/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2003-2005 Chelsio Communications. All rights reserved. */ #include "common.h" #include "elmer0.h" #include "regs.h" #include "gmac.h" #include "cphy.h" #include "sge.h" #include "tp.h" #include "espi.h" #ifdef CONFIG_CHELSIO_T1_OFFLOAD #include "mc3.h" #include "mc4.h" #include "mc5.h" #include "ulp.h" #endif #ifdef CONFIG_CHELSIO_T1_COUGAR #include "cspi.h" #endif /* * t1_wait_op_done - wait until an operation is completed * @adapter: the adapter performing the operation * @reg: the register to check for completion * @mask: a single-bit field within @reg that indicates completion * @polarity: the value of the field when the operation is completed * @attempts: number of check iterations * @delay: delay in usecs between iterations * @attempts: number of check iterations * @delay: delay in usecs between iterations * * Wait until an operation is completed by checking a bit in a register * up to @attempts times. Returns %0 if the operation completes and %1 * otherwise. */ int t1_wait_op_done(adapter_t *adapter, int reg, u32 mask, int polarity, int attempts, int delay) { while (attempts) { u32 val = t1_read_reg_4(adapter, reg) & mask; if (!!val == polarity) return (0); if (--attempts == 0) return (1); if (delay) DELAY_US(delay); } return (1); } /* #define TPI_ATTEMPTS 50 */ #define TPI_ATTEMPTS 100 /* * Write a register over the TPI interface (unlocked and locked versions). */ int __t1_tpi_write(adapter_t *adapter, u32 addr, u32 value) { int tpi_busy; t1_write_reg_4(adapter, A_TPI_ADDR, addr); t1_write_reg_4(adapter, A_TPI_WR_DATA, value); t1_write_reg_4(adapter, A_TPI_CSR, F_TPIWR); tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1, TPI_ATTEMPTS, 3); if (tpi_busy) CH_ALERT("%s: TPI write to 0x%x failed\n", adapter_name(adapter), addr); return (tpi_busy); } int t1_tpi_write(adapter_t *adapter, u32 addr, u32 value) { int ret; TPI_LOCK(adapter); ret = __t1_tpi_write(adapter, addr, value); TPI_UNLOCK(adapter); return (ret); } /* * Read a register over the TPI interface (unlocked and locked versions). */ int __t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp) { int tpi_busy; t1_write_reg_4(adapter, A_TPI_ADDR, addr); t1_write_reg_4(adapter, A_TPI_CSR, 0); tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1, TPI_ATTEMPTS, 3); if (tpi_busy) CH_ALERT("%s: TPI read from 0x%x failed\n", adapter_name(adapter), addr); else *valp = t1_read_reg_4(adapter, A_TPI_RD_DATA); return (tpi_busy); } int t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp) { int ret; TPI_LOCK(adapter); ret = __t1_tpi_read(adapter, addr, valp); TPI_UNLOCK(adapter); return (ret); } /* * Set a TPI parameter. */ static void t1_tpi_par(adapter_t *adapter, u32 value) { t1_write_reg_4(adapter, A_TPI_PAR, V_TPIPAR(value)); } /* * Called when a port's link settings change to propagate the new values to the * associated PHY and MAC. After performing the common tasks it invokes an * OS-specific handler. */ void link_changed(adapter_t *adapter, int port_id) { int link_ok, speed, duplex, fc; struct cphy *phy = adapter->port[port_id].phy; struct link_config *lc = &adapter->port[port_id].link_config; phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); lc->speed = speed < 0 ? SPEED_INVALID : speed; lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; if (!(lc->requested_fc & PAUSE_AUTONEG)) fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) { /* Set MAC speed, duplex, and flow control to match PHY. */ struct cmac *mac = adapter->port[port_id].mac; mac->ops->set_speed_duplex_fc(mac, speed, duplex, fc); lc->fc = (unsigned char)fc; } t1_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc); } static int t1_pci_intr_handler(adapter_t *adapter) { u32 pcix_cause; (void) t1_os_pci_read_config_4(adapter, A_PCICFG_INTR_CAUSE, &pcix_cause); if (pcix_cause) { (void) t1_os_pci_write_config_4(adapter, A_PCICFG_INTR_CAUSE, pcix_cause); t1_fatal_err(adapter); /* PCI errors are fatal */ } return (0); } #ifdef CONFIG_CHELSIO_T1_1G #include "fpga_defs.h" /* * PHY interrupt handler for FPGA boards. */ static int fpga_phy_intr_handler(adapter_t *adapter) { int p; u32 cause = t1_read_reg_4(adapter, FPGA_GMAC_ADDR_INTERRUPT_CAUSE); for_each_port(adapter, p) if (cause & (1 << p)) { struct cphy *phy = adapter->port[p].phy; int phy_cause = phy->ops->interrupt_handler(phy); if (phy_cause & cphy_cause_link_change) link_changed(adapter, p); } t1_write_reg_4(adapter, FPGA_GMAC_ADDR_INTERRUPT_CAUSE, cause); return (0); } /* * Slow path interrupt handler for FPGAs. */ static int fpga_slow_intr(adapter_t *adapter) { u32 cause = t1_read_reg_4(adapter, A_PL_CAUSE); cause &= ~F_PL_INTR_SGE_DATA; if (cause & F_PL_INTR_SGE_ERR) (void) t1_sge_intr_error_handler(adapter->sge); if (cause & FPGA_PCIX_INTERRUPT_GMAC) (void) fpga_phy_intr_handler(adapter); if (cause & FPGA_PCIX_INTERRUPT_TP) { /* * FPGA doesn't support MC4 interrupts and it requires * this odd layer of indirection for MC5. */ u32 tp_cause = t1_read_reg_4(adapter, FPGA_TP_ADDR_INTERRUPT_CAUSE); #ifdef CONFIG_CHELSIO_T1_OFFLOAD if (tp_cause & FPGA_TP_INTERRUPT_MC5) t1_mc5_intr_handler(adapter->mc5); #endif /* Clear TP interrupt */ t1_write_reg_4(adapter, FPGA_TP_ADDR_INTERRUPT_CAUSE, tp_cause); } #ifdef CONFIG_CHELSIO_T1_OFFLOAD if (cause & FPGA_PCIX_INTERRUPT_MC3) (void) t1_mc3_intr_handler(adapter->mc3); #endif if (cause & FPGA_PCIX_INTERRUPT_PCIX) (void) t1_pci_intr_handler(adapter); /* Clear the interrupts just processed. */ if (cause) t1_write_reg_4(adapter, A_PL_CAUSE, cause); return (cause != 0); } /* * FPGA MDIO initialization. */ static void fpga_mdio_init(adapter_t *adapter, const struct board_info *bi) { (void) bi; /* avoid warnings */ t1_write_reg_4(adapter, A_MI0_CLK, V_MI0_CLK_DIV(3)); } /* * FPGA MDIO read/write operations. */ static int fpga_mdio_read(adapter_t *adapter, int phy_addr, int mmd_addr, int reg_addr, unsigned int *val) { if (mmd_addr) return (-EINVAL); /* Check if MDI is busy; this shouldn't happen. */ if (t1_read_reg_4(adapter, A_MI0_CSR) & F_MI0_BUSY) { CH_ALERT("%s: MDIO busy at start of read\n", adapter_name(adapter)); return (-EBUSY); } t1_write_reg_4(adapter, A_MI0_ADDR, V_MI0_PHY_REG_ADDR(reg_addr) | V_MI0_PHY_ADDR(phy_addr)); *val = t1_read_reg_4(adapter, A_MI0_DATA_EXT); return (0); } static int fpga_mdio_write(adapter_t *adapter, int phy_addr, int mmd_addr, int reg_addr, unsigned int val) { if (mmd_addr) return (-EINVAL); /* Check if MDI is busy; this shouldn't happen. */ if (t1_read_reg_4(adapter, A_MI0_CSR) & F_MI0_BUSY) { CH_ALERT("%s: MDIO busy at start of write\n", adapter_name(adapter)); return (-EBUSY); } t1_write_reg_4(adapter, A_MI0_ADDR, V_MI0_PHY_REG_ADDR(reg_addr) | V_MI0_PHY_ADDR(phy_addr)); t1_write_reg_4(adapter, A_MI0_DATA_EXT, val); return (0); } static struct mdio_ops fpga_mdio_ops = { fpga_mdio_init, fpga_mdio_read, fpga_mdio_write }; #endif /* * Wait until Elmer's MI1 interface is ready for new operations. */ static int mi1_wait_until_ready(adapter_t *adapter, int mi1_reg) { int attempts = 100, busy; do { u32 val; (void) __t1_tpi_read(adapter, mi1_reg, &val); busy = val & F_MI1_OP_BUSY; if (busy) DELAY_US(10); } while (busy && --attempts); if (busy) CH_ALERT("%s: MDIO operation timed out\n", adapter_name(adapter)); return (busy); } /* * MI1 MDIO initialization. */ static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi) { u32 clkdiv = bi->clock_elmer0 / (2 * bi->mdio_mdc) - 1; u32 val = F_MI1_PREAMBLE_ENABLE | V_MI1_MDI_INVERT(bi->mdio_mdiinv) | V_MI1_MDI_ENABLE(bi->mdio_mdien) | V_MI1_CLK_DIV(clkdiv); if (!(bi->caps & SUPPORTED_10000baseT_Full)) val |= V_MI1_SOF(1); (void) t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val); } #if defined(CONFIG_CHELSIO_T1_1G) || defined(CONFIG_CHELSIO_T1_COUGAR) /* * Elmer MI1 MDIO read/write operations. */ static int mi1_mdio_read(adapter_t *adapter, int phy_addr, int mmd_addr, int reg_addr, unsigned int *valp) { u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr); if (mmd_addr) return (-EINVAL); TPI_LOCK(adapter); (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ); (void) mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); (void) __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, valp); TPI_UNLOCK(adapter); return (0); } static int mi1_mdio_write(adapter_t *adapter, int phy_addr, int mmd_addr, int reg_addr, unsigned int val) { u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr); if (mmd_addr) return (-EINVAL); TPI_LOCK(adapter); (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val); (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE); (void) mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); TPI_UNLOCK(adapter); return (0); } #if defined(CONFIG_CHELSIO_T1_1G) || defined(CONFIG_CHELSIO_T1_COUGAR) static struct mdio_ops mi1_mdio_ops = { mi1_mdio_init, mi1_mdio_read, mi1_mdio_write }; #endif #endif #if 0 static int mi1_mdio_ext_readinc(adapter_t *adapter, int phy_addr, int mmd_addr, int reg_addr, unsigned int *valp) { u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr); TPI_LOCK(adapter); /* Write the address we want. */ (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr); (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_ADDRESS); (void) mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); /* Write the operation we want. */ (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ_INC); (void) mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); /* Read the data. */ (void) __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, valp); TPI_UNLOCK(adapter); return (0); } #endif static int mi1_mdio_ext_read(adapter_t *adapter, int phy_addr, int mmd_addr, int reg_addr, unsigned int *valp) { u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr); TPI_LOCK(adapter); /* Write the address we want. */ (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr); (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_ADDRESS); (void) mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); /* Write the operation we want. */ (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ); (void) mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); /* Read the data. */ (void) __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, valp); TPI_UNLOCK(adapter); return (0); } static int mi1_mdio_ext_write(adapter_t *adapter, int phy_addr, int mmd_addr, int reg_addr, unsigned int val) { u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr); TPI_LOCK(adapter); /* Write the address we want. */ (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr); (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_ADDRESS); (void) mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); /* Write the data. */ (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val); (void) __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_WRITE); (void) mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); TPI_UNLOCK(adapter); return (0); } static struct mdio_ops mi1_mdio_ext_ops = { mi1_mdio_init, mi1_mdio_ext_read, mi1_mdio_ext_write }; enum { CH_BRD_T110_1CU, CH_BRD_N110_1F, CH_BRD_N210_1F, CH_BRD_T210_1F, CH_BRD_T210_1CU, #ifdef CONFIG_CHELSIO_T1_OFFLOAD #ifdef CONFIG_CHELSIO_T1_1G CH_BRD_T204_4CU, CH_BRD_T204V_4CU, CH_BRD_6800_4CU, CH_BRD_7500_4CU, CH_BRD_7500_4F, CH_BRD_T101_1CU_LB, CH_BRD_T101_1F_LB, #endif CH_BRD_8000_1F, CH_BRD_T110_1F, #ifdef CONFIG_CHELSIO_T1_COUGAR #ifdef CONFIG_CHELSIO_T1_1G CH_BRD_COUGAR_4CU, #endif CH_BRD_COUGAR_1F, #endif #ifdef CONFIG_USERMODE CH_BRD_SIMUL, #endif #endif }; static struct board_info t1_board[] = { { CHBT_BOARD_CHT110, 1/*ports#*/, SUPPORTED_10000baseT_Full /*caps*/, CHBT_TERM_T1, CHBT_MAC_PM3393, CHBT_PHY_MY3126, 125000000/*clk-core*/, 150000000/*clk-mc3*/, 125000000/*clk-mc4*/, 1/*espi-ports*/, 0/*clk-cspi*/, 44/*clk-elmer0*/, 1/*mdien*/, 1/*mdiinv*/, 1/*mdc*/, 1/*phybaseaddr*/, &t1_pm3393_ops, &t1_my3126_ops, &mi1_mdio_ext_ops, "Chelsio T110 1x10GBase-CX4 TOE" }, { CHBT_BOARD_N110, 1/*ports#*/, SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE /*caps*/, CHBT_TERM_T1, CHBT_MAC_PM3393, CHBT_PHY_88X2010, 125000000/*clk-core*/, 0/*clk-mc3*/, 0/*clk-mc4*/, 1/*espi-ports*/, 0/*clk-cspi*/, 44/*clk-elmer0*/, 0/*mdien*/, 0/*mdiinv*/, 1/*mdc*/, 0/*phybaseaddr*/, &t1_pm3393_ops, &t1_mv88x201x_ops, &mi1_mdio_ext_ops, "Chelsio N110 1x10GBaseX NIC" }, { CHBT_BOARD_N210, 1/*ports#*/, SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE /*caps*/, CHBT_TERM_T2, CHBT_MAC_PM3393, CHBT_PHY_88X2010, 125000000/*clk-core*/, 0/*clk-mc3*/, 0/*clk-mc4*/, 1/*espi-ports*/, 0/*clk-cspi*/, 44/*clk-elmer0*/, 0/*mdien*/, 0/*mdiinv*/, 1/*mdc*/, 0/*phybaseaddr*/, &t1_pm3393_ops, &t1_mv88x201x_ops, &mi1_mdio_ext_ops, "Chelsio N210 1x10GBaseX NIC" }, { CHBT_BOARD_CHT210, 1/*ports#*/, SUPPORTED_10000baseT_Full /*caps*/, CHBT_TERM_T2, CHBT_MAC_PM3393, CHBT_PHY_88X2010, 125000000/*clk-core*/, 133000000/*clk-mc3*/, 125000000/*clk-mc4*/, 1/*espi-ports*/, 0/*clk-cspi*/, 44/*clk-elmer0*/, 0/*mdien*/, 0/*mdiinv*/, 1/*mdc*/, 0/*phybaseaddr*/, &t1_pm3393_ops, &t1_mv88x201x_ops, &mi1_mdio_ext_ops, "Chelsio T210 1x10GBaseX TOE" }, { CHBT_BOARD_CHT210, 1/*ports#*/, SUPPORTED_10000baseT_Full /*caps*/, CHBT_TERM_T2, CHBT_MAC_PM3393, CHBT_PHY_MY3126, 125000000/*clk-core*/, 133000000/*clk-mc3*/, 125000000/*clk-mc4*/, 1/*espi-ports*/, 0/*clk-cspi*/, 44/*clk-elmer0*/, 1/*mdien*/, 1/*mdiinv*/, 1/*mdc*/, 1/*phybaseaddr*/, &t1_pm3393_ops, &t1_my3126_ops, &mi1_mdio_ext_ops, "Chelsio T210 1x10GBase-CX4 TOE" }, #ifdef CONFIG_CHELSIO_T1_OFFLOAD #ifdef CONFIG_CHELSIO_T1_1G { CHBT_BOARD_CHT204, 4/*ports#*/, SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_PAUSE | SUPPORTED_TP /*caps*/, CHBT_TERM_T2, CHBT_MAC_IXF1010, CHBT_PHY_88E1111, 100000000/*clk-core*/, 133000000/*clk-mc3*/, 100000000/*clk-mc4*/, 4/*espi-ports*/, 0/*clk-cspi*/, 44/*clk-elmer0*/, 0/*mdien*/, 0/*mdiinv*/, 1/*mdc*/, 4/*phybaseaddr*/, &t1_ixf1010_ops, &t1_mv88e1xxx_ops, &mi1_mdio_ops, "Chelsio T204 4x100/1000BaseT TOE" }, { CHBT_BOARD_CHT204V, 4/*ports#*/, SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_PAUSE | SUPPORTED_TP /*caps*/, CHBT_TERM_T2, CHBT_MAC_VSC7321, CHBT_PHY_88E1111, 100000000/*clk-core*/, 133000000/*clk-mc3*/, 100000000/*clk-mc4*/, 4/*espi-ports*/, 0/*clk-cspi*/, 44/*clk-elmer0*/, 0/*mdien*/, 0/*mdiinv*/, 1/*mdc*/, 4/*phybaseaddr*/, &t1_vsc7326_ops, &t1_mv88e1xxx_ops, &mi1_mdio_ops, "Chelsio T204V 4x100/1000BaseT TOE" }, { CHBT_BOARD_6800, 1/*ports#*/, SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP /*caps*/, CHBT_TERM_FPGA, CHBT_MAC_CHELSIO_A, CHBT_PHY_88E1041, 16000000/*clk-core*/, 16000000/*clk-mc3*/, 16000000/*clk-mc4*/, 0/*espi-ports*/, 0/*clk-cspi*/, 0/*clk-elmer0*/, 0/*mdien*/, 0/*mdiinv*/, 4/*mdc*/, 0/*phybaseaddr*/, &t1_chelsio_mac_ops, &t1_mv88e1xxx_ops, &fpga_mdio_ops, "Chelsio FPGA 4x10/100/1000BaseT TOE" }, { CHBT_BOARD_7500, 4/*ports#*/, SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP /*caps*/, CHBT_TERM_T1, CHBT_MAC_IXF1010, CHBT_PHY_88E1041, 87500000/*clk-core*/, 87500000/*clk-mc3*/, 87500000/*clk-mc4*/, 4/*espi-ports*/, 0/*clk-cspi*/, 40/*clk-elmer0*/, 0/*mdien*/, 0/*mdiinv*/, 4/*mdc*/, 0/*phybaseaddr*/, &t1_ixf1010_ops, &t1_mv88e1xxx_ops, &mi1_mdio_ops, "Chelsio 7500 4x100/1000BaseT TOE" }, { CHBT_BOARD_7500, 4/*ports#*/, SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE /*caps*/, CHBT_TERM_T1, CHBT_MAC_IXF1010, CHBT_PHY_88E1041, 87500000/*clk-core*/, 87500000/*clk-mc3*/, 87500000/*clk-mc4*/, 4/*espi-ports*/, 0/*clk-cspi*/, 40/*clk-elmer0*/, 0/*mdien*/, 0/*mdiinv*/, 4/*mdc*/, 0/*phybaseaddr*/, &t1_ixf1010_ops, &t1_mv88e1xxx_ops, &mi1_mdio_ops, "Chelsio 7500 4x1000BaseX TOE" }, { CHBT_BOARD_CHT101, 1/*ports#*/, SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_PAUSE | SUPPORTED_LOOPBACK /*caps*/, CHBT_TERM_T1, CHBT_MAC_IXF1010, CHBT_PHY_88E1111, 83300000/*clk-core*/, 83300000/*clk-mc3*/, 83300000/*clk-mc4*/, 2/*espi-ports*/, 0/*clk-cspi*/, 40/*clk-elmer0*/, 0/*mdien*/, 0/*mdiinv*/, 4/*mdc*/, 4/*phybaseaddr*/, &t1_ixf1010_ops, &t1_mv88e1xxx_ops, &mi1_mdio_ops, "Chelsio T101 1x100/1000BaseT TOE" }, { CHBT_BOARD_CHT101, 1/*ports#*/, SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE | SUPPORTED_PAUSE | SUPPORTED_LOOPBACK /*caps*/, CHBT_TERM_T1, CHBT_MAC_IXF1010, CHBT_PHY_88E1111, 83300000/*clk-core*/, 83300000/*clk-mc3*/, 83300000/*clk-mc4*/, 2/*espi-ports*/, 0/*clk-cspi*/, 40/*clk-elmer0*/, 0/*mdien*/, 0/*mdiinv*/, 4/*mdc*/, 4/*phybaseaddr*/, &t1_ixf1010_ops, &t1_mv88e1xxx_ops, &mi1_mdio_ops, "Chelsio T101 1x1000BaseX TOE" }, #endif { CHBT_BOARD_8000, 1/*ports#*/, SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE /*caps*/, CHBT_TERM_T1, CHBT_MAC_PM3393, CHBT_PHY_XPAK, 125000000/*clk-core*/, 150000000/*clk-mc3*/, 125000000/*clk-mc4*/, 1/*espi-ports*/, 0/*clk-cspi*/, 40/*clk-elmer0*/, 1/*mdien*/, 1/*mdiinv*/, 1/*mdc*/, 0/*phybaseaddr*/, &t1_pm3393_ops, &t1_xpak_ops, &mi1_mdio_ext_ops, "Chelsio 8000 1x10GBaseX TOE" }, { CHBT_BOARD_CHT110, 1/*ports#*/, SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE /*caps*/, CHBT_TERM_T1, CHBT_MAC_PM3393, CHBT_PHY_XPAK, 125000000/*clk-core*/, 150000000/*clk-mc3*/, 125000000/*clk-mc4*/, 1/*espi-ports*/, 0/*clk-cspi*/, 44/*clk-elmer0*/, 1/*mdien*/, 1/*mdiinv*/, 1/*mdc*/, 1/*phybaseaddr*/, &t1_pm3393_ops, &t1_xpak_ops, &mi1_mdio_ext_ops, "Chelsio T110 1x10GBaseX TOE" }, #ifdef CONFIG_CHELSIO_T1_COUGAR #ifdef CONFIG_CHELSIO_T1_1G { CHBT_BOARD_COUGAR, 4/*ports#*/, SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP /*caps*/, CHBT_TERM_T1, CHBT_MAC_VSC7321, CHBT_PHY_88E1041, 87500000/*clk-core*/, 87500000/*clk-mc3*/, 87500000/*clk-mc4*/, 4/*espi-ports*/, 333300000/*clk-cspi*/, 40/*clk-elmer0*/, 0/*mdien*/, 0/*mdiinv*/, 4/*mdc*/, 0/*phybaseaddr*/, &t1_vsc7321_ops, &t1_mv88e1xxx_ops, &mi1_mdio_ops, "Chelsio Cougar 4x100/1000BaseT TOE" }, #endif { CHBT_BOARD_COUGAR, 1/*ports#*/, SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE /*caps*/, CHBT_TERM_T1, CHBT_MAC_VSC7321, CHBT_PHY_XPAK, 87500000/*clk-core*/, 87500000/*clk-mc3*/, 87500000/*clk-mc4*/, 1/*espi-ports*/, 333300000/*clk-cspi*/, 40/*clk-elmer0*/, 1/*mdien*/, 1/*mdiinv*/, 1/*mdc*/, 0/*phybaseaddr*/, &t1_vsc7321_ops, &t1_xpak_ops, &mi1_mdio_ext_ops, "Chelsio Cougar 1x10GBaseX TOE" }, #endif #ifdef CONFIG_USERMODE { CHBT_BOARD_SIMUL, 1/*ports#*/, 0/*caps*/, CHBT_TERM_T1, CHBT_MAC_DUMMY, CHBT_PHY_DUMMY, 125000000/*clk-core*/, 125000000/*clk-mc3*/, 125000000/*clk-mc4*/, 1/*espi-ports*/, 0/*clk-cspi*/, 0/*clk-elmer0*/, 0/*mdien*/, 0/*mdiinv*/, 0/*mdc*/, 0/*phybaseaddr*/, &t1_dummy_mac_ops, &t1_dummy_phy_ops, NULL, "Chelsio simulation environment TOE" }, #endif #endif }; struct pci_device_id t1_pci_tbl[] = { CH_DEVICE(8, 0, CH_BRD_T110_1CU), CH_DEVICE(8, 1, CH_BRD_T110_1CU), CH_DEVICE(7, 0, CH_BRD_N110_1F), CH_DEVICE(10, 1, CH_BRD_N210_1F), CH_DEVICE(11, 1, CH_BRD_T210_1F), CH_DEVICE(14, 1, CH_BRD_T210_1CU), #ifdef CONFIG_CHELSIO_T1_OFFLOAD #ifdef CONFIG_CHELSIO_T1_1G CH_DEVICE(12, 1, CH_BRD_T204_4CU), CH_DEVICE(13, 1, CH_BRD_T204V_4CU), CH_DEVICE(1, 0, CH_BRD_6800_4CU), CH_DEVICE(2, 1, CH_BRD_7500_4CU), CH_DEVICE(2, 3, CH_BRD_7500_4F), CH_DEVICE(4, 0, CH_BRD_T101_1CU_LB), CH_DEVICE(4, 2, CH_BRD_T101_1F_LB), #endif CH_DEVICE(3, 0, CH_BRD_8000_1F), CH_DEVICE(3, 1, CH_BRD_8000_1F), CH_DEVICE(6, 0, CH_BRD_T110_1F), CH_DEVICE(6, 1, CH_BRD_T110_1F), #ifdef CONFIG_CHELSIO_T1_COUGAR #ifdef CONFIG_CHELSIO_T1_1G CH_DEVICE(5, 0, CH_BRD_COUGAR_4CU), #endif CH_DEVICE(5, 1, CH_BRD_COUGAR_1F), #endif #ifdef CONFIG_USERMODE CH_DEVICE(0x5000, PCI_ANY_ID, CH_BRD_SIMUL), #endif #endif { 0, } }; #ifndef CH_DEVICE_COMMON /* * Return the board_info structure with a given index. Out-of-range indices * return NULL. */ const struct board_info * t1_get_board_info(unsigned int board_id) { return (board_id < DIMOF(t1_board) ? &t1_board[board_id] : NULL); } #else /* * Return the board_info structure that corresponds to a given PCI devid/ssid * pair. Return NULL if the id combination is unknown. */ const struct board_info *t1_get_board_info_from_ids(unsigned int devid, unsigned short ssid) { struct pci_device_id *p; for (p = t1_pci_tbl; p->devid; ++p) if (p->devid == devid && p->ssid == ssid) return (&t1_board[p->board_info_index]); return (NULL); } #endif typedef struct { u32 format_version; u8 serial_number[16]; u8 mac_base_address[6]; u8 pad[2]; /* make multiple-of-4 size requirement explicit */ } chelsio_vpd_t; #define EEPROMSIZE (8 * 1024) #define EEPROM_MAX_POLL 4 /* * Read SEEPROM. A zero is written to the flag register when the addres is * written to the Control register. The hardware device will set the flag to a * one when 4B have been transferred to the Data register. */ int t1_seeprom_read(adapter_t *adapter, u32 addr, u32 *data) { int i = EEPROM_MAX_POLL; u16 val; if (addr >= EEPROMSIZE || (addr & 3)) return (-EINVAL); (void) t1_os_pci_write_config_2(adapter, A_PCICFG_VPD_ADDR, (u16)addr); do { DELAY_US(50); (void) t1_os_pci_read_config_2(adapter, A_PCICFG_VPD_ADDR, &val); } while (!(val & F_VPD_OP_FLAG) && --i); if (!(val & F_VPD_OP_FLAG)) { CH_ERR("%s: reading EEPROM address 0x%x failed\n", adapter_name(adapter), addr); return (-EIO); } (void) t1_os_pci_read_config_4(adapter, A_PCICFG_VPD_DATA, data); *data = le32_to_cpu(*data); return (0); } static int t1_eeprom_vpd_get(adapter_t *adapter, chelsio_vpd_t *vpd) { int addr, ret = 0; for (addr = 0; !ret && addr < sizeof (*vpd); addr += sizeof (u32)) ret = t1_seeprom_read(adapter, addr, (u32 *)((u8 *)vpd + addr)); return (ret); } /* * Read a port's MAC address from the VPD ROM. */ static int vpd_macaddress_get(adapter_t *adapter, int index, u8 mac_addr[]) { chelsio_vpd_t vpd; if (t1_eeprom_vpd_get(adapter, &vpd)) return (1); memcpy(mac_addr, vpd.mac_base_address, 5); mac_addr[5] = vpd.mac_base_address[5] + index; return (0); } /* * Set up the MAC/PHY according to the requested link settings. * * If the PHY can auto-negotiate first decide what to advertise, then * enable/disable auto-negotiation as desired and reset. * * If the PHY does not auto-negotiate we just reset it. * * If auto-negotiation is off set the MAC to the proper speed/duplex/FC, * otherwise do it later based on the outcome of auto-negotiation. */ int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc) { unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); if (lc->supported & SUPPORTED_Autoneg) { lc->advertising &= ~(ADVERTISED_ASYM_PAUSE | ADVERTISED_PAUSE); if (fc) { if (fc == ((PAUSE_RX | PAUSE_TX) & !is_T2(mac->adapter))) lc->advertising |= ADVERTISED_PAUSE; else { lc->advertising |= ADVERTISED_ASYM_PAUSE; if (fc == PAUSE_RX) lc->advertising |= ADVERTISED_PAUSE; } } phy->ops->advertise(phy, lc->advertising); if (lc->autoneg == AUTONEG_DISABLE) { lc->speed = lc->requested_speed; lc->duplex = lc->requested_duplex; lc->fc = (unsigned char)fc; mac->ops->set_speed_duplex_fc(mac, lc->speed, lc->duplex, fc); /* Also disables autoneg */ phy->state = PHY_AUTONEG_RDY; phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex); phy->ops->reset(phy, 0); } else { phy->state = PHY_AUTONEG_EN; phy->ops->autoneg_enable(phy); /* also resets PHY */ } } else { phy->state = PHY_AUTONEG_RDY; mac->ops->set_speed_duplex_fc(mac, -1, -1, fc); lc->fc = (unsigned char)fc; phy->ops->reset(phy, 0); } return 0; } /* * External interrupt handler for boards using elmer0. */ int elmer0_ext_intr_handler(adapter_t *adapter) { struct cphy *phy; int phy_cause; u32 cause; (void) t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause); switch (board_info(adapter)->board) { #ifdef CONFIG_CHELSIO_T1_1G case CHBT_BOARD_CHT204: case CHBT_BOARD_CHT204V: { int i, port_bit; for_each_port(adapter, i) { port_bit = i ? i + 1 : 0; if (!(cause & (1 << port_bit))) continue; phy = adapter->port[i].phy; phy_cause = phy->ops->interrupt_handler(phy); if (phy_cause & cphy_cause_link_change) link_changed(adapter, i); } break; } case CHBT_BOARD_CHT101: if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */ phy = adapter->port[0].phy; phy_cause = phy->ops->interrupt_handler(phy); if (phy_cause & cphy_cause_link_change) link_changed(adapter, 0); } break; case CHBT_BOARD_7500: { int p; /* * Elmer0's interrupt cause isn't useful here because there is * only one bit that can be set for all 4 ports. This means * we are forced to check every PHY's interrupt status * register to see who initiated the interrupt. */ for_each_port(adapter, p) { phy = adapter->port[p].phy; phy_cause = phy->ops->interrupt_handler(phy); if (phy_cause & cphy_cause_link_change) link_changed(adapter, p); } break; } #endif case CHBT_BOARD_CHT210: case CHBT_BOARD_N210: case CHBT_BOARD_N110: if (cause & ELMER0_GP_BIT6) { /* Marvell 88x2010 interrupt */ phy = adapter->port[0].phy; phy_cause = phy->ops->interrupt_handler(phy); if (phy_cause & cphy_cause_link_change) link_changed(adapter, 0); } break; case CHBT_BOARD_8000: case CHBT_BOARD_CHT110: CH_DBG(adapter, INTR, "External interrupt cause 0x%x\n", cause); if (cause & ELMER0_GP_BIT1) { /* PMC3393 INTB */ struct cmac *mac = adapter->port[0].mac; mac->ops->interrupt_handler(mac); } if (cause & ELMER0_GP_BIT5) { /* XPAK MOD_DETECT */ u32 mod_detect; (void) t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect); CH_MSG(adapter, INFO, LINK, "XPAK %s\n", mod_detect ? "removed" : "inserted"); } break; #ifdef CONFIG_CHELSIO_T1_COUGAR case CHBT_BOARD_COUGAR: if (adapter->params.nports == 1) { if (cause & ELMER0_GP_BIT1) { /* Vitesse MAC */ struct cmac *mac = adapter->port[0].mac; mac->ops->interrupt_handler(mac); } if (cause & ELMER0_GP_BIT5) { /* XPAK MOD_DETECT */ } } else { int i, port_bit; for_each_port(adapter, i) { port_bit = i ? i + 1 : 0; if (!(cause & (1 << port_bit))) continue; phy = adapter->port[i].phy; phy_cause = phy->ops->interrupt_handler(phy); if (phy_cause & cphy_cause_link_change) link_changed(adapter, i); } } break; #endif } (void) t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause); return (0); } /* Enables all interrupts. */ void t1_interrupts_enable(adapter_t *adapter) { unsigned int i; adapter->slow_intr_mask = F_PL_INTR_SGE_ERR | F_PL_INTR_TP; (void) t1_sge_intr_enable(adapter->sge); t1_tp_intr_enable(adapter->tp); #ifdef CONFIG_CHELSIO_T1_OFFLOAD if (adapter->mc4) { adapter->slow_intr_mask |= F_PL_INTR_MC3 | F_PL_INTR_MC4 | F_PL_INTR_ULP | F_PL_INTR_MC5; /* * T2 -- Disable interrupts for now b/c we are not clearing * correctly yet. */ /* t1_ulp_intr_enable(adapter->ulp); */ t1_ulp_intr_disable(adapter->ulp); t1_mc3_intr_enable(adapter->mc3); t1_mc4_intr_enable(adapter->mc4); t1_mc5_intr_enable(adapter->mc5); } #endif if (adapter->espi) { adapter->slow_intr_mask |= F_PL_INTR_ESPI; t1_espi_intr_enable(adapter->espi); } /* Enable MAC/PHY interrupts for each port. */ for_each_port(adapter, i) { adapter->port[i].mac->ops->interrupt_enable(adapter-> port[i].mac); adapter->port[i].phy->ops->interrupt_enable(adapter-> port[i].phy); } /* Enable PCIX & external chip interrupts on ASIC boards. */ if (t1_is_asic(adapter)) { u32 pl_intr = t1_read_reg_4(adapter, A_PL_ENABLE); /* PCI-X interrupts */ (void) t1_os_pci_write_config_4(adapter, A_PCICFG_INTR_ENABLE, 0xffffffff); adapter->slow_intr_mask |= F_PL_INTR_EXT | F_PL_INTR_PCIX; pl_intr |= F_PL_INTR_EXT | F_PL_INTR_PCIX; t1_write_reg_4(adapter, A_PL_ENABLE, pl_intr); } } /* Disables all interrupts. */ void t1_interrupts_disable(adapter_t * adapter) { unsigned int i; (void) t1_sge_intr_disable(adapter->sge); t1_tp_intr_disable(adapter->tp); #ifdef CONFIG_CHELSIO_T1_OFFLOAD if (adapter->mc4) { t1_ulp_intr_disable(adapter->ulp); t1_mc3_intr_disable(adapter->mc3); t1_mc4_intr_disable(adapter->mc4); t1_mc5_intr_disable(adapter->mc5); } #endif if (adapter->espi) t1_espi_intr_disable(adapter->espi); /* Disable MAC/PHY interrupts for each port. */ for_each_port(adapter, i) { adapter->port[i].mac->ops->interrupt_disable(adapter-> port[i].mac); adapter->port[i].phy->ops->interrupt_disable(adapter-> port[i].phy); } /* Disable PCIX & external chip interrupts. */ if (t1_is_asic(adapter)) t1_write_reg_4(adapter, A_PL_ENABLE, 0); /* PCI-X interrupts */ (void) t1_os_pci_write_config_4(adapter, A_PCICFG_INTR_ENABLE, 0); adapter->slow_intr_mask = 0; } /* Clears all interrupts */ void t1_interrupts_clear(adapter_t * adapter) { unsigned int i; (void) t1_sge_intr_clear(adapter->sge); t1_tp_intr_clear(adapter->tp); #ifdef CONFIG_CHELSIO_T1_OFFLOAD if (adapter->mc4) { t1_ulp_intr_clear(adapter->ulp); t1_mc3_intr_clear(adapter->mc3); t1_mc4_intr_clear(adapter->mc4); t1_mc5_intr_clear(adapter->mc5); } #endif if (adapter->espi) t1_espi_intr_clear(adapter->espi); /* Clear MAC/PHY interrupts for each port. */ for_each_port(adapter, i) { adapter->port[i].mac->ops->interrupt_clear(adapter-> port[i].mac); adapter->port[i].phy->ops->interrupt_clear(adapter-> port[i].phy); } /* Enable interrupts for external devices. */ if (t1_is_asic(adapter)) { u32 pl_intr = t1_read_reg_4(adapter, A_PL_CAUSE); t1_write_reg_4(adapter, A_PL_CAUSE, pl_intr | F_PL_INTR_EXT | F_PL_INTR_PCIX); } /* PCI-X interrupts */ (void) t1_os_pci_write_config_4(adapter, A_PCICFG_INTR_CAUSE, 0xffffffff); } /* * Slow path interrupt handler for ASICs. */ static int asic_slow_intr(adapter_t *adapter) { u32 cause = t1_read_reg_4(adapter, A_PL_CAUSE); cause &= adapter->slow_intr_mask; if (!cause) return (0); if (cause & F_PL_INTR_SGE_ERR) (void) t1_sge_intr_error_handler(adapter->sge); if (cause & F_PL_INTR_TP) (void) t1_tp_intr_handler(adapter->tp); #ifdef CONFIG_CHELSIO_T1_OFFLOAD if (cause & F_PL_INTR_MC3) (void) t1_mc3_intr_handler(adapter->mc3); if (cause & F_PL_INTR_MC4) (void) t1_mc4_intr_handler(adapter->mc4); if (cause & F_PL_INTR_ULP) (void) t1_ulp_intr_handler(adapter->ulp); if (cause & F_PL_INTR_MC5) (void) t1_mc5_intr_handler(adapter->mc5); #endif if (cause & F_PL_INTR_ESPI) (void) t1_espi_intr_handler(adapter->espi); if (cause & F_PL_INTR_PCIX) (void) t1_pci_intr_handler(adapter); if (cause & F_PL_INTR_EXT) t1_os_elmer0_ext_intr(adapter); /* Clear the interrupts just processed. */ t1_write_reg_4(adapter, A_PL_CAUSE, cause); (void) t1_read_reg_4(adapter, A_PL_CAUSE); /* flush writes */ return (1); } int t1_slow_intr_handler(adapter_t *adapter) { #ifdef CONFIG_CHELSIO_T1_1G if (!t1_is_asic(adapter)) return (fpga_slow_intr(adapter)); #endif return (asic_slow_intr(adapter)); } /* Power sequencing is a work-around for Intel's XPAKs. */ static void power_sequence_xpak(adapter_t * adapter) { u32 mod_detect; u32 gpo; /* Check for XPAK */ (void) t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect); if (!(ELMER0_GP_BIT5 & mod_detect)) { /* XPAK is present */ (void) t1_tpi_read(adapter, A_ELMER0_GPO, &gpo); gpo |= ELMER0_GP_BIT18; (void) t1_tpi_write(adapter, A_ELMER0_GPO, gpo); } } int __devinit t1_get_board_rev(adapter_t *adapter, const struct board_info *bi, struct adapter_params *p) { p->chip_version = bi->chip_term; p->is_asic = (p->chip_version != CHBT_TERM_FPGA); if (p->chip_version == CHBT_TERM_T1 || p->chip_version == CHBT_TERM_T2 || p->chip_version == CHBT_TERM_FPGA) { u32 val = t1_read_reg_4(adapter, A_TP_PC_CONFIG); val = G_TP_PC_REV(val); if (val == 2) p->chip_revision = TERM_T1B; else if (val == 3) p->chip_revision = TERM_T2; else return (-1); } else return (-1); return (0); } /* * Enable board components other than the Chelsio chip, such as external MAC * and PHY. */ static int board_init(adapter_t *adapter, const struct board_info *bi) { switch (bi->board) { case CHBT_BOARD_8000: case CHBT_BOARD_N110: case CHBT_BOARD_N210: case CHBT_BOARD_CHT210: case CHBT_BOARD_COUGAR: t1_tpi_par(adapter, 0xf); (void) t1_tpi_write(adapter, A_ELMER0_GPO, 0x800); break; case CHBT_BOARD_CHT110: t1_tpi_par(adapter, 0xf); (void) t1_tpi_write(adapter, A_ELMER0_GPO, 0x1800); /* * TBD XXX Might not need. This fixes a problem * described in the Intel SR XPAK errata. */ power_sequence_xpak(adapter); break; #ifdef CONFIG_CHELSIO_T1_1G case CHBT_BOARD_CHT204: case CHBT_BOARD_CHT204V: t1_tpi_par(adapter, 0xf); (void) t1_tpi_write(adapter, A_ELMER0_GPO, 0x804); break; case CHBT_BOARD_CHT101: case CHBT_BOARD_7500: t1_tpi_par(adapter, 0xf); (void) t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804); break; #endif } return (0); } /* * Initialize and configure the Terminator HW modules. Note that external * MAC and PHYs are initialized separately. */ int t1_init_hw_modules(adapter_t *adapter) { int err = -EIO; const struct board_info *bi = board_info(adapter); #ifdef CONFIG_CHELSIO_T1_OFFLOAD if (adapter->mc3 && t1_mc3_init(adapter->mc3, bi->clock_mc3)) goto out_err; if (adapter->mc4 && t1_mc4_init(adapter->mc4, bi->clock_mc4)) goto out_err; if (adapter->mc5 && t1_mc5_init(adapter->mc5, adapter->params.mc5.nservers, adapter->params.mc5.nroutes, 1, 0)) goto out_err; if (adapter->ulp && t1_ulp_init(adapter->ulp, adapter->params.tp.pm_tx_base)) goto out_err; #endif if (!adapter->mc4) { u32 val = t1_read_reg_4(adapter, A_MC4_CFG); t1_write_reg_4(adapter, A_MC4_CFG, val | F_READY | F_MC4_SLOW); t1_write_reg_4(adapter, A_MC5_CONFIG, F_M_BUS_ENABLE | F_TCAM_RESET); } #ifdef CONFIG_CHELSIO_T1_COUGAR if (adapter->cspi && t1_cspi_init(adapter->cspi)) goto out_err; #endif if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac, bi->espi_nports)) goto out_err; if (t1_tp_reset(adapter->tp, &adapter->params.tp, bi->clock_core)) goto out_err; err = t1_sge_configure(adapter->sge, &adapter->params.sge); if (err) goto out_err; #ifdef CONFIG_CHELSIO_T1_OFFLOAD (void) t1_tp_set_coalescing_size(adapter->tp, min(adapter->params.sge.large_buf_capacity, TP_MAX_RX_COALESCING_SIZE)); #endif err = 0; out_err: return (err); } /* * Determine a card's PCI mode. */ static void __devinit get_pci_mode(adapter_t *adapter, struct pci_params *p) { static unsigned short speed_map[] = { 33, 66, 100, 133 }; u32 pci_mode; (void) t1_os_pci_read_config_4(adapter, A_PCICFG_MODE, &pci_mode); p->speed = speed_map[G_PCI_MODE_CLK(pci_mode)]; p->width = (pci_mode & F_PCI_MODE_64BIT) ? 64 : 32; p->is_pcix = (pci_mode & F_PCI_MODE_PCIX) != 0; } /* * Release the structures holding the SW per-Terminator-HW-module state. */ void t1_free_sw_modules(adapter_t *adapter) { unsigned int i; for_each_port(adapter, i) { struct cmac *mac = adapter->port[i].mac; struct cphy *phy = adapter->port[i].phy; if (mac) mac->ops->destroy(mac); if (phy) phy->ops->destroy(phy); } if (adapter->sge) (void) t1_sge_destroy(adapter->sge); if (adapter->tp) t1_tp_destroy(adapter->tp); if (adapter->espi) t1_espi_destroy(adapter->espi); #ifdef CONFIG_CHELSIO_T1_OFFLOAD if (adapter->mc5) t1_mc5_destroy(adapter->mc5); if (adapter->mc3) t1_mc3_destroy(adapter->mc3); if (adapter->mc4) t1_mc4_destroy(adapter->mc4); if (adapter->ulp) t1_ulp_destroy(adapter->ulp); #endif #ifdef CONFIG_CHELSIO_T1_COUGAR if (adapter->cspi) t1_cspi_destroy(adapter->cspi); #endif } static void __devinit init_link_config(struct link_config *lc, const struct board_info *bi) { lc->supported = bi->caps; lc->requested_speed = lc->speed = SPEED_INVALID; lc->requested_duplex = lc->duplex = DUPLEX_INVALID; lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; if (lc->supported & SUPPORTED_Autoneg) { lc->advertising = lc->supported; lc->autoneg = AUTONEG_ENABLE; lc->requested_fc |= PAUSE_AUTONEG; } else { lc->advertising = 0; lc->autoneg = AUTONEG_DISABLE; } } #ifdef CONFIG_CHELSIO_T1_OFFLOAD void init_mtus(unsigned short mtus[]) { mtus[0] = 68; mtus[1] = 508; mtus[2] = 576; mtus[3] = 1492; mtus[4] = 1500; mtus[5] = 2000; mtus[6] = 4000; mtus[7] = 9000; } #endif /* * Allocate and initialize the data structures that hold the SW state of * the Terminator HW modules. */ int __devinit t1_init_sw_modules(adapter_t *adapter, const struct board_info *bi) { unsigned int i; adapter->params.brd_info = bi; adapter->params.nports = bi->port_number; adapter->params.stats_update_period = bi->gmac->stats_update_period; adapter->sge = t1_sge_create(adapter, &adapter->params.sge); if (!adapter->sge) { CH_ERR("%s: SGE initialization failed\n", adapter_name(adapter)); goto error; } #ifdef CONFIG_CHELSIO_T1_OFFLOAD if (bi->clock_mc4) { /* * Must wait 200us after power up before touching the * memory controllers. */ DELAY_US(200); adapter->mc3 = t1_mc3_create(adapter); if (!adapter->mc3) { CH_ERR("%s: MC3 initialization failed\n", adapter_name(adapter)); goto error; } adapter->mc4 = t1_mc4_create(adapter); if (!adapter->mc4) { CH_ERR("%s: MC4 initialization failed\n", adapter_name(adapter)); goto error; } if (!adapter->params.mc5.mode) adapter->params.mc5.mode = MC5_MODE_144_BIT; adapter->mc5 = t1_mc5_create(adapter, adapter->params.mc5.mode); if (!adapter->mc5) { CH_ERR("%s: MC5 initialization failed\n", adapter_name(adapter)); goto error; } adapter->ulp = t1_ulp_create(adapter); if (!adapter->ulp) { CH_ERR("%s: ULP initialization failed\n", adapter_name(adapter)); goto error; } adapter->params.tp.pm_size = t1_mc3_get_size(adapter->mc3); adapter->params.tp.cm_size = t1_mc4_get_size(adapter->mc4); adapter->params.mc5.nservers = DEFAULT_SERVER_REGION_LEN; adapter->params.mc5.nroutes = DEFAULT_RT_REGION_LEN; init_mtus(adapter->params.mtus); } #endif #ifdef CONFIG_CHELSIO_T1_COUGAR if (bi->clock_cspi && !(adapter->cspi = t1_cspi_create(adapter))) { CH_ERR("%s: CSPI initialization failed\n", adapter_name(adapter)); goto error; } #endif if (bi->espi_nports && !(adapter->espi = t1_espi_create(adapter))) { CH_ERR("%s: ESPI initialization failed\n", adapter_name(adapter)); goto error; } adapter->tp = t1_tp_create(adapter, &adapter->params.tp); if (!adapter->tp) { CH_ERR("%s: TP initialization failed\n", adapter_name(adapter)); goto error; } (void) board_init(adapter, bi); bi->mdio_ops->init(adapter, bi); if (bi->gphy->reset) bi->gphy->reset(adapter); if (bi->gmac->reset) bi->gmac->reset(adapter); for_each_port(adapter, i) { u8 hw_addr[6]; struct cmac *mac; int phy_addr = bi->mdio_phybaseaddr + i; adapter->port[i].phy = bi->gphy->create(adapter, phy_addr, bi->mdio_ops); if (!adapter->port[i].phy) { CH_ERR("%s: PHY %d initialization failed\n", adapter_name(adapter), i); goto error; } adapter->port[i].mac = mac = bi->gmac->create(adapter, i); if (!mac) { CH_ERR("%s: MAC %d initialization failed\n", adapter_name(adapter), i); goto error; } /* * Get the port's MAC addresses either from the EEPROM if one * exists or the one hardcoded in the MAC. */ if (!t1_is_asic(adapter) || bi->chip_mac == CHBT_MAC_DUMMY) mac->ops->macaddress_get(mac, hw_addr); else if (vpd_macaddress_get(adapter, i, hw_addr)) { CH_ERR("%s: could not read MAC address from VPD ROM\n", port_name(adapter, i)); goto error; } t1_os_set_hw_addr(adapter, i, hw_addr); init_link_config(&adapter->port[i].link_config, bi); } get_pci_mode(adapter, &adapter->params.pci); t1_interrupts_clear(adapter); return (0); error: t1_free_sw_modules(adapter); return (-1); }