_context structure */ #define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context) /* PF per protocl configuration object */ #define TASK_SEGMENTS (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS) #define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS) struct ecore_tid_seg { u32 count; u8 type; bool has_fl_mem; }; struct ecore_conn_type_cfg { u32 cid_count; u32 cids_per_vf; struct ecore_tid_seg tid_seg[TASK_SEGMENTS]; }; /* ILT Client configuration, * Per connection type (protocol) resources (cids, tis, vf cids etc.) * 1 - for connection context (CDUC) and for each task context we need two * values, for regular task context and for force load memory */ #define ILT_CLI_PF_BLOCKS (1 + NUM_TASK_PF_SEGMENTS * 2) #define ILT_CLI_VF_BLOCKS (1 + NUM_TASK_VF_SEGMENTS * 2) #define CDUC_BLK (0) #define SRQ_BLK (0) #define CDUT_SEG_BLK(n) (1 + (u8)(n)) #define CDUT_FL_SEG_BLK(n, X) (1 + (n) + NUM_TASK_##X##_SEGMENTS) enum ilt_clients { ILT_CLI_CDUC, ILT_CLI_CDUT, ILT_CLI_QM, ILT_CLI_TM, ILT_CLI_SRC, ILT_CLI_TSDM, ILT_CLI_MAX }; struct ilt_cfg_pair { u32 reg; u32 val; }; struct ecore_ilt_cli_blk { u32 total_size; /* 0 means not active */ u32 real_size_in_page; u32 start_line; u32 dynamic_line_cnt; }; struct ecore_ilt_client_cfg { bool active; /* ILT boundaries */ struct ilt_cfg_pair first; struct ilt_cfg_pair last; struct ilt_cfg_pair p_size; /* ILT client blocks for PF */ struct ecore_ilt_cli_blk pf_blks[ILT_CLI_PF_BLOCKS]; u32 pf_total_lines; /* ILT client blocks for VFs */ struct ecore_ilt_cli_blk vf_blks[ILT_CLI_VF_BLOCKS]; u32 vf_total_lines; }; /* Per Path - * ILT shadow table * Protocol acquired CID lists * PF start line in ILT */ struct ecore_dma_mem { dma_addr_t p_phys; void *p_virt; osal_size_t size; }; #define MAP_WORD_SIZE sizeof(unsigned long) #define BITS_PER_MAP_WORD (MAP_WORD_SIZE * 8) struct ecore_cid_acquired_map { u32 start_cid; u32 max_count; unsigned long *cid_map; }; struct ecore_cxt_mngr { /* Per protocl configuration */ struct ecore_conn_type_cfg conn_cfg[MAX_CONN_TYPES]; /* computed ILT structure */ struct ecore_ilt_client_cfg clients[ILT_CLI_MAX]; /* Task type sizes */ u32 task_type_size[NUM_TASK_TYPES]; /* total number of VFs for this hwfn - * ALL VFs are symmetric in terms of HW resources */ u32 vf_count; /* Acquired CIDs */ struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES]; /* TBD - do we want this allocated to reserve space? */ struct ecore_cid_acquired_map acquired_vf[MAX_CONN_TYPES][COMMON_MAX_NUM_VFS]; /* ILT shadow table */ struct ecore_dma_mem *ilt_shadow; u32 pf_start_line; /* Mutex for a dynamic ILT allocation */ osal_mutex_t mutex; /* SRC T2 */ struct ecore_dma_mem *t2; u32 t2_num_pages; u64 first_free; u64 last_free; /* The infrastructure originally was very generic and context/task * oriented - per connection-type we would set how many of those * are needed, and later when determining how much memory we're * needing for a given block we'd iterate over all the relevant * connection-types. * But since then we've had some additional resources, some of which * require memory which is indepent of the general context/task * scheme. We add those here explicitly per-feature. */ /* total number of SRQ's for this hwfn */ u32 srq_count; /* Maximal number of L2 steering filters */ u32 arfs_count; /* TODO - VF arfs filters ? */ }; /* check if resources/configuration is required according to protocol type */ static bool src_proto(struct ecore_hwfn *p_hwfn, enum protocol_type type) { return type == PROTOCOLID_ISCSI || type == PROTOCOLID_FCOE || type == PROTOCOLID_TOE || type == PROTOCOLID_IWARP; } static bool tm_cid_proto(enum protocol_type type) { return type == PROTOCOLID_ISCSI || type == PROTOCOLID_FCOE || type == PROTOCOLID_ROCE || type == PROTOCOLID_IWARP; } static bool tm_tid_proto(enum protocol_type type) { return type == PROTOCOLID_FCOE; } /* counts the iids for the CDU/CDUC ILT client configuration */ struct ecore_cdu_iids { u32 pf_cids; u32 per_vf_cids; }; static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr *p_mngr, struct ecore_cdu_iids *iids) { u32 type; for (type = 0; type < MAX_CONN_TYPES; type++) { iids->pf_cids += p_mngr->conn_cfg[type].cid_count; iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf; } } /* counts the iids for the Searcher block configuration */ struct ecore_src_iids { u32 pf_cids; u32 per_vf_cids; }; static void ecore_cxt_src_iids(struct ecore_hwfn *p_hwfn, struct ecore_cxt_mngr *p_mngr, struct ecore_src_iids *iids) { u32 i; for (i = 0; i < MAX_CONN_TYPES; i++) { if (!src_proto(p_hwfn, i)) continue; iids->pf_cids += p_mngr->conn_cfg[i].cid_count; iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf; } /* Add L2 filtering filters in addition */ iids->pf_cids += p_mngr->arfs_count; } /* counts the iids for the Timers block configuration */ struct ecore_tm_iids { u32 pf_cids; u32 pf_tids[NUM_TASK_PF_SEGMENTS]; /* per segment */ u32 pf_tids_total; u32 per_vf_cids; u32 per_vf_tids; }; static void ecore_cxt_tm_iids(struct ecore_hwfn *p_hwfn, struct ecore_cxt_mngr *p_mngr, struct ecore_tm_iids *iids) { bool tm_vf_required = false; bool tm_required = false; int i, j; /* Timers is a special case -> we don't count how many cids require * timers but what's the max cid that will be used by the timer block. * therefore we traverse in reverse order, and once we hit a protocol * that requires the timers memory, we'll sum all the protocols up * to that one. */ for (i = MAX_CONN_TYPES - 1; i >= 0; i--) { struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i]; if (tm_cid_proto(i) || tm_required) { if (p_cfg->cid_count) tm_required = true; iids->pf_cids += p_cfg->cid_count; } if (tm_cid_proto(i) || tm_vf_required) { if (p_cfg->cids_per_vf) tm_vf_required = true; iids->per_vf_cids += p_cfg->cids_per_vf; } if (tm_tid_proto(i)) { struct ecore_tid_seg *segs = p_cfg->tid_seg; /* for each segment there is at most one * protocol for which count is not 0. */ for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++) iids->pf_tids[j] += segs[j].count; /* The last array elelment is for the VFs. As for PF * segments there can be only one protocol for * which this value is not 0. */ iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count; } } iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN); iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN); iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN); for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) { iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN); iids->pf_tids_total += iids->pf_tids[j]; } } static void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn, struct ecore_qm_iids *iids) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; struct ecore_tid_seg *segs; u32 vf_cids = 0, type, j; u32 vf_tids = 0; for (type = 0; type < MAX_CONN_TYPES; type++) { iids->cids += p_mngr->conn_cfg[type].cid_count; vf_cids += p_mngr->conn_cfg[type].cids_per_vf; segs = p_mngr->conn_cfg[type].tid_seg; /* for each segment there is at most one * protocol for which count is not 0. */ for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++) iids->tids += segs[j].count; /* The last array elelment is for the VFs. As for PF * segments there can be only one protocol for * which this value is not 0. */ vf_tids += segs[NUM_TASK_PF_SEGMENTS].count; } iids->vf_cids += vf_cids * p_mngr->vf_count; iids->tids += vf_tids * p_mngr->vf_count; DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n", iids->cids, iids->vf_cids, iids->tids, vf_tids); } static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn *p_hwfn, u32 seg) { struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr; u32 i; /* Find the protocol with tid count > 0 for this segment. Note: there can only be one and this is already validated. */ for (i = 0; i < MAX_CONN_TYPES; i++) { if (p_cfg->conn_cfg[i].tid_seg[seg].count) return &p_cfg->conn_cfg[i].tid_seg[seg]; } return OSAL_NULL; } /* set the iids (cid/tid) count per protocol */ static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn, enum protocol_type type, u32 cid_count, u32 vf_cid_cnt) { struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr; struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type]; p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN); p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN); if (type == PROTOCOLID_ROCE) { u32 page_sz = p_mgr->clients[ILT_CLI_CDUC].p_size.val; u32 cxt_size = CONN_CXT_SIZE(p_hwfn); u32 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; u32 align = elems_per_page * DQ_RANGE_ALIGN; p_conn->cid_count = ROUNDUP(p_conn->cid_count, align); } } u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn *p_hwfn, enum protocol_type type, u32 *vf_cid) { if (vf_cid) *vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf; return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count; } u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn *p_hwfn, enum protocol_type type) { return p_hwfn->p_cxt_mngr->acquired[type].start_cid; } u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn, enum protocol_type type) { u32 cnt = 0; int i; for (i = 0; i < TASK_SEGMENTS; i++) cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count; return cnt; } static void ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn, enum protocol_type proto, u8 seg, u8 seg_type, u32 count, bool has_fl) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg]; p_seg->count = count; p_seg->has_fl_mem = has_fl; p_seg->type = seg_type; } /* the *p_line parameter must be either 0 for the first invocation or the value returned in the previous invocation. */ static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg *p_cli, struct ecore_ilt_cli_blk *p_blk, u32 start_line, u32 total_size, u32 elem_size) { u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val); /* verify that it's called once for each block */ if (p_blk->total_size) return; p_blk->total_size = total_size; p_blk->real_size_in_page = 0; if (elem_size) p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size; p_blk->start_line = start_line; } static void ecore_ilt_cli_adv_line(struct ecore_hwfn *p_hwfn, struct ecore_ilt_client_cfg *p_cli, struct ecore_ilt_cli_blk *p_blk, u32 *p_line, enum ilt_clients client_id) { if (!p_blk->total_size) return; if (!p_cli->active) p_cli->first.val = *p_line; p_cli->active = true; *p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page); p_cli->last.val = *p_line-1; DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x [Real %08x] Start line %d\n", client_id, p_cli->first.val, p_cli->last.val, p_blk->total_size, p_blk->real_size_in_page, p_blk->start_line); } static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn, enum ilt_clients ilt_client) { u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count; struct ecore_ilt_client_cfg *p_cli; u32 lines_to_skip = 0; u32 cxts_per_p; /* TBD MK: ILT code should be simplified once PROTO enum is changed */ if (ilt_client == ILT_CLI_CDUC) { p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) / (u32)CONN_CXT_SIZE(p_hwfn); lines_to_skip = cid_count / cxts_per_p; } return lines_to_skip; } static struct ecore_ilt_client_cfg * ecore_cxt_set_cli(struct ecore_ilt_client_cfg *p_cli) { p_cli->active = false; p_cli->first.val = 0; p_cli->last.val = 0; return p_cli; } static struct ecore_ilt_cli_blk * ecore_cxt_set_blk(struct ecore_ilt_cli_blk *p_blk) { p_blk->total_size = 0; return p_blk; } enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn, u32 *line_count) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; u32 curr_line, total, i, task_size, line; struct ecore_ilt_client_cfg *p_cli; struct ecore_ilt_cli_blk *p_blk; struct ecore_cdu_iids cdu_iids; struct ecore_src_iids src_iids; struct ecore_qm_iids qm_iids; struct ecore_tm_iids tm_iids; struct ecore_tid_seg *p_seg; OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids)); OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids)); OSAL_MEM_ZERO(&src_iids, sizeof(src_iids)); OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids)); p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT); DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, "hwfn [%d] - Set context manager starting line to be 0x%08x\n", p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line); /* CDUC */ p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUC]); curr_line = p_mngr->pf_start_line; /* CDUC PF */ p_cli->pf_total_lines = 0; /* get the counters for the CDUC,CDUC and QM clients */ ecore_cxt_cdu_iids(p_mngr, &cdu_iids); p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUC_BLK]); total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn); ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total, CONN_CXT_SIZE(p_hwfn)); ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC); p_cli->pf_total_lines = curr_line - p_blk->start_line; p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn, ILT_CLI_CDUC); /* CDUC VF */ p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUC_BLK]); total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn); ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total, CONN_CXT_SIZE(p_hwfn)); ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC); p_cli->vf_total_lines = curr_line - p_blk->start_line; for (i = 1; i < p_mngr->vf_count; i++) ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC); /* CDUT PF */ p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUT]); p_cli->first.val = curr_line; /* first the 'working' task memory */ for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { p_seg = ecore_cxt_tid_seg_info(p_hwfn, i); if (!p_seg || p_seg->count == 0) continue; p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUT_SEG_BLK(i)]); total = p_seg->count * p_mngr->task_type_size[p_seg->type]; ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total, p_mngr->task_type_size[p_seg->type]); ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUT); } /* next the 'init' task memory (forced load memory) */ for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { p_seg = ecore_cxt_tid_seg_info(p_hwfn, i); if (!p_seg || p_seg->count == 0) continue; p_blk = ecore_cxt_set_blk( &p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)]); if (!p_seg->has_fl_mem) { /* The segment is active (total size pf 'working' * memory is > 0) but has no FL (forced-load, Init) * memory. Thus: * * 1. The total-size in the corrsponding FL block of * the ILT client is set to 0 - No ILT line are * provisioned and no ILT memory allocated. * * 2. The start-line of said block is set to the * start line of the matching working memory * block in the ILT client. This is later used to * configure the CDU segment offset registers and * results in an FL command for TIDs of this * segement behaves as regular load commands * (loading TIDs from the working memory). */ line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line; ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0); continue; } total = p_seg->count * p_mngr->task_type_size[p_seg->type]; ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total, p_mngr->task_type_size[p_seg->type]); ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUT); } p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line; /* CDUT VF */ p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF); if (p_seg && p_seg->count) { /* Stricly speaking we need to iterate over all VF * task segment types, but a VF has only 1 segment */ /* 'working' memory */ total = p_seg->count * p_mngr->task_type_size[p_seg->type]; p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUT_SEG_BLK(0)]); ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total, p_mngr->task_type_size[p_seg->type]); ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUT); /* 'init' memory */ p_blk = ecore_cxt_set_blk( &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]); if (!p_seg->has_fl_mem) { /* see comment above */ line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line; ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0); } else { task_size = p_mngr->task_type_size[p_seg->type]; ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total, task_size); ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUT); } p_cli->vf_total_lines = curr_line - p_cli->vf_blks[0].start_line; /* Now for the rest of the VFs */ for (i = 1; i < p_mngr->vf_count; i++) { /* don't set p_blk i.e. don't clear total_size */ p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)]; ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUT); /* don't set p_blk i.e. don't clear total_size */ p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]; ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUT); } } /* QM */ p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_QM]); p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]); ecore_cxt_qm_iids(p_hwfn, &qm_iids); total = ecore_qm_pf_mem_size(p_hwfn->rel_pf_id, qm_iids.cids, qm_iids.vf_cids, qm_iids.tids, p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs); DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d, num_vf_pqs=%d, memory_size=%d)\n", qm_iids.cids, qm_iids.vf_cids, qm_iids.tids, p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total); ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000, QM_PQ_ELEMENT_SIZE); ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM); p_cli->pf_total_lines = curr_line - p_blk->start_line; /* SRC */ p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_SRC]); ecore_cxt_src_iids(p_hwfn, p_mngr, &src_iids); /* Both the PF and VFs searcher connections are stored in the per PF * database. Thus sum the PF searcher cids and all the VFs searcher * cids. */ total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count; if (total) { u32 local_max = OSAL_MAX_T(u32, total, SRC_MIN_NUM_ELEMS); total = OSAL_ROUNDUP_POW_OF_TWO(local_max); p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]); ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * sizeof(struct src_ent), sizeof(struct src_ent)); ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_SRC); p_cli->pf_total_lines = curr_line - p_blk->start_line; } /* TM PF */ p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TM]); ecore_cxt_tm_iids(p_hwfn, p_mngr, &tm_iids); total = tm_iids.pf_cids + tm_iids.pf_tids_total; if (total) { p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]); ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * TM_ELEM_SIZE, TM_ELEM_SIZE); ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_TM); p_cli->pf_total_lines = curr_line - p_blk->start_line; } /* TM VF */ total = tm_iids.per_vf_cids + tm_iids.per_vf_tids; if (total) { p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[0]); ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * TM_ELEM_SIZE, TM_ELEM_SIZE); ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_TM); p_cli->vf_total_lines = curr_line - p_blk->start_line; for (i = 1; i < p_mngr->vf_count; i++) { ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_TM); } } /* TSDM (SRQ CONTEXT) */ total = ecore_cxt_get_srq_count(p_hwfn); if (total) { p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TSDM]); p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[SRQ_BLK]); ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * SRQ_CXT_SIZE, SRQ_CXT_SIZE); ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_TSDM); p_cli->pf_total_lines = curr_line - p_blk->start_line; } *line_count = curr_line - p_hwfn->p_cxt_mngr->pf_start_line; if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line > RESC_NUM(p_hwfn, ECORE_ILT)) { return ECORE_INVAL; } return ECORE_SUCCESS; } u32 ecore_cxt_cfg_ilt_compute_excess(struct ecore_hwfn *p_hwfn, u32 used_lines) { struct ecore_ilt_client_cfg *p_cli; u32 excess_lines, available_lines; struct ecore_cxt_mngr *p_mngr; u32 ilt_page_size, elem_size; struct ecore_tid_seg *p_seg; int i; available_lines = RESC_NUM(p_hwfn, ECORE_ILT); excess_lines = used_lines - available_lines; if (!excess_lines) return 0; if (!ECORE_IS_RDMA_PERSONALITY(p_hwfn)) return 0; p_mngr = p_hwfn->p_cxt_mngr; p_cli = &p_mngr->clients[ILT_CLI_CDUT]; ilt_page_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val); for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { p_seg = ecore_cxt_tid_seg_info(p_hwfn, i); if (!p_seg || p_seg->count == 0) continue; elem_size = p_mngr->task_type_size[p_seg->type]; if (!elem_size) continue; return (ilt_page_size / elem_size) * excess_lines; } DP_ERR(p_hwfn, "failed computing excess ILT lines\n"); return 0; } static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; u32 i; if (!p_mngr->t2) return; for (i = 0; i < p_mngr->t2_num_pages; i++) if (p_mngr->t2[i].p_virt) OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_mngr->t2[i].p_virt, p_mngr->t2[i].p_phys, p_mngr->t2[i].size); OSAL_FREE(p_hwfn->p_dev, p_mngr->t2); p_mngr->t2 = OSAL_NULL; } static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; u32 conn_num, total_size, ent_per_page, psz, i; struct ecore_ilt_client_cfg *p_src; struct ecore_src_iids src_iids; struct ecore_dma_mem *p_t2; enum _ecore_status_t rc; OSAL_MEM_ZERO(&src_iids, sizeof(src_iids)); /* if the SRC ILT client is inactive - there are no connection * requiring the searcer, leave. */ p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC]; if (!p_src->active) return ECORE_SUCCESS; ecore_cxt_src_iids(p_hwfn, p_mngr, &src_iids); conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count; total_size = conn_num * sizeof(struct src_ent); /* use the same page size as the SRC ILT client */ psz = ILT_PAGE_IN_BYTES(p_src->p_size.val); p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz); /* allocate t2 */ p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, p_mngr->t2_num_pages * sizeof(struct ecore_dma_mem)); if (!p_mngr->t2) { DP_NOTICE(p_hwfn, true, "Failed to allocate t2 table\n"); rc = ECORE_NOMEM; goto t2_fail; } /* allocate t2 pages */ for (i = 0; i < p_mngr->t2_num_pages; i++) { u32 size = OSAL_MIN_T(u32, total_size, psz); void **p_virt = &p_mngr->t2[i].p_virt; *p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, &p_mngr->t2[i].p_phys, size); if (!p_mngr->t2[i].p_virt) { rc = ECORE_NOMEM; goto t2_fail; } OSAL_MEM_ZERO(*p_virt, size); p_mngr->t2[i].size = size; total_size -= size; } /* Set the t2 pointers */ /* entries per page - must be a power of two */ ent_per_page = psz / sizeof(struct src_ent); p_mngr->first_free = (u64)p_mngr->t2[0].p_phys; p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page]; p_mngr->last_free = (u64)p_t2->p_phys + ((conn_num - 1) & (ent_per_page - 1)) * sizeof(struct src_ent); for (i = 0; i < p_mngr->t2_num_pages; i++) { u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num); struct src_ent *entries = p_mngr->t2[i].p_virt; u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val; u32 j; for (j = 0; j < ent_num - 1; j++) { val = p_ent_phys + (j + 1) * sizeof(struct src_ent); entries[j].next = OSAL_CPU_TO_BE64(val); } if (i < p_mngr->t2_num_pages - 1) val = (u64)p_mngr->t2[i + 1].p_phys; else val = 0; entries[j].next = OSAL_CPU_TO_BE64(val); conn_num -= ent_num; } return ECORE_SUCCESS; t2_fail: ecore_cxt_src_t2_free(p_hwfn); return rc; } #define for_each_ilt_valid_client(pos, clients) \ for (pos = 0; pos < ILT_CLI_MAX; pos++) \ if (!clients[pos].active) { \ continue; \ } else \ /* Total number of ILT lines used by this PF */ static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients) { u32 size = 0; u32 i; for_each_ilt_valid_client(i, ilt_clients) size += (ilt_clients[i].last.val - ilt_clients[i].first.val + 1); return size; } static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn) { struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients; struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; u32 ilt_size, i; ilt_size = ecore_cxt_ilt_shadow_size(p_cli); for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) { struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i]; if (p_dma->p_virt) OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_dma->p_virt, p_dma->p_phys, p_dma->size); p_dma->p_virt = OSAL_NULL; } OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow); } static enum _ecore_status_t ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn, struct ecore_ilt_cli_blk *p_blk, enum ilt_clients ilt_client, u32 start_line_offset) { struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow; u32 lines, line, sz_left, lines_to_skip = 0; /* Special handling for RoCE that supports dynamic allocation */ if (ECORE_IS_RDMA_PERSONALITY(p_hwfn) && ((ilt_client == ILT_CLI_CDUT) || ilt_client == ILT_CLI_TSDM)) return ECORE_SUCCESS; lines_to_skip = p_blk->dynamic_line_cnt; if (!p_blk->total_size) return ECORE_SUCCESS; sz_left = p_blk->total_size; lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) - lines_to_skip; line = p_blk->start_line + start_line_offset - p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip; for (; lines; lines--) { dma_addr_t p_phys; void *p_virt; u32 size; size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page); p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, &p_phys, size); if (!p_virt) return ECORE_NOMEM; OSAL_MEM_ZERO(p_virt, size); ilt_shadow[line].p_phys = p_phys; ilt_shadow[line].p_virt = p_virt; ilt_shadow[line].size = size; DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, "ILT shadow: Line [%d] Physical 0x%llx Virtual %p Size %d\n", line, (u64)p_phys, p_virt, size); sz_left -= size; line++; } return ECORE_SUCCESS; } static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; struct ecore_ilt_client_cfg *clients = p_mngr->clients; struct ecore_ilt_cli_blk *p_blk; u32 size, i, j, k; enum _ecore_status_t rc; size = ecore_cxt_ilt_shadow_size(clients); p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size * sizeof(struct ecore_dma_mem)); if (!p_mngr->ilt_shadow) { DP_NOTICE(p_hwfn, true, "Failed to allocate ilt shadow table\n"); rc = ECORE_NOMEM; goto ilt_shadow_fail; } DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, "Allocated 0x%x bytes for ilt shadow\n", (u32)(size * sizeof(struct ecore_dma_mem))); for_each_ilt_valid_client(i, clients) { for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) { p_blk = &clients[i].pf_blks[j]; rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0); if (rc != ECORE_SUCCESS) goto ilt_shadow_fail; } for (k = 0; k < p_mngr->vf_count; k++) { for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) { u32 lines = clients[i].vf_total_lines * k; p_blk = &clients[i].vf_blks[j]; rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, lines); if (rc != ECORE_SUCCESS) goto ilt_shadow_fail; } } } return ECORE_SUCCESS; ilt_shadow_fail: ecore_ilt_shadow_free(p_hwfn); return rc; } static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; u32 type, vf; for (type = 0; type < MAX_CONN_TYPES; type++) { OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map); p_mngr->acquired[type].max_count = 0; p_mngr->acquired[type].start_cid = 0; for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) { OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired_vf[type][vf].cid_map); p_mngr->acquired_vf[type][vf].max_count = 0; p_mngr->acquired_vf[type][vf].start_cid = 0; } } } static enum _ecore_status_t ecore_cid_map_alloc_single(struct ecore_hwfn *p_hwfn, u32 type, u32 cid_start, u32 cid_count, struct ecore_cid_acquired_map *p_map) { u32 size; if (!cid_count) return ECORE_SUCCESS; size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_count, BITS_PER_MAP_WORD); p_map->cid_map = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size); if (p_map->cid_map == OSAL_NULL) return ECORE_NOMEM; p_map->max_count = cid_count; p_map->start_cid = cid_start; DP_VERBOSE(p_hwfn, ECORE_MSG_CXT, "Type %08x start: %08x count %08x\n", type, p_map->start_cid, p_map->max_count); return ECORE_SUCCESS; } static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; u32 start_cid = 0, vf_start_cid = 0; u32 type, vf; for (type = 0; type < MAX_CONN_TYPES; type++) { struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type]; struct ecore_cid_acquired_map *p_map; /* Handle PF maps */ p_map = &p_mngr->acquired[type]; if (ecore_cid_map_alloc_single(p_hwfn, type, start_cid, p_cfg->cid_count, p_map)) goto cid_map_fail; /* Handle VF maps */ for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) { p_map = &p_mngr->acquired_vf[type][vf]; if (ecore_cid_map_alloc_single(p_hwfn, type, vf_start_cid, p_cfg->cids_per_vf, p_map)) goto cid_map_fail; } start_cid += p_cfg->cid_count; vf_start_cid += p_cfg->cids_per_vf; } return ECORE_SUCCESS; cid_map_fail: ecore_cid_map_free(p_hwfn); return ECORE_NOMEM; } enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn) { struct ecore_ilt_client_cfg *clients; struct ecore_cxt_mngr *p_mngr; u32 i; p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr)); if (!p_mngr) { DP_NOTICE(p_hwfn, true, "Failed to allocate `struct ecore_cxt_mngr'\n"); return ECORE_NOMEM; } /* Initialize ILT client registers */ clients = p_mngr->clients; clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT); clients[ILT_CLI_CDUC].last.reg = ILT_CFG_REG(CDUC, LAST_ILT); clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE); clients[ILT_CLI_QM].first.reg = ILT_CFG_REG(QM, FIRST_ILT); clients[ILT_CLI_QM].last.reg = ILT_CFG_REG(QM, LAST_ILT); clients[ILT_CLI_QM].p_size.reg = ILT_CFG_REG(QM, P_SIZE); clients[ILT_CLI_TM].first.reg = ILT_CFG_REG(TM, FIRST_ILT); clients[ILT_CLI_TM].last.reg = ILT_CFG_REG(TM, LAST_ILT); clients[ILT_CLI_TM].p_size.reg = ILT_CFG_REG(TM, P_SIZE); clients[ILT_CLI_SRC].first.reg = ILT_CFG_REG(SRC, FIRST_ILT); clients[ILT_CLI_SRC].last.reg = ILT_CFG_REG(SRC, LAST_ILT); clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE); clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT); clients[ILT_CLI_CDUT].last.reg = ILT_CFG_REG(CDUT, LAST_ILT); clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE); clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT); clients[ILT_CLI_TSDM].last.reg = ILT_CFG_REG(TSDM, LAST_ILT); clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE); /* default ILT page size for all clients is 32K */ for (i = 0; i < ILT_CLI_MAX; i++) p_mngr->clients[i].p_size.val = ILT_DEFAULT_HW_P_SIZE; /* Initialize task sizes */ p_mngr->task_type_size[0] = TYPE0_TASK_CXT_SIZE(p_hwfn); p_mngr->task_type_size[1] = TYPE1_TASK_CXT_SIZE(p_hwfn); if (p_hwfn->p_dev->p_iov_info) p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs; /* Initialize the dynamic ILT allocation mutex */ OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex); OSAL_MUTEX_INIT(&p_mngr->mutex); /* Set the cxt mangr pointer priori to further allocations */ p_hwfn->p_cxt_mngr = p_mngr; return ECORE_SUCCESS; } enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn) { enum _ecore_status_t rc; /* Allocate the ILT shadow table */ rc = ecore_ilt_shadow_alloc(p_hwfn); if (rc) { DP_NOTICE(p_hwfn, true, "Failed to allocate ilt memory\n"); goto tables_alloc_fail; } /* Allocate the T2 table */ rc = ecore_cxt_src_t2_alloc(p_hwfn); if (rc) { DP_NOTICE(p_hwfn, true, "Failed to allocate T2 memory\n"); goto tables_alloc_fail; } /* Allocate and initalize the acquired cids bitmaps */ rc = ecore_cid_map_alloc(p_hwfn); if (rc) { DP_NOTICE(p_hwfn, true, "Failed to allocate cid maps\n"); goto tables_alloc_fail; } return ECORE_SUCCESS; tables_alloc_fail: ecore_cxt_mngr_free(p_hwfn); return rc; } void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn) { if (!p_hwfn->p_cxt_mngr) return; ecore_cid_map_free(p_hwfn); ecore_cxt_src_t2_free(p_hwfn); ecore_ilt_shadow_free(p_hwfn); OSAL_MUTEX_DEALLOC(&p_hwfn->p_cxt_mngr->mutex); OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr); p_hwfn->p_cxt_mngr = OSAL_NULL; } void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; struct ecore_cid_acquired_map *p_map; struct ecore_conn_type_cfg *p_cfg; int type; u32 len; /* Reset acquired cids */ for (type = 0; type < MAX_CONN_TYPES; type++) { u32 vf; p_cfg = &p_mngr->conn_cfg[type]; if (p_cfg->cid_count) { p_map = &p_mngr->acquired[type]; len = DIV_ROUND_UP(p_map->max_count, BITS_PER_MAP_WORD) * MAP_WORD_SIZE; OSAL_MEM_ZERO(p_map->cid_map, len); } if (!p_cfg->cids_per_vf) continue; for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) { p_map = &p_mngr->acquired_vf[type][vf]; len = DIV_ROUND_UP(p_map->max_count, BITS_PER_MAP_WORD) * MAP_WORD_SIZE; OSAL_MEM_ZERO(p_map->cid_map, len); } } } /* HW initialization helper (per Block, per phase) */ /* CDU Common */ #define CDUC_CXT_SIZE_SHIFT \ CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT #define CDUC_CXT_SIZE_MASK \ (CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT) #define CDUC_BLOCK_WASTE_SHIFT \ CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT #define CDUC_BLOCK_WASTE_MASK \ (CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT) #define CDUC_NCIB_SHIFT \ CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT #define CDUC_NCIB_MASK \ (CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT) #define CDUT_TYPE0_CXT_SIZE_SHIFT \ CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT #define CDUT_TYPE0_CXT_SIZE_MASK \ (CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >> \ CDUT_TYPE0_CXT_SIZE_SHIFT) #define CDUT_TYPE0_BLOCK_WASTE_SHIFT \ CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT #define CDUT_TYPE0_BLOCK_WASTE_MASK \ (CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >> \ CDUT_TYPE0_BLOCK_WASTE_SHIFT) #define CDUT_TYPE0_NCIB_SHIFT \ CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT #define CDUT_TYPE0_NCIB_MASK \ (CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >> \ CDUT_TYPE0_NCIB_SHIFT) #define CDUT_TYPE1_CXT_SIZE_SHIFT \ CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT #define CDUT_TYPE1_CXT_SIZE_MASK \ (CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >> \ CDUT_TYPE1_CXT_SIZE_SHIFT) #define CDUT_TYPE1_BLOCK_WASTE_SHIFT \ CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT #define CDUT_TYPE1_BLOCK_WASTE_MASK \ (CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >> \ CDUT_TYPE1_BLOCK_WASTE_SHIFT) #define CDUT_TYPE1_NCIB_SHIFT \ CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT #define CDUT_TYPE1_NCIB_MASK \ (CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >> \ CDUT_TYPE1_NCIB_SHIFT) static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn) { u32 page_sz, elems_per_page, block_waste, cxt_size, cdu_params = 0; /* CDUC - connection configuration */ page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val; cxt_size = CONN_CXT_SIZE(p_hwfn); elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size; SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size); SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste); SET_FIELD(cdu_params, CDUC_NCIB, elems_per_page); STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params); /* CDUT - type-0 tasks configuration */ page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val; cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0]; elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size; /* cxt size and block-waste are multipes of 8 */ cdu_params = 0; SET_FIELD(cdu_params, CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3)); SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3)); SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page); STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params); /* CDUT - type-1 tasks configuration */ cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1]; elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size; /* cxt size and block-waste are multipes of 8 */ cdu_params = 0; SET_FIELD(cdu_params, CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3)); SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3)); SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page); STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params); } /* CDU PF */ #define CDU_SEG_REG_TYPE_SHIFT CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT #define CDU_SEG_REG_TYPE_MASK 0x1 #define CDU_SEG_REG_OFFSET_SHIFT 0 #define CDU_SEG_REG_OFFSET_MASK CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn) { struct ecore_ilt_client_cfg *p_cli; struct ecore_tid_seg *p_seg; u32 cdu_seg_params, offset; int i; static const u32 rt_type_offset_arr[] = { CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET, CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET, CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET, CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET }; static const u32 rt_type_offset_fl_arr[] = { CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET, CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET, CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET, CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET }; p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; /* There are initializations only for CDUT during pf Phase */ for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { /* Segment 0*/ p_seg = ecore_cxt_tid_seg_info(p_hwfn, i); if (!p_seg) continue; /* Note: start_line is already adjusted for the CDU * segment register granularity, so we just need to * divide. Adjustment is implicit as we assume ILT * Page size is larger than 32K! */ offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) * (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line - p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES; cdu_seg_params = 0; SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type); SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset); STORE_RT_REG(p_hwfn, rt_type_offset_arr[i], cdu_seg_params); offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) * (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line - p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES; cdu_seg_params = 0; SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type); SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset); STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i], cdu_seg_params); } } void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn) { struct ecore_qm_info *qm_info = &p_hwfn->qm_info; struct ecore_qm_iids iids; OSAL_MEM_ZERO(&iids, sizeof(iids)); ecore_cxt_qm_iids(p_hwfn, &iids); ecore_qm_pf_rt_init(p_hwfn, p_hwfn->p_main_ptt, p_hwfn->port_id, p_hwfn->rel_pf_id, qm_info->max_phys_tcs_per_port, p_hwfn->first_on_engine, iids.cids, iids.vf_cids, iids.tids, qm_info->start_pq, qm_info->num_pqs - qm_info->num_vf_pqs, qm_info->num_vf_pqs, qm_info->start_vport, qm_info->num_vports, qm_info->pf_wfq, qm_info->pf_rl, p_hwfn->qm_info.qm_pq_params, p_hwfn->qm_info.qm_vport_params); } /* CM PF */ void ecore_cm_init_pf(struct ecore_hwfn *p_hwfn) { STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET, ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB)); } /* DQ PF */ static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0; dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT); STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid); dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT); STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid); dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT); STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid); dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT); STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid); dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT); STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid); dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT); STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid); dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT); STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid); dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT); STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid); dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT); STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid); dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT); STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid); dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT); STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid); dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT); STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid); /* Connection types 6 & 7 are not in use, yet they must be configured * as the highest possible connection. Not configuring them means the * defaults will be used, and with a large number of cids a bug may * occur, if the defaults will be smaller than dq_pf_max_cid / * dq_vf_max_cid. */ STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid); STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid); STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid); STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid); } static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn) { struct ecore_ilt_client_cfg *ilt_clients; int i; ilt_clients = p_hwfn->p_cxt_mngr->clients; for_each_ilt_valid_client(i, ilt_clients) { STORE_RT_REG(p_hwfn, ilt_clients[i].first.reg, ilt_clients[i].first.val); STORE_RT_REG(p_hwfn, ilt_clients[i].last.reg, ilt_clients[i].last.val); STORE_RT_REG(p_hwfn, ilt_clients[i].p_size.reg, ilt_clients[i].p_size.val); } } static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn) { struct ecore_ilt_client_cfg *p_cli; u32 blk_factor; /* For simplicty we set the 'block' to be an ILT page */ if (p_hwfn->p_dev->p_iov_info) { struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info; STORE_RT_REG(p_hwfn, PSWRQ2_REG_VF_BASE_RT_OFFSET, p_iov->first_vf_in_pf); STORE_RT_REG(p_hwfn, PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET, p_iov->first_vf_in_pf + p_iov->total_vfs); } p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10); if (p_cli->active) { STORE_RT_REG(p_hwfn, PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET, blk_factor); STORE_RT_REG(p_hwfn, PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET, p_cli->pf_total_lines); STORE_RT_REG(p_hwfn, PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET, p_cli->vf_total_lines); } p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10); if (p_cli->active) { STORE_RT_REG(p_hwfn, PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET, blk_factor); STORE_RT_REG(p_hwfn, PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET, p_cli->pf_total_lines); STORE_RT_REG(p_hwfn, PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET, p_cli->vf_total_lines); } p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM]; blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10); if (p_cli->active) { STORE_RT_REG(p_hwfn, PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET, blk_factor); STORE_RT_REG(p_hwfn, PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET, p_cli->pf_total_lines); STORE_RT_REG(p_hwfn, PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET, p_cli->vf_total_lines); } } /* ILT (PSWRQ2) PF */ static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn) { struct ecore_ilt_client_cfg *clients; struct ecore_cxt_mngr *p_mngr; struct ecore_dma_mem *p_shdw; u32 line, rt_offst, i; ecore_ilt_bounds_init(p_hwfn); ecore_ilt_vf_bounds_init(p_hwfn); p_mngr = p_hwfn->p_cxt_mngr; p_shdw = p_mngr->ilt_shadow; clients = p_hwfn->p_cxt_mngr->clients; for_each_ilt_valid_client(i, clients) { /* Client's 1st val and RT array are absolute, ILT shadows' * lines are relative. */ line = clients[i].first.val - p_mngr->pf_start_line; rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET + clients[i].first.val * ILT_ENTRY_IN_REGS; for (; line <= clients[i].last.val - p_mngr->pf_start_line; line++, rt_offst += ILT_ENTRY_IN_REGS) { u64 ilt_hw_entry = 0; /** p_virt could be OSAL_NULL incase of dynamic * allocation */ if (p_shdw[line].p_virt != OSAL_NULL) { SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL); SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR, (p_shdw[line].p_phys >> 12)); DP_VERBOSE( p_hwfn, ECORE_MSG_ILT, "Setting RT[0x%08x] from ILT[0x%08x] [Client is %d] to Physical addr: 0x%llx\n", rt_offst, line, i, (u64)(p_shdw[line].p_phys >> 12)); } STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry); } } } /* SRC (Searcher) PF */ static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; u32 rounded_conn_num, conn_num, conn_max; struct ecore_src_iids src_iids; OSAL_MEM_ZERO(&src_iids, sizeof(src_iids)); ecore_cxt_src_iids(p_hwfn, p_mngr, &src_iids); conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count; if (!conn_num) return; conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS); rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max); STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num); STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET, OSAL_LOG2(rounded_conn_num)); STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET, p_hwfn->p_cxt_mngr->first_free); STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET, p_hwfn->p_cxt_mngr->last_free); DP_VERBOSE(p_hwfn, ECORE_MSG_ILT, "Configured SEARCHER for 0x%08x connections\n", conn_num); } /* Timers PF */ #define TM_CFG_NUM_IDS_SHIFT 0 #define TM_CFG_NUM_IDS_MASK 0xFFFFULL #define TM_CFG_PRE_SCAN_OFFSET_SHIFT 16 #define TM_CFG_PRE_SCAN_OFFSET_MASK 0x1FFULL #define TM_CFG_PARENT_PF_SHIFT 25 #define TM_CFG_PARENT_PF_MASK 0x7ULL #define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT 30 #define TM_CFG_CID_PRE_SCAN_ROWS_MASK 0x1FFULL #define TM_CFG_TID_OFFSET_SHIFT 30 #define TM_CFG_TID_OFFSET_MASK 0x7FFFFULL #define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT 49 #define TM_CFG_TID_PRE_SCAN_ROWS_MASK 0x1FFULL static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; u32 active_seg_mask = 0, tm_offset, rt_reg; struct ecore_tm_iids tm_iids; u64 cfg_word; u8 i; OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids)); ecore_cxt_tm_iids(p_hwfn, p_mngr, &tm_iids); /* @@@TBD No pre-scan for now */ /* Note: We assume consecutive VFs for a PF */ for (i = 0; i < p_mngr->vf_count; i++) { cfg_word = 0; SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids); SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id); SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */ rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET + (sizeof(cfg_word) / sizeof(u32)) * (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i); STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); } cfg_word = 0; SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids); SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0); /* n/a for PF */ SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */ rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET + (sizeof(cfg_word) / sizeof(u32)) * (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id); STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); /* enale scan */ STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET, tm_iids.pf_cids ? 0x1 : 0x0); /* @@@TBD how to enable the scan for the VFs */ tm_offset = tm_iids.per_vf_cids; /* Note: We assume consecutive VFs for a PF */ for (i = 0; i < p_mngr->vf_count; i++) { cfg_word = 0; SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids); SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id); SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset); SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0); rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET + (sizeof(cfg_word) / sizeof(u32)) * (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i); STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); } tm_offset = tm_iids.pf_cids; for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { cfg_word = 0; SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]); SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0); SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset); SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0); rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET + (sizeof(cfg_word) / sizeof(u32)) * (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i); STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0); tm_offset += tm_iids.pf_tids[i]; } if (ECORE_IS_RDMA_PERSONALITY(p_hwfn)) active_seg_mask = 0; STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask); /* @@@TBD how to enable the scan for the VFs */ } static void ecore_prs_init_common(struct ecore_hwfn *p_hwfn) { if ((p_hwfn->hw_info.personality == ECORE_PCI_FCOE) && p_hwfn->pf_params.fcoe_pf_params.is_target) STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_RESP_INITIATOR_TYPE_RT_OFFSET, 0); } static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; struct ecore_conn_type_cfg *p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE]; struct ecore_tid_seg *p_tid; /* If FCoE is active set the MAX OX_ID (tid) in the Parser */ if (!p_fcoe->cid_count) return; p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG]; if (p_hwfn->pf_params.fcoe_pf_params.is_target) { STORE_RT_REG_AGG(p_hwfn, PRS_REG_TASK_ID_MAX_TARGET_PF_RT_OFFSET, p_tid->count); } else { STORE_RT_REG_AGG(p_hwfn, PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET, p_tid->count); } } void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn) { /* CDU configuration */ ecore_cdu_init_common(p_hwfn); ecore_prs_init_common(p_hwfn); } void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn) { ecore_qm_init_pf(p_hwfn); ecore_cm_init_pf(p_hwfn); ecore_dq_init_pf(p_hwfn); ecore_cdu_init_pf(p_hwfn); ecore_ilt_init_pf(p_hwfn); ecore_src_init_pf(p_hwfn); ecore_tm_init_pf(p_hwfn); ecore_prs_init_pf(p_hwfn); } enum _ecore_status_t _ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn, enum protocol_type type, u32 *p_cid, u8 vfid) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; struct ecore_cid_acquired_map *p_map; u32 rel_cid; if (type >= MAX_CONN_TYPES) { DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type); return ECORE_INVAL; } if (vfid >= COMMON_MAX_NUM_VFS && vfid != ECORE_CXT_PF_CID) { DP_NOTICE(p_hwfn, true, "VF [%02x] is out of range\n", vfid); return ECORE_INVAL; } /* Determine the right map to take this CID from */ if (vfid == ECORE_CXT_PF_CID) p_map = &p_mngr->acquired[type]; else p_map = &p_mngr->acquired_vf[type][vfid]; if (p_map->cid_map == OSAL_NULL) { DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type); return ECORE_INVAL; } rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_map->cid_map, p_map->max_count); if (rel_cid >= p_map->max_count) { DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n", type); return ECORE_NORESOURCES; } OSAL_SET_BIT(rel_cid, p_map->cid_map); *p_cid = rel_cid + p_map->start_cid; DP_VERBOSE(p_hwfn, ECORE_MSG_CXT, "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n", *p_cid, rel_cid, vfid, type); return ECORE_SUCCESS; } enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn, enum protocol_type type, u32 *p_cid) { return _ecore_cxt_acquire_cid(p_hwfn, type, p_cid, ECORE_CXT_PF_CID); } static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid, enum protocol_type *p_type, struct ecore_cid_acquired_map **pp_map) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; u32 rel_cid; /* Iterate over protocols and find matching cid range */ for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) { if (vfid == ECORE_CXT_PF_CID) *pp_map = &p_mngr->acquired[*p_type]; else *pp_map = &p_mngr->acquired_vf[*p_type][vfid]; if (!((*pp_map)->cid_map)) continue; if (cid >= (*pp_map)->start_cid && cid < (*pp_map)->start_cid + (*pp_map)->max_count) { break; } } if (*p_type == MAX_CONN_TYPES) { DP_NOTICE(p_hwfn, true, "Invalid CID %d vfid %02x", cid, vfid); goto fail; } rel_cid = cid - (*pp_map)->start_cid; if (!OSAL_TEST_BIT(rel_cid, (*pp_map)->cid_map)) { DP_NOTICE(p_hwfn, true, "CID %d [vifd %02x] not acquired", cid, vfid); goto fail; } return true; fail: *p_type = MAX_CONN_TYPES; *pp_map = OSAL_NULL; return false; } void _ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid) { struct ecore_cid_acquired_map *p_map = OSAL_NULL; enum protocol_type type; bool b_acquired; u32 rel_cid; if (vfid != ECORE_CXT_PF_CID && vfid > COMMON_MAX_NUM_VFS) { DP_NOTICE(p_hwfn, true, "Trying to return incorrect CID belonging to VF %02x\n", vfid); return; } /* Test acquired and find matching per-protocol map */ b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, vfid, &type, &p_map); if (!b_acquired) return; rel_cid = cid - p_map->start_cid; OSAL_CLEAR_BIT(rel_cid, p_map->cid_map); DP_VERBOSE(p_hwfn, ECORE_MSG_CXT, "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n", cid, rel_cid, vfid, type); } void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid) { _ecore_cxt_release_cid(p_hwfn, cid, ECORE_CXT_PF_CID); } enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn, struct ecore_cxt_info *p_info) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; struct ecore_cid_acquired_map *p_map = OSAL_NULL; u32 conn_cxt_size, hw_p_size, cxts_per_p, line; enum protocol_type type; bool b_acquired; /* Test acquired and find matching per-protocol map */ b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid, ECORE_CXT_PF_CID, &type, &p_map); if (!b_acquired) return ECORE_INVAL; /* set the protocl type */ p_info->type = type; /* compute context virtual pointer */ hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val; conn_cxt_size = CONN_CXT_SIZE(p_hwfn); cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size; line = p_info->iid / cxts_per_p; /* Make sure context is allocated (dynamic allocation) */ if (!p_mngr->ilt_shadow[line].p_virt) return ECORE_INVAL; p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt + p_info->iid % cxts_per_p * conn_cxt_size; DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT), "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n", (p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid); return ECORE_SUCCESS; } static void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn, u32 num_srqs) { struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr; p_mgr->srq_count = num_srqs; } u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn) { struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr; return p_mgr->srq_count; } static void ecore_rdma_set_pf_params(struct ecore_hwfn *p_hwfn, struct ecore_rdma_pf_params *p_params, u32 num_tasks) { u32 num_cons, num_qps, num_srqs; enum protocol_type proto; /* Override personality with rdma flavor */ num_srqs = OSAL_MIN_T(u32, ECORE_RDMA_MAX_SRQS, p_params->num_srqs); /* The only case RDMA personality can be overriden is if NVRAM is * configured with ETH_RDMA or if no rdma protocol was requested */ switch (p_params->rdma_protocol) { case ECORE_RDMA_PROTOCOL_DEFAULT: if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA) { DP_NOTICE(p_hwfn, false, "Current day drivers don't support RoCE & iWARP. Default to RoCE-only\n"); p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE; } break; case ECORE_RDMA_PROTOCOL_NONE: p_hwfn->hw_info.personality = ECORE_PCI_ETH; return; /* intentional... nothing left to do... */ case ECORE_RDMA_PROTOCOL_ROCE: if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA) p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE; break; case ECORE_RDMA_PROTOCOL_IWARP: if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA) p_hwfn->hw_info.personality = ECORE_PCI_ETH_IWARP; break; } switch (p_hwfn->hw_info.personality) { case ECORE_PCI_ETH_IWARP: /* Each QP requires one connection */ num_cons = OSAL_MIN_T(u32, IWARP_MAX_QPS, p_params->num_qps); #ifdef CONFIG_ECORE_IWARP /* required for the define */ /* additional connections required for passive tcp handling */ num_cons += ECORE_IWARP_PREALLOC_CNT; #endif proto = PROTOCOLID_IWARP; p_params->roce_edpm_mode = false; break; case ECORE_PCI_ETH_ROCE: num_qps = OSAL_MIN_T(u32, ROCE_MAX_QPS, p_params->num_qps); num_cons = num_qps * 2; /* each QP requires two connections */ proto = PROTOCOLID_ROCE; break; default: return; } if (num_cons && num_tasks) { ecore_cxt_set_proto_cid_count(p_hwfn, proto, num_cons, 0); /* Deliberatly passing ROCE for tasks id. This is because * iWARP / RoCE share the task id. */ ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ROCE, ECORE_CXT_ROCE_TID_SEG, 1, /* RoCE segment type */ num_tasks, false); /* !force load */ ecore_cxt_set_srq_count(p_hwfn, num_srqs); } else { DP_INFO(p_hwfn->p_dev, "RDMA personality used without setting params!\n"); } } enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn, u32 rdma_tasks) { /* Set the number of required CORE connections */ u32 core_cids = 1; /* SPQ */ if (p_hwfn->using_ll2) core_cids += 4; /* @@@TBD Use the proper #define */ ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0); switch (p_hwfn->hw_info.personality) { case ECORE_PCI_ETH_RDMA: case ECORE_PCI_ETH_IWARP: case ECORE_PCI_ETH_ROCE: ecore_rdma_set_pf_params(p_hwfn, &p_hwfn->pf_params.rdma_pf_params, rdma_tasks); /* no need for break since RoCE coexist with Ethernet */ /* FALLTHROUGH */ case ECORE_PCI_ETH: { struct ecore_eth_pf_params *p_params = &p_hwfn->pf_params.eth_pf_params; if (!p_params->num_vf_cons) p_params->num_vf_cons = ETH_PF_PARAMS_VF_CONS_DEFAULT; ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH, p_params->num_cons, p_params->num_vf_cons); p_hwfn->p_cxt_mngr->arfs_count = p_params->num_arfs_filters; break; } case ECORE_PCI_FCOE: { struct ecore_fcoe_pf_params *p_params; p_params = &p_hwfn->pf_params.fcoe_pf_params; if (p_params->num_cons && p_params->num_tasks) { ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_FCOE, p_params->num_cons, 0); ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_FCOE, ECORE_CXT_FCOE_TID_SEG, 0, /* segment type */ p_params->num_tasks, true); } else { DP_INFO(p_hwfn->p_dev, "Fcoe personality used without setting params!\n"); } break; } case ECORE_PCI_ISCSI: { struct ecore_iscsi_pf_params *p_params; p_params = &p_hwfn->pf_params.iscsi_pf_params; if (p_params->num_cons && p_params->num_tasks) { ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ISCSI, p_params->num_cons, 0); ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ISCSI, ECORE_CXT_ISCSI_TID_SEG, 0, /* segment type */ p_params->num_tasks, true); } else { DP_INFO(p_hwfn->p_dev, "Iscsi personality used without setting params!\n"); } break; } default: return ECORE_INVAL; } return ECORE_SUCCESS; } enum _ecore_status_t ecore_cxt_get_tid_mem_info(struct ecore_hwfn *p_hwfn, struct ecore_tid_mem *p_info) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; u32 proto, seg, total_lines, i, shadow_line; struct ecore_ilt_client_cfg *p_cli; struct ecore_ilt_cli_blk *p_fl_seg; struct ecore_tid_seg *p_seg_info; /* Verify the personality */ switch (p_hwfn->hw_info.personality) { case ECORE_PCI_FCOE: proto = PROTOCOLID_FCOE; seg = ECORE_CXT_FCOE_TID_SEG; break; case ECORE_PCI_ISCSI: proto = PROTOCOLID_ISCSI; seg = ECORE_CXT_ISCSI_TID_SEG; break; default: return ECORE_INVAL; } p_cli = &p_mngr->clients[ILT_CLI_CDUT]; if (!p_cli->active) { return ECORE_INVAL; } p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg]; if (!p_seg_info->has_fl_mem) return ECORE_INVAL; p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)]; total_lines = DIV_ROUND_UP(p_fl_seg->total_size, p_fl_seg->real_size_in_page); for (i = 0; i < total_lines; i++) { shadow_line = i + p_fl_seg->start_line - p_hwfn->p_cxt_mngr->pf_start_line; p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].p_virt; } p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) - p_fl_seg->real_size_in_page; p_info->tid_size = p_mngr->task_type_size[p_seg_info->type]; p_info->num_tids_per_block = p_fl_seg->real_size_in_page / p_info->tid_size; return ECORE_SUCCESS; } /* This function is very RoCE oriented, if another protocol in the future * will want this feature we'll need to modify the function to be more generic */ enum _ecore_status_t ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn, enum ecore_cxt_elem_type elem_type, u32 iid) { u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line; struct ecore_ilt_client_cfg *p_cli; struct ecore_ilt_cli_blk *p_blk; struct ecore_ptt *p_ptt; dma_addr_t p_phys; u64 ilt_hw_entry; void *p_virt; enum _ecore_status_t rc = ECORE_SUCCESS; switch (elem_type) { case ECORE_ELEM_CXT: p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; elem_size = CONN_CXT_SIZE(p_hwfn); p_blk = &p_cli->pf_blks[CDUC_BLK]; break; case ECORE_ELEM_SRQ: p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM]; elem_size = SRQ_CXT_SIZE; p_blk = &p_cli->pf_blks[SRQ_BLK]; break; case ECORE_ELEM_TASK: p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn); p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)]; break; default: DP_NOTICE(p_hwfn, false, "ECORE_INVALID elem type = %d", elem_type); return ECORE_INVAL; } /* Calculate line in ilt */ hw_p_size = p_cli->p_size.val; elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size; line = p_blk->start_line + (iid / elems_per_p); shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line; /* If line is already allocated, do nothing, otherwise allocate it and * write it to the PSWRQ2 registers. * This section can be run in parallel from different contexts and thus * a mutex protection is needed. */ OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex); if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt) goto out0; p_ptt = ecore_ptt_acquire(p_hwfn); if (!p_ptt) { DP_NOTICE(p_hwfn, false, "ECORE_TIME_OUT on ptt acquire - dynamic allocation"); rc = ECORE_TIMEOUT; goto out0; } p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev, &p_phys, p_blk->real_size_in_page); if (!p_virt) { rc = ECORE_NOMEM; goto out1; } OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page); /* configuration of refTagMask to 0xF is required for RoCE DIF MR only, * to compensate for a HW bug, but it is configured even if DIF is not * enabled. This is harmless and allows us to avoid a dedicated API. We * configure the field for all of the contexts on the newly allocated * page. */ if (elem_type == ECORE_ELEM_TASK) { u32 elem_i; u8 *elem_start = (u8 *)p_virt; union type1_task_context *elem; for (elem_i = 0; elem_i < elems_per_p; elem_i++) { elem = (union type1_task_context *)elem_start; SET_FIELD(elem->roce_ctx.tdif_context.flags1, TDIF_TASK_CONTEXT_REFTAGMASK , 0xf); elem_start += TYPE1_TASK_CXT_SIZE(p_hwfn); } } p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt; p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys; p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size = p_blk->real_size_in_page; /* compute absolute offset */ reg_offset = PSWRQ2_REG_ILT_MEMORY + (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS); ilt_hw_entry = 0; SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL); SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR, (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12)); /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */ ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry, reg_offset, sizeof(ilt_hw_entry) / sizeof(u32), 0 /* no flags */); if (elem_type == ECORE_ELEM_CXT) { u32 last_cid_allocated = (1 + (iid / elems_per_p)) * elems_per_p; /* Update the relevant register in the parser */ ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF, last_cid_allocated - 1); /* RoCE w/a -> we don't write to the prs search reg until first * cid is allocated. This is because the prs checks * last_cid-1 >=0 making 0 a valid value... this will cause * the a context load to occur on a RoCE packet received with * cid=0 even before context was initialized, can happen with a * stray packet from switch or a packet with crc-error */ if (!p_hwfn->b_rdma_enabled_in_prs) { /* Enable Rdma search */ ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1); p_hwfn->b_rdma_enabled_in_prs = true; } } out1: ecore_ptt_release(p_hwfn, p_ptt); out0: OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex); return rc; } /* This function is very RoCE oriented, if another protocol in the future * will want this feature we'll need to modify the function to be more generic */ enum _ecore_status_t ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn, enum ecore_cxt_elem_type elem_type, u32 start_iid, u32 count) { u32 start_line, end_line, shadow_start_line, shadow_end_line; u32 reg_offset, elem_size, hw_p_size, elems_per_p; struct ecore_ilt_client_cfg *p_cli; struct ecore_ilt_cli_blk *p_blk; u32 end_iid = start_iid + count; struct ecore_ptt *p_ptt; u64 ilt_hw_entry = 0; u32 i; switch (elem_type) { case ECORE_ELEM_CXT: p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; elem_size = CONN_CXT_SIZE(p_hwfn); p_blk = &p_cli->pf_blks[CDUC_BLK]; break; case ECORE_ELEM_SRQ: p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM]; elem_size = SRQ_CXT_SIZE; p_blk = &p_cli->pf_blks[SRQ_BLK]; break; case ECORE_ELEM_TASK: p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn); p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)]; break; default: DP_NOTICE(p_hwfn, false, "ECORE_INVALID elem type = %d", elem_type); return ECORE_INVAL; } /* Calculate line in ilt */ hw_p_size = p_cli->p_size.val; elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size; start_line = p_blk->start_line + (start_iid / elems_per_p); end_line = p_blk->start_line + (end_iid / elems_per_p); if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p)) end_line--; shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line; shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line; p_ptt = ecore_ptt_acquire(p_hwfn); if (!p_ptt) { DP_NOTICE(p_hwfn, false, "ECORE_TIME_OUT on ptt acquire - dynamic allocation"); return ECORE_TIMEOUT; } for (i = shadow_start_line; i < shadow_end_line; i++) { if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt) continue; OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev, p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt, p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys, p_hwfn->p_cxt_mngr->ilt_shadow[i].size); p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL; p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0; p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0; /* compute absolute offset */ reg_offset = PSWRQ2_REG_ILT_MEMORY + ((start_line++) * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS); /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a * wide-bus. */ ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry, reg_offset, sizeof(ilt_hw_entry) / sizeof(u32), 0 /* no flags */); } ecore_ptt_release(p_hwfn, p_ptt); return ECORE_SUCCESS; } enum _ecore_status_t ecore_cxt_get_task_ctx(struct ecore_hwfn *p_hwfn, u32 tid, u8 ctx_type, void **pp_task_ctx) { struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; struct ecore_ilt_client_cfg *p_cli; struct ecore_ilt_cli_blk *p_seg; struct ecore_tid_seg *p_seg_info; u32 proto, seg; u32 total_lines; u32 tid_size, ilt_idx; u32 num_tids_per_block; /* Verify the personality */ switch (p_hwfn->hw_info.personality) { case ECORE_PCI_FCOE: proto = PROTOCOLID_FCOE; seg = ECORE_CXT_FCOE_TID_SEG; break; case ECORE_PCI_ISCSI: proto = PROTOCOLID_ISCSI; seg = ECORE_CXT_ISCSI_TID_SEG; break; default: return ECORE_INVAL; } p_cli = &p_mngr->clients[ILT_CLI_CDUT]; if (!p_cli->active) { return ECORE_INVAL; } p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg]; if (ctx_type == ECORE_CTX_WORKING_MEM) { p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)]; } else if (ctx_type == ECORE_CTX_FL_MEM) { if (!p_seg_info->has_fl_mem) { return ECORE_INVAL; } p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)]; } else { return ECORE_INVAL; } total_lines = DIV_ROUND_UP(p_seg->total_size, p_seg->real_size_in_page); tid_size = p_mngr->task_type_size[p_seg_info->type]; num_tids_per_block = p_seg->real_size_in_page / tid_size; if (total_lines < tid/num_tids_per_block) return ECORE_INVAL; ilt_idx = tid / num_tids_per_block + p_seg->start_line - p_mngr->pf_start_line; *pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].p_virt + (tid % num_tids_per_block) * tid_size; return ECORE_SUCCESS; }