/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, v.1, (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2014-2017 Cavium, Inc. * The contents of this file are subject to the terms of the Common Development * and Distribution License, v.1, (the "License"). * You may not use this file except in compliance with the License. * You can obtain a copy of the License at available * at http://opensource.org/licenses/CDDL-1.0 * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __ECORE_CHAIN_H__ #define __ECORE_CHAIN_H__ #include "common_hsi.h" #include "ecore_utils.h" enum ecore_chain_mode { /* Each Page contains a next pointer at its end */ ECORE_CHAIN_MODE_NEXT_PTR, /* Chain is a single page (next ptr) is unrequired */ ECORE_CHAIN_MODE_SINGLE, /* Page pointers are located in a side list */ ECORE_CHAIN_MODE_PBL, }; enum ecore_chain_use_mode { ECORE_CHAIN_USE_TO_PRODUCE, /* Chain starts empty */ ECORE_CHAIN_USE_TO_CONSUME, /* Chain starts full */ ECORE_CHAIN_USE_TO_CONSUME_PRODUCE, /* Chain starts empty */ }; enum ecore_chain_cnt_type { /* The chain's size/prod/cons are kept in 16-bit variables */ ECORE_CHAIN_CNT_TYPE_U16, /* The chain's size/prod/cons are kept in 32-bit variables */ ECORE_CHAIN_CNT_TYPE_U32, }; struct ecore_chain_next { struct regpair next_phys; void *next_virt; }; struct ecore_chain_pbl_u16 { u16 prod_page_idx; u16 cons_page_idx; }; struct ecore_chain_pbl_u32 { u32 prod_page_idx; u32 cons_page_idx; }; struct ecore_chain_ext_pbl { dma_addr_t p_pbl_phys; void *p_pbl_virt; }; struct ecore_chain_u16 { /* Cyclic index of next element to produce/consme */ u16 prod_idx; u16 cons_idx; }; struct ecore_chain_u32 { /* Cyclic index of next element to produce/consme */ u32 prod_idx; u32 cons_idx; }; struct ecore_chain { /* fastpath portion of the chain - required for commands such * as produce / consume. */ /* Point to next element to produce/consume */ void *p_prod_elem; void *p_cons_elem; /* Fastpath portions of the PBL [if exists] */ struct { /* Table for keeping the virtual addresses of the chain pages, * respectively to the physical addresses in the pbl table. */ void **pp_virt_addr_tbl; union { struct ecore_chain_pbl_u16 u16; struct ecore_chain_pbl_u32 u32; } c; } pbl; union { struct ecore_chain_u16 chain16; struct ecore_chain_u32 chain32; } u; /* Capacity counts only usable elements */ u32 capacity; u32 page_cnt; /* A u8 would suffice for mode, but it would save as a lot of headaches * on castings & defaults. */ enum ecore_chain_mode mode; /* Elements information for fast calculations */ u16 elem_per_page; u16 elem_per_page_mask; u16 elem_size; u16 next_page_mask; u16 usable_per_page; u8 elem_unusable; u8 cnt_type; /* Slowpath of the chain - required for initialization and destruction, * but isn't involved in regular functionality. */ /* Base address of a pre-allocated buffer for pbl */ struct { dma_addr_t p_phys_table; void *p_virt_table; } pbl_sp; /* Address of first page of the chain - the address is required * for fastpath operation [consume/produce] but only for the the SINGLE * flavour which isn't considered fastpath [== SPQ]. */ void *p_virt_addr; dma_addr_t p_phys_addr; /* Total number of elements [for entire chain] */ u32 size; u8 intended_use; /* TBD - do we really need this? Couldn't find usage for it */ bool b_external_pbl; void *dp_ctx; }; #define ECORE_CHAIN_PBL_ENTRY_SIZE (8) #define ECORE_CHAIN_PAGE_SIZE (0x1000) #define ELEMS_PER_PAGE(elem_size) (ECORE_CHAIN_PAGE_SIZE/(elem_size)) #define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode) \ ((mode == ECORE_CHAIN_MODE_NEXT_PTR) ? \ (u8)(1 + ((sizeof(struct ecore_chain_next)-1) / \ (elem_size))) : 0) #define USABLE_ELEMS_PER_PAGE(elem_size, mode) \ ((u32) (ELEMS_PER_PAGE(elem_size) - \ UNUSABLE_ELEMS_PER_PAGE(elem_size, mode))) #define ECORE_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode) \ DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode)) #define is_chain_u16(p) ((p)->cnt_type == ECORE_CHAIN_CNT_TYPE_U16) #define is_chain_u32(p) ((p)->cnt_type == ECORE_CHAIN_CNT_TYPE_U32) /* Accessors */ static OSAL_INLINE u16 ecore_chain_get_prod_idx(struct ecore_chain *p_chain) { OSAL_ASSERT(is_chain_u16(p_chain)); return p_chain->u.chain16.prod_idx; } #ifndef LINUX_REMOVE static OSAL_INLINE u32 ecore_chain_get_prod_idx_u32(struct ecore_chain *p_chain) { OSAL_ASSERT(is_chain_u32(p_chain)); return p_chain->u.chain32.prod_idx; } #endif static OSAL_INLINE u16 ecore_chain_get_cons_idx(struct ecore_chain *p_chain) { OSAL_ASSERT(is_chain_u16(p_chain)); return p_chain->u.chain16.cons_idx; } static OSAL_INLINE u32 ecore_chain_get_cons_idx_u32(struct ecore_chain *p_chain) { OSAL_ASSERT(is_chain_u32(p_chain)); return p_chain->u.chain32.cons_idx; } /* FIXME: * Should create OSALs for the below definitions. * For Linux, replace them with the existing U16_MAX and U32_MAX, and handle * kernel versions that lack them. */ #define ECORE_U16_MAX ((u16)~0U) #define ECORE_U32_MAX ((u32)~0U) static OSAL_INLINE u16 ecore_chain_get_elem_left(struct ecore_chain *p_chain) { u16 used; OSAL_ASSERT(is_chain_u16(p_chain)); used = (u16)(((u32)ECORE_U16_MAX + 1 + (u32)(p_chain->u.chain16.prod_idx)) - (u32)p_chain->u.chain16.cons_idx); if (p_chain->mode == ECORE_CHAIN_MODE_NEXT_PTR) used -= p_chain->u.chain16.prod_idx / p_chain->elem_per_page - p_chain->u.chain16.cons_idx / p_chain->elem_per_page; return (u16)(p_chain->capacity - used); } static OSAL_INLINE u32 ecore_chain_get_elem_left_u32(struct ecore_chain *p_chain) { u32 used; OSAL_ASSERT(is_chain_u32(p_chain)); used = (u32)(((u64)ECORE_U32_MAX + 1 + (u64)(p_chain->u.chain32.prod_idx)) - (u64)p_chain->u.chain32.cons_idx); if (p_chain->mode == ECORE_CHAIN_MODE_NEXT_PTR) used -= p_chain->u.chain32.prod_idx / p_chain->elem_per_page - p_chain->u.chain32.cons_idx / p_chain->elem_per_page; return p_chain->capacity - used; } #ifndef LINUX_REMOVE static OSAL_INLINE u8 ecore_chain_is_full(struct ecore_chain *p_chain) { if (is_chain_u16(p_chain)) return (ecore_chain_get_elem_left(p_chain) == p_chain->capacity); else return (ecore_chain_get_elem_left_u32(p_chain) == p_chain->capacity); } static OSAL_INLINE u8 ecore_chain_is_empty(struct ecore_chain *p_chain) { if (is_chain_u16(p_chain)) return (ecore_chain_get_elem_left(p_chain) == 0); else return (ecore_chain_get_elem_left_u32(p_chain) == 0); } static OSAL_INLINE u16 ecore_chain_get_elem_per_page(struct ecore_chain *p_chain) { return p_chain->elem_per_page; } #endif static OSAL_INLINE u16 ecore_chain_get_usable_per_page(struct ecore_chain *p_chain) { return p_chain->usable_per_page; } static OSAL_INLINE u8 ecore_chain_get_unusable_per_page(struct ecore_chain *p_chain) { return p_chain->elem_unusable; } #ifndef LINUX_REMOVE static OSAL_INLINE u32 ecore_chain_get_size(struct ecore_chain *p_chain) { return p_chain->size; } #endif static OSAL_INLINE u32 ecore_chain_get_page_cnt(struct ecore_chain *p_chain) { return p_chain->page_cnt; } static OSAL_INLINE dma_addr_t ecore_chain_get_pbl_phys(struct ecore_chain *p_chain) { return p_chain->pbl_sp.p_phys_table; } /** * @brief ecore_chain_advance_page - * * Advance the next element accros pages for a linked chain * * @param p_chain * @param p_next_elem * @param idx_to_inc * @param page_to_inc */ static OSAL_INLINE void ecore_chain_advance_page(struct ecore_chain *p_chain, void **p_next_elem, void *idx_to_inc, void *page_to_inc) { struct ecore_chain_next *p_next = OSAL_NULL; u32 page_index = 0; switch(p_chain->mode) { case ECORE_CHAIN_MODE_NEXT_PTR: p_next = (struct ecore_chain_next *)(*p_next_elem); *p_next_elem = p_next->next_virt; if (is_chain_u16(p_chain)) *(u16 *)idx_to_inc += (u16)p_chain->elem_unusable; else *(u32 *)idx_to_inc += (u16)p_chain->elem_unusable; break; case ECORE_CHAIN_MODE_SINGLE: *p_next_elem = p_chain->p_virt_addr; break; case ECORE_CHAIN_MODE_PBL: if (is_chain_u16(p_chain)) { if (++(*(u16 *)page_to_inc) == p_chain->page_cnt) *(u16 *)page_to_inc = 0; page_index = *(u16 *)page_to_inc; } else { if (++(*(u32 *)page_to_inc) == p_chain->page_cnt) *(u32 *)page_to_inc = 0; page_index = *(u32 *)page_to_inc; } *p_next_elem = p_chain->pbl.pp_virt_addr_tbl[page_index]; } } #define is_unusable_idx(p, idx) \ (((p)->u.chain16.idx & (p)->elem_per_page_mask) == (p)->usable_per_page) #define is_unusable_idx_u32(p, idx) \ (((p)->u.chain32.idx & (p)->elem_per_page_mask) == (p)->usable_per_page) #define is_unusable_next_idx(p, idx) \ ((((p)->u.chain16.idx + 1) & (p)->elem_per_page_mask) == (p)->usable_per_page) #define is_unusable_next_idx_u32(p, idx) \ ((((p)->u.chain32.idx + 1) & (p)->elem_per_page_mask) == (p)->usable_per_page) #define test_and_skip(p, idx) \ do { \ if (is_chain_u16(p)) { \ if (is_unusable_idx(p, idx)) \ (p)->u.chain16.idx += (p)->elem_unusable; \ } else { \ if (is_unusable_idx_u32(p, idx)) \ (p)->u.chain32.idx += (p)->elem_unusable; \ } \ } while (0) #ifndef LINUX_REMOVE /** * @brief ecore_chain_return_multi_produced - * * A chain in which the driver "Produces" elements should use this API * to indicate previous produced elements are now consumed. * * @param p_chain * @param num */ static OSAL_INLINE void ecore_chain_return_multi_produced(struct ecore_chain *p_chain, u32 num) { if (is_chain_u16(p_chain)) p_chain->u.chain16.cons_idx += (u16)num; else p_chain->u.chain32.cons_idx += num; test_and_skip(p_chain, cons_idx); } #endif /** * @brief ecore_chain_return_produced - * * A chain in which the driver "Produces" elements should use this API * to indicate previous produced elements are now consumed. * * @param p_chain */ static OSAL_INLINE void ecore_chain_return_produced(struct ecore_chain *p_chain) { if (is_chain_u16(p_chain)) p_chain->u.chain16.cons_idx++; else p_chain->u.chain32.cons_idx++; test_and_skip(p_chain, cons_idx); } /** * @brief ecore_chain_produce - * * A chain in which the driver "Produces" elements should use this to get * a pointer to the next element which can be "Produced". It's driver * responsibility to validate that the chain has room for new element. * * @param p_chain * * @return void*, a pointer to next element */ static OSAL_INLINE void *ecore_chain_produce(struct ecore_chain *p_chain) { void *p_ret = OSAL_NULL, *p_prod_idx, *p_prod_page_idx; if (is_chain_u16(p_chain)) { if ((p_chain->u.chain16.prod_idx & p_chain->elem_per_page_mask) == p_chain->next_page_mask) { p_prod_idx = &p_chain->u.chain16.prod_idx; p_prod_page_idx = &p_chain->pbl.c.u16.prod_page_idx; ecore_chain_advance_page(p_chain, &p_chain->p_prod_elem, p_prod_idx, p_prod_page_idx); } p_chain->u.chain16.prod_idx++; } else { if ((p_chain->u.chain32.prod_idx & p_chain->elem_per_page_mask) == p_chain->next_page_mask) { p_prod_idx = &p_chain->u.chain32.prod_idx; p_prod_page_idx = &p_chain->pbl.c.u32.prod_page_idx; ecore_chain_advance_page(p_chain, &p_chain->p_prod_elem, p_prod_idx, p_prod_page_idx); } p_chain->u.chain32.prod_idx++; } p_ret = p_chain->p_prod_elem; p_chain->p_prod_elem = (void*)(((u8*)p_chain->p_prod_elem) + p_chain->elem_size); return p_ret; } /** * @brief ecore_chain_get_capacity - * * Get the maximum number of BDs in chain * * @param p_chain * @param num * * @return number of unusable BDs */ static OSAL_INLINE u32 ecore_chain_get_capacity(struct ecore_chain *p_chain) { return p_chain->capacity; } /** * @brief ecore_chain_recycle_consumed - * * Returns an element which was previously consumed; * Increments producers so they could be written to FW. * * @param p_chain */ static OSAL_INLINE void ecore_chain_recycle_consumed(struct ecore_chain *p_chain) { test_and_skip(p_chain, prod_idx); if (is_chain_u16(p_chain)) p_chain->u.chain16.prod_idx++; else p_chain->u.chain32.prod_idx++; } /** * @brief ecore_chain_consume - * * A Chain in which the driver utilizes data written by a different source * (i.e., FW) should use this to access passed buffers. * * @param p_chain * * @return void*, a pointer to the next buffer written */ static OSAL_INLINE void *ecore_chain_consume(struct ecore_chain *p_chain) { void *p_ret = OSAL_NULL, *p_cons_idx, *p_cons_page_idx; if (is_chain_u16(p_chain)) { if ((p_chain->u.chain16.cons_idx & p_chain->elem_per_page_mask) == p_chain->next_page_mask) { p_cons_idx = &p_chain->u.chain16.cons_idx; p_cons_page_idx = &p_chain->pbl.c.u16.cons_page_idx; ecore_chain_advance_page(p_chain, &p_chain->p_cons_elem, p_cons_idx, p_cons_page_idx); } p_chain->u.chain16.cons_idx++; } else { if ((p_chain->u.chain32.cons_idx & p_chain->elem_per_page_mask) == p_chain->next_page_mask) { p_cons_idx = &p_chain->u.chain32.cons_idx; p_cons_page_idx = &p_chain->pbl.c.u32.cons_page_idx; ecore_chain_advance_page(p_chain, &p_chain->p_cons_elem, p_cons_idx, p_cons_page_idx); } p_chain->u.chain32.cons_idx++; } p_ret = p_chain->p_cons_elem; p_chain->p_cons_elem = (void*)(((u8*)p_chain->p_cons_elem) + p_chain->elem_size); return p_ret; } /** * @brief ecore_chain_reset - * * Resets the chain to its start state * * @param p_chain pointer to a previously allocted chain */ static OSAL_INLINE void ecore_chain_reset(struct ecore_chain *p_chain) { u32 i; if (is_chain_u16(p_chain)) { p_chain->u.chain16.prod_idx = 0; p_chain->u.chain16.cons_idx = 0; } else { p_chain->u.chain32.prod_idx = 0; p_chain->u.chain32.cons_idx = 0; } p_chain->p_cons_elem = p_chain->p_virt_addr; p_chain->p_prod_elem = p_chain->p_virt_addr; if (p_chain->mode == ECORE_CHAIN_MODE_PBL) { /* Use (page_cnt - 1) as a reset value for the prod/cons page's * indices, to avoid unnecessary page advancing on the first * call to ecore_chain_produce/consume. Instead, the indices * will be advanced to page_cnt and then will be wrapped to 0. */ u32 reset_val = p_chain->page_cnt - 1; if (is_chain_u16(p_chain)) { p_chain->pbl.c.u16.prod_page_idx = (u16)reset_val; p_chain->pbl.c.u16.cons_page_idx = (u16)reset_val; } else { p_chain->pbl.c.u32.prod_page_idx = reset_val; p_chain->pbl.c.u32.cons_page_idx = reset_val; } } switch (p_chain->intended_use) { case ECORE_CHAIN_USE_TO_CONSUME: /* produce empty elements */ for (i = 0; i < p_chain->capacity; i++) ecore_chain_recycle_consumed(p_chain); break; case ECORE_CHAIN_USE_TO_CONSUME_PRODUCE: case ECORE_CHAIN_USE_TO_PRODUCE: default: /* Do nothing */ break; } } /** * @brief ecore_chain_init_params - * * Initalizes a basic chain struct * * @param p_chain * @param page_cnt number of pages in the allocated buffer * @param elem_size size of each element in the chain * @param intended_use * @param mode * @param cnt_type * @param dp_ctx */ static OSAL_INLINE void ecore_chain_init_params(struct ecore_chain *p_chain, u32 page_cnt, u8 elem_size, enum ecore_chain_use_mode intended_use, enum ecore_chain_mode mode, enum ecore_chain_cnt_type cnt_type, void *dp_ctx) { /* chain fixed parameters */ p_chain->p_virt_addr = OSAL_NULL; p_chain->p_phys_addr = 0; p_chain->elem_size = elem_size; p_chain->intended_use = (u8)intended_use; p_chain->mode = mode; p_chain->cnt_type = (u8)cnt_type; p_chain->elem_per_page = ELEMS_PER_PAGE(elem_size); p_chain->usable_per_page = USABLE_ELEMS_PER_PAGE(elem_size, mode); p_chain->elem_per_page_mask = p_chain->elem_per_page - 1; p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode); p_chain->next_page_mask = (p_chain->usable_per_page & p_chain->elem_per_page_mask); p_chain->page_cnt = page_cnt; p_chain->capacity = p_chain->usable_per_page * page_cnt; p_chain->size = p_chain->elem_per_page * page_cnt; p_chain->b_external_pbl = false; p_chain->pbl_sp.p_phys_table = 0; p_chain->pbl_sp.p_virt_table = OSAL_NULL; p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL; p_chain->dp_ctx = dp_ctx; } /** * @brief ecore_chain_init_mem - * * Initalizes a basic chain struct with its chain buffers * * @param p_chain * @param p_virt_addr virtual address of allocated buffer's beginning * @param p_phys_addr physical address of allocated buffer's beginning * */ static OSAL_INLINE void ecore_chain_init_mem(struct ecore_chain *p_chain, void *p_virt_addr, dma_addr_t p_phys_addr) { p_chain->p_virt_addr = p_virt_addr; p_chain->p_phys_addr = p_phys_addr; } /** * @brief ecore_chain_init_pbl_mem - * * Initalizes a basic chain struct with its pbl buffers * * @param p_chain * @param p_virt_pbl pointer to a pre allocated side table which will hold * virtual page addresses. * @param p_phys_pbl pointer to a pre-allocated side table which will hold * physical page addresses. * @param pp_virt_addr_tbl * pointer to a pre-allocated side table which will hold * the virtual addresses of the chain pages. * */ static OSAL_INLINE void ecore_chain_init_pbl_mem(struct ecore_chain *p_chain, void *p_virt_pbl, dma_addr_t p_phys_pbl, void **pp_virt_addr_tbl) { p_chain->pbl_sp.p_phys_table = p_phys_pbl; p_chain->pbl_sp.p_virt_table = p_virt_pbl; p_chain->pbl.pp_virt_addr_tbl = pp_virt_addr_tbl; } /** * @brief ecore_chain_init_next_ptr_elem - * * Initalizes a next pointer element * * @param p_chain * @param p_virt_curr virtual address of a chain page of which the next * pointer element is initialized * @param p_virt_next virtual address of the next chain page * @param p_phys_next physical address of the next chain page * */ static OSAL_INLINE void ecore_chain_init_next_ptr_elem(struct ecore_chain *p_chain, void *p_virt_curr, void *p_virt_next, dma_addr_t p_phys_next) { struct ecore_chain_next *p_next; u32 size; size = p_chain->elem_size * p_chain->usable_per_page; p_next = (struct ecore_chain_next *)((u8 *)p_virt_curr + size); DMA_REGPAIR_LE(p_next->next_phys, p_phys_next); p_next->next_virt = p_virt_next; } /** * @brief ecore_chain_get_last_elem - * * Returns a pointer to the last element of the chain * * @param p_chain * * @return void* */ static OSAL_INLINE void *ecore_chain_get_last_elem(struct ecore_chain *p_chain) { struct ecore_chain_next *p_next = OSAL_NULL; void *p_virt_addr = OSAL_NULL; u32 size, last_page_idx; if (!p_chain->p_virt_addr) goto out; switch (p_chain->mode) { case ECORE_CHAIN_MODE_NEXT_PTR: size = p_chain->elem_size * p_chain->usable_per_page; p_virt_addr = p_chain->p_virt_addr; p_next = (struct ecore_chain_next *)((u8 *)p_virt_addr + size); while (p_next->next_virt != p_chain->p_virt_addr) { p_virt_addr = p_next->next_virt; p_next = (struct ecore_chain_next *)((u8 *)p_virt_addr + size); } break; case ECORE_CHAIN_MODE_SINGLE: p_virt_addr = p_chain->p_virt_addr; break; case ECORE_CHAIN_MODE_PBL: last_page_idx = p_chain->page_cnt - 1; p_virt_addr = p_chain->pbl.pp_virt_addr_tbl[last_page_idx]; break; } /* p_virt_addr points at this stage to the last page of the chain */ size = p_chain->elem_size * (p_chain->usable_per_page - 1); p_virt_addr = (u8 *)p_virt_addr + size; out: return p_virt_addr; } /** * @brief ecore_chain_set_prod - sets the prod to the given value * * @param prod_idx * @param p_prod_elem */ static OSAL_INLINE void ecore_chain_set_prod(struct ecore_chain *p_chain, u32 prod_idx, void *p_prod_elem) { if (is_chain_u16(p_chain)) p_chain->u.chain16.prod_idx = (u16)prod_idx; else p_chain->u.chain32.prod_idx = prod_idx; p_chain->p_prod_elem = p_prod_elem; } /** * @brief ecore_chain_pbl_zero_mem - set chain memory to 0 * * @param p_chain */ static OSAL_INLINE void ecore_chain_pbl_zero_mem(struct ecore_chain *p_chain) { u32 i, page_cnt; if (p_chain->mode != ECORE_CHAIN_MODE_PBL) return; page_cnt = ecore_chain_get_page_cnt(p_chain); for (i = 0; i < page_cnt; i++) OSAL_MEM_ZERO(p_chain->pbl.pp_virt_addr_tbl[i], ECORE_CHAIN_PAGE_SIZE); } int ecore_chain_print(struct ecore_chain *p_chain, char *buffer, u32 buffer_size, u32 *element_indx, u32 stop_indx, bool print_metadata, int (*func_ptr_print_element)(struct ecore_chain *p_chain, void *p_element, char *buffer), int (*func_ptr_print_metadata)(struct ecore_chain *p_chain, char *buffer)); #endif /* __ECORE_CHAIN_H__ */