#ifndef ECORE_INIT_OPS_H #define ECORE_INIT_OPS_H #ifndef PDEV_ILT #define PDEV_ILT(bp) NULL #endif #ifndef PDEV_FUNC #define PDEV_FUNC(bp) 0 #endif #ifndef PDEV_PORT #define PDEV_PORT(bp) 0 #endif #ifndef ECORE_ILT_FREE #define ECORE_ILT_FREE(x, y, sz) #endif #ifndef ECORE_ILT_ZALLOC #define ECORE_ILT_ZALLOC(x, y, sz) #endif #ifndef ILOG2 #define ILOG2(x) x #endif #define FORCE32 (u32) static int ecore_gunzip(struct _lm_device_t *pdev, const u8 *zbuf, int len); static void ecore_reg_wr_ind(struct _lm_device_t *pdev, u32 addr, u32 val); static void ecore_write_dmae_phys_len(struct _lm_device_t *pdev, lm_address_t phys_addr, u32 addr, u32 len); static void ecore_init_str_wr(struct _lm_device_t *pdev, u32 addr, const u32 *data, u32 len) { u32 i; for (i = 0; i < len; i++) REG_WR(pdev, addr + i*4, data[i]); } static void ecore_init_ind_wr(struct _lm_device_t *pdev, u32 addr, const u32 *data, u32 len) { u32 i; for (i = 0; i < len; i++) ecore_reg_wr_ind(pdev, addr + i*4, data[i]); } static void ecore_write_big_buf(struct _lm_device_t *pdev, u32 addr, u32 len, u8 wb) { if (DMAE_READY(pdev)) ecore_write_dmae_phys_len(pdev, GUNZIP_PHYS(pdev), addr, len); /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ else if (wb && CHIP_IS_E1(pdev)) ecore_init_ind_wr(pdev, addr, GUNZIP_BUF(pdev), len); /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ else ecore_init_str_wr(pdev, addr, GUNZIP_BUF(pdev), len); } static void ecore_init_fill(struct _lm_device_t *pdev, u32 addr, int fill, u32 len, u8 wb) { u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4)); u32 buf_len32 = buf_len/4; u32 i; mm_memset(GUNZIP_BUF(pdev), (u8)fill, buf_len); for (i = 0; i < len; i += buf_len32) { u32 cur_len = min(buf_len32, len - i); ecore_write_big_buf(pdev, addr + i*4, cur_len, wb); } } static void ecore_write_big_buf_wb(struct _lm_device_t *pdev, u32 addr, u32 len) { if (DMAE_READY(pdev)) ecore_write_dmae_phys_len(pdev, GUNZIP_PHYS(pdev), addr, len); /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ else if (CHIP_IS_E1(pdev)) ecore_init_ind_wr(pdev, addr, GUNZIP_BUF(pdev), len); /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ else ecore_init_str_wr(pdev, addr, GUNZIP_BUF(pdev), len); } static void ecore_init_wr_64(struct _lm_device_t *pdev, u32 addr, const u32 *data, u32 len64) { u32 buf_len32 = FW_BUF_SIZE/4; u32 len = len64*2; u64 data64 = 0; u32 i; /* 64 bit value is in a blob: first low DWORD, then high DWORD */ data64 = HILO_U64((*(data + 1)), (*data)); len64 = min((u32)(FW_BUF_SIZE/8), len64); for (i = 0; i < len64; i++) { u64 *pdata = ((u64 *)(GUNZIP_BUF(pdev))) + i; *pdata = data64; } for (i = 0; i < len; i += buf_len32) { u32 cur_len = min(buf_len32, len - i); ecore_write_big_buf_wb(pdev, addr + i*4, cur_len); } } /********************************************************* There are different blobs for each PRAM section. In addition, each blob write operation is divided into a few operations in order to decrease the amount of phys. contiguous buffer needed. Thus, when we select a blob the address may be with some offset from the beginning of PRAM section. The same holds for the INT_TABLE sections. **********************************************************/ #define IF_IS_INT_TABLE_ADDR(base, addr) \ if (((base) <= (addr)) && ((base) + 0x400 >= (addr))) #define IF_IS_PRAM_ADDR(base, addr) \ if (((base) <= (addr)) && ((base) + 0x40000 >= (addr))) static const u8 *ecore_sel_blob(struct _lm_device_t *pdev, u32 addr, const u8 *data) { IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) data = INIT_TSEM_INT_TABLE_DATA(pdev); else IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) data = INIT_CSEM_INT_TABLE_DATA(pdev); else IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) data = INIT_USEM_INT_TABLE_DATA(pdev); else IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) data = INIT_XSEM_INT_TABLE_DATA(pdev); else IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) data = INIT_TSEM_PRAM_DATA(pdev); else IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) data = INIT_CSEM_PRAM_DATA(pdev); else IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) data = INIT_USEM_PRAM_DATA(pdev); else IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) data = INIT_XSEM_PRAM_DATA(pdev); return data; } static void ecore_init_wr_wb(struct _lm_device_t *pdev, u32 addr, const u32 *data, u32 len) { if (DMAE_READY(pdev)) VIRT_WR_DMAE_LEN(pdev, data, addr, len, 0); /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ else if (CHIP_IS_E1(pdev)) ecore_init_ind_wr(pdev, addr, data, len); /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ else ecore_init_str_wr(pdev, addr, data, len); } #ifndef FW_ZIP_SUPPORT /* ! BNX2X_UPSTREAM */ static void ecore_init_fw(struct _lm_device_t *pdev, u32 addr, u32 len) { const u8 *data = NULL; data = ecore_sel_blob(pdev, addr, (const u8 *)data); if (DMAE_READY(pdev)) VIRT_WR_DMAE_LEN(pdev, data, addr, len, 1); /* in E1 BIOS initiated ZLR may interrupt widebus writes */ else if (CHIP_IS_E1(pdev)) ecore_init_ind_wr(pdev, addr, (const u32 *)data, len); /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ else ecore_init_str_wr(pdev, addr, (const u32 *)data, len); } #endif #ifdef ECORE_UPSTREAM /* ECORE_UPSTREAM */ static void ecore_wr_64(struct _lm_device_t *pdev, u32 reg, u32 val_lo, u32 val_hi) { u32 wb_write[2]; wb_write[0] = val_lo; wb_write[1] = val_hi; REG_WR_DMAE_LEN(pdev, reg, wb_write, 2); } #endif static void ecore_init_wr_zp(struct _lm_device_t *pdev, u32 addr, u32 len, u32 blob_off) { const u8 *data = NULL; int rc; u32 i; data = ecore_sel_blob(pdev, addr, data) + blob_off*4; rc = ecore_gunzip(pdev, data, len); if (rc) return; /* gunzip_outlen is in dwords */ len = GUNZIP_OUTLEN(pdev); for (i = 0; i < len; i++) ((u32 *)GUNZIP_BUF(pdev))[i] = FORCE32 mm_cpu_to_le32(((u32 *)GUNZIP_BUF(pdev))[i]); ecore_write_big_buf_wb(pdev, addr, len); } static void ecore_init_block(struct _lm_device_t *pdev, u32 block, u32 stage) { u16 op_start = INIT_OPS_OFFSETS(pdev)[BLOCK_OPS_IDX(block, stage, STAGE_START)]; u16 op_end = INIT_OPS_OFFSETS(pdev)[BLOCK_OPS_IDX(block, stage, STAGE_END)]; const union init_op *op; u32 op_idx, op_type, addr, len; const u32 *data, *data_base; /* If empty block */ if (op_start == op_end) return; data_base = INIT_DATA(pdev); for (op_idx = op_start; op_idx < op_end; op_idx++) { op = (const union init_op *)&(INIT_OPS(pdev)[op_idx]); /* Get generic data */ op_type = op->raw.op; addr = op->raw.offset; /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and * OP_WR64 (we assume that op_arr_write and op_write have the * same structure). */ len = op->arr_wr.data_len; data = data_base + op->arr_wr.data_off; switch (op_type) { case OP_RD: REG_RD(pdev, addr); break; case OP_WR: REG_WR(pdev, addr, op->write.val); break; case OP_SW: ecore_init_str_wr(pdev, addr, data, len); break; case OP_WB: ecore_init_wr_wb(pdev, addr, data, len); break; #ifndef FW_ZIP_SUPPORT /* ! BNX2X_UPSTREAM */ case OP_FW: ecore_init_fw(pdev, addr, len); break; #endif case OP_ZR: ecore_init_fill(pdev, addr, 0, op->zero.len, 0); break; case OP_WB_ZR: ecore_init_fill(pdev, addr, 0, op->zero.len, 1); break; case OP_ZP: ecore_init_wr_zp(pdev, addr, len, op->arr_wr.data_off); break; case OP_WR_64: ecore_init_wr_64(pdev, addr, data, len); break; case OP_IF_MODE_AND: /* if any of the flags doesn't match, skip the * conditional block. */ if ((INIT_MODE_FLAGS(pdev) & op->if_mode.mode_bit_map) != op->if_mode.mode_bit_map) op_idx += op->if_mode.cmd_offset; break; case OP_IF_MODE_OR: /* if all the flags don't match, skip the conditional * block. */ if ((INIT_MODE_FLAGS(pdev) & op->if_mode.mode_bit_map) == 0) op_idx += op->if_mode.cmd_offset; break; #ifndef BNX2X_UPSTREAM /* ! BNX2X_UPSTREAM */ /* the following opcodes are unused at the moment. */ case OP_IF_PHASE: case OP_RT: case OP_DELAY: case OP_VERIFY: #endif default: /* Should never get here! */ DbgBreakIf(TRUE); break; } } } /**************************************************************************** * PXP Arbiter ****************************************************************************/ /* * This code configures the PCI read/write arbiter * which implements a weighted round robin * between the virtual queues in the chip. * * The values were derived for each PCI max payload and max request size. * since max payload and max request size are only known at run time, * this is done as a separate init stage. */ #define NUM_WR_Q 13 #define NUM_RD_Q 29 #define MAX_RD_ORD 3 #define MAX_WR_ORD 2 /* configuration for one arbiter queue */ struct arb_line { int l; int add; int ubound; }; /* derived configuration for each read queue for each max request size */ static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} }, { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} }, { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} }, { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} } }; /* derived configuration for each write queue for each max request size */ static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} }, { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} }, { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} }, { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} }, { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} }, { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} }, { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} } }; /* register addresses for read queues */ static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, PXP2_REG_RQ_BW_RD_UBOUND0}, {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, PXP2_REG_PSWRQ_BW_UB1}, {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, PXP2_REG_PSWRQ_BW_UB2}, {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, PXP2_REG_PSWRQ_BW_UB3}, {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, PXP2_REG_RQ_BW_RD_UBOUND4}, {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, PXP2_REG_RQ_BW_RD_UBOUND5}, {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, PXP2_REG_PSWRQ_BW_UB6}, {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, PXP2_REG_PSWRQ_BW_UB7}, {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, PXP2_REG_PSWRQ_BW_UB8}, /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, PXP2_REG_PSWRQ_BW_UB9}, {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, PXP2_REG_PSWRQ_BW_UB10}, {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, PXP2_REG_PSWRQ_BW_UB11}, {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, PXP2_REG_RQ_BW_RD_UBOUND12}, {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, PXP2_REG_RQ_BW_RD_UBOUND13}, {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, PXP2_REG_RQ_BW_RD_UBOUND14}, {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, PXP2_REG_RQ_BW_RD_UBOUND15}, {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, PXP2_REG_RQ_BW_RD_UBOUND16}, {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, PXP2_REG_RQ_BW_RD_UBOUND17}, {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, PXP2_REG_RQ_BW_RD_UBOUND18}, /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, PXP2_REG_RQ_BW_RD_UBOUND19}, {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, PXP2_REG_RQ_BW_RD_UBOUND20}, {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, PXP2_REG_RQ_BW_RD_UBOUND22}, {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, PXP2_REG_RQ_BW_RD_UBOUND23}, {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, PXP2_REG_RQ_BW_RD_UBOUND24}, {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, PXP2_REG_RQ_BW_RD_UBOUND25}, {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, PXP2_REG_RQ_BW_RD_UBOUND26}, {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, PXP2_REG_RQ_BW_RD_UBOUND27}, {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, PXP2_REG_PSWRQ_BW_UB28} }; /* register addresses for write queues */ static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, PXP2_REG_PSWRQ_BW_UB1}, {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, PXP2_REG_PSWRQ_BW_UB2}, {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, PXP2_REG_PSWRQ_BW_UB3}, {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, PXP2_REG_PSWRQ_BW_UB6}, {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, PXP2_REG_PSWRQ_BW_UB7}, {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, PXP2_REG_PSWRQ_BW_UB8}, {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, PXP2_REG_PSWRQ_BW_UB9}, {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, PXP2_REG_PSWRQ_BW_UB10}, {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, PXP2_REG_PSWRQ_BW_UB11}, /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, PXP2_REG_PSWRQ_BW_UB28}, {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, PXP2_REG_RQ_BW_WR_UBOUND29}, {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, PXP2_REG_RQ_BW_WR_UBOUND30} }; static void ecore_init_pxp_arb(struct _lm_device_t *pdev, int r_order, int w_order) { u32 val, i; if (r_order > MAX_RD_ORD) { DbgMessage(pdev, WARNi, "read order of %d order adjusted to %d\n", r_order, MAX_RD_ORD); r_order = MAX_RD_ORD; } if (w_order > MAX_WR_ORD) { DbgMessage(pdev, WARNi, "write order of %d order adjusted to %d\n", w_order, MAX_WR_ORD); w_order = MAX_WR_ORD; } if (CHIP_REV_IS_FPGA(pdev)) { DbgMessage(pdev, WARNi, "write order adjusted to 1 for FPGA\n"); w_order = 0; } DbgMessage(pdev, INFORMi, "read order %d write order %d\n", r_order, w_order); for (i = 0; i < NUM_RD_Q-1; i++) { REG_WR(pdev, read_arb_addr[i].l, read_arb_data[i][r_order].l); REG_WR(pdev, read_arb_addr[i].add, read_arb_data[i][r_order].add); REG_WR(pdev, read_arb_addr[i].ubound, read_arb_data[i][r_order].ubound); } for (i = 0; i < NUM_WR_Q-1; i++) { if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { REG_WR(pdev, write_arb_addr[i].l, write_arb_data[i][w_order].l); REG_WR(pdev, write_arb_addr[i].add, write_arb_data[i][w_order].add); REG_WR(pdev, write_arb_addr[i].ubound, write_arb_data[i][w_order].ubound); } else { val = REG_RD(pdev, write_arb_addr[i].l); REG_WR(pdev, write_arb_addr[i].l, val | (write_arb_data[i][w_order].l << 10)); val = REG_RD(pdev, write_arb_addr[i].add); REG_WR(pdev, write_arb_addr[i].add, val | (write_arb_data[i][w_order].add << 10)); val = REG_RD(pdev, write_arb_addr[i].ubound); REG_WR(pdev, write_arb_addr[i].ubound, val | (write_arb_data[i][w_order].ubound << 7)); } } val = write_arb_data[NUM_WR_Q-1][w_order].add; val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; REG_WR(pdev, PXP2_REG_PSWRQ_BW_RD, val); val = read_arb_data[NUM_RD_Q-1][r_order].add; val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; REG_WR(pdev, PXP2_REG_PSWRQ_BW_WR, val); REG_WR(pdev, PXP2_REG_RQ_WR_MBS0, w_order); REG_WR(pdev, PXP2_REG_RQ_WR_MBS1, w_order); REG_WR(pdev, PXP2_REG_RQ_RD_MBS0, r_order); REG_WR(pdev, PXP2_REG_RQ_RD_MBS1, r_order); if ((CHIP_IS_E1(pdev) || CHIP_IS_E1H(pdev)) && (r_order == MAX_RD_ORD)) REG_WR(pdev, PXP2_REG_RQ_PDR_LIMIT, 0xe00); if (CHIP_IS_E3(pdev)) REG_WR(pdev, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order)); else if (CHIP_IS_E2(pdev)) REG_WR(pdev, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order)); else REG_WR(pdev, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); if (!CHIP_IS_E1(pdev)) { /* MPS w_order optimal TH presently TH * 128 0 0 2 * 256 1 1 3 * >=512 2 2 3 */ /* DMAE is special */ if (!CHIP_IS_E1H(pdev)) { /* E2 can use optimal TH */ val = w_order; REG_WR(pdev, PXP2_REG_WR_DMAE_MPS, val); } else { val = ((w_order == 0) ? 2 : 3); REG_WR(pdev, PXP2_REG_WR_DMAE_MPS, 2); } REG_WR(pdev, PXP2_REG_WR_HC_MPS, val); REG_WR(pdev, PXP2_REG_WR_USDM_MPS, val); REG_WR(pdev, PXP2_REG_WR_CSDM_MPS, val); REG_WR(pdev, PXP2_REG_WR_TSDM_MPS, val); REG_WR(pdev, PXP2_REG_WR_XSDM_MPS, val); REG_WR(pdev, PXP2_REG_WR_QM_MPS, val); REG_WR(pdev, PXP2_REG_WR_TM_MPS, val); REG_WR(pdev, PXP2_REG_WR_SRC_MPS, val); REG_WR(pdev, PXP2_REG_WR_DBG_MPS, val); REG_WR(pdev, PXP2_REG_WR_CDU_MPS, val); } /* Validate number of tags suppoted by device */ #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980 val = REG_RD(pdev, PCIE_REG_PCIER_TL_HDR_FC_ST); val &= 0xFF; if (val <= 0x20) REG_WR(pdev, PXP2_REG_PGL_TAGS_LIMIT, 0x20); } #ifdef ECORE_UPSTREAM /* ECORE_UPSTREAM */ /**************************************************************************** * ILT management ****************************************************************************/ /* * This codes hides the low level HW interaction for ILT management and * configuration. The API consists of a shadow ILT table which is set by the * driver and a set of routines to use it to configure the HW. * */ /* ILT HW init operations */ /* ILT memory management operations */ #define ILT_MEMOP_ALLOC 0 #define ILT_MEMOP_FREE 1 /* the phys address is shifted right 12 bits and has an added * 1=valid bit added to the 53rd bit * then since this is a wide register(TM) * we split it into two 32 bit writes */ #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF)) #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44))) #define ILT_RANGE(f, l) (((l) << 10) | f) static int ecore_ilt_line_mem_op(struct _lm_device_t *pdev, struct ilt_line *line, u32 size, u8 memop) { if (memop == ILT_MEMOP_FREE) { ECORE_ILT_FREE(line->page, line->page_mapping, line->size); return 0; } ECORE_ILT_ZALLOC(line->page, &line->page_mapping, size); if (!line->page) return -1; line->size = size; return 0; } static int ecore_ilt_client_mem_op(struct _lm_device_t *pdev, int cli_num, u8 memop) { int i, rc; struct ecore_ilt *ilt = PDEV_ILT(pdev); struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; if (!ilt || !ilt->lines) return -1; if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM)) return 0; for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) { rc = ecore_ilt_line_mem_op(pdev, &ilt->lines[i], ilt_cli->page_size, memop); } return rc; } static int ecore_ilt_mem_op_cnic(struct _lm_device_t *pdev, u8 memop) { int rc = 0; if (CONFIGURE_NIC_MODE(pdev)) rc = ecore_ilt_client_mem_op(pdev, ILT_CLIENT_SRC, memop); if (!rc) rc = ecore_ilt_client_mem_op(pdev, ILT_CLIENT_TM, memop); return rc; } static int ecore_ilt_mem_op(struct _lm_device_t *pdev, u8 memop) { int rc = ecore_ilt_client_mem_op(pdev, ILT_CLIENT_CDU, memop); if (!rc) rc = ecore_ilt_client_mem_op(pdev, ILT_CLIENT_QM, memop); if (!rc && CNIC_SUPPORT(pdev) && !CONFIGURE_NIC_MODE(pdev)) rc = ecore_ilt_client_mem_op(pdev, ILT_CLIENT_SRC, memop); return rc; } static void ecore_ilt_line_wr(struct _lm_device_t *pdev, int abs_idx, lm_address_t page_mapping) { u32 reg; if (CHIP_IS_E1(pdev)) reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8; else reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8; ecore_wr_64(pdev, reg, ILT_ADDR1(page_mapping.as_u64), ILT_ADDR2(page_mapping.as_u64)); } static void ecore_ilt_line_init_op(struct _lm_device_t *pdev, struct ecore_ilt *ilt, int idx, u8 initop) { lm_address_t null_mapping; int abs_idx = ilt->start_line + idx; switch (initop) { case INITOP_INIT: /* set in the init-value array */ case INITOP_SET: ecore_ilt_line_wr(pdev, abs_idx, ilt->lines[idx].page_mapping); break; case INITOP_CLEAR: null_mapping.as_u64 = 0; ecore_ilt_line_wr(pdev, abs_idx, null_mapping); break; } } static void ecore_ilt_boundry_init_op(struct _lm_device_t *pdev, struct ilt_client_info *ilt_cli, u32 ilt_start, u8 initop) { u32 start_reg = 0; u32 end_reg = 0; /* The boundary is either SET or INIT, CLEAR => SET and for now SET ~~ INIT */ /* find the appropriate regs */ if (CHIP_IS_E1(pdev)) { switch (ilt_cli->client_num) { case ILT_CLIENT_CDU: start_reg = PXP2_REG_PSWRQ_CDU0_L2P; break; case ILT_CLIENT_QM: start_reg = PXP2_REG_PSWRQ_QM0_L2P; break; case ILT_CLIENT_SRC: start_reg = PXP2_REG_PSWRQ_SRC0_L2P; break; case ILT_CLIENT_TM: start_reg = PXP2_REG_PSWRQ_TM0_L2P; break; } REG_WR(pdev, start_reg + PDEV_FUNC(pdev)*4, ILT_RANGE((ilt_start + ilt_cli->start), (ilt_start + ilt_cli->end))); } else { switch (ilt_cli->client_num) { case ILT_CLIENT_CDU: start_reg = PXP2_REG_RQ_CDU_FIRST_ILT; end_reg = PXP2_REG_RQ_CDU_LAST_ILT; break; case ILT_CLIENT_QM: start_reg = PXP2_REG_RQ_QM_FIRST_ILT; end_reg = PXP2_REG_RQ_QM_LAST_ILT; break; case ILT_CLIENT_SRC: start_reg = PXP2_REG_RQ_SRC_FIRST_ILT; end_reg = PXP2_REG_RQ_SRC_LAST_ILT; break; case ILT_CLIENT_TM: start_reg = PXP2_REG_RQ_TM_FIRST_ILT; end_reg = PXP2_REG_RQ_TM_LAST_ILT; break; } REG_WR(pdev, start_reg, (ilt_start + ilt_cli->start)); REG_WR(pdev, end_reg, (ilt_start + ilt_cli->end)); } } static void ecore_ilt_client_init_op_ilt(struct _lm_device_t *pdev, struct ecore_ilt *ilt, struct ilt_client_info *ilt_cli, u8 initop) { int i; if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT) return; for (i = ilt_cli->start; i <= ilt_cli->end; i++) ecore_ilt_line_init_op(pdev, ilt, i, initop); /* init/clear the ILT boundries */ ecore_ilt_boundry_init_op(pdev, ilt_cli, ilt->start_line, initop); } static void ecore_ilt_client_init_op(struct _lm_device_t *pdev, struct ilt_client_info *ilt_cli, u8 initop) { struct ecore_ilt *ilt = PDEV_ILT(pdev); ecore_ilt_client_init_op_ilt(pdev, ilt, ilt_cli, initop); } static void ecore_ilt_client_id_init_op(struct _lm_device_t *pdev, int cli_num, u8 initop) { struct ecore_ilt *ilt = PDEV_ILT(pdev); struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; ecore_ilt_client_init_op(pdev, ilt_cli, initop); } static void ecore_ilt_init_op_cnic(struct _lm_device_t *pdev, u8 initop) { if (CONFIGURE_NIC_MODE(pdev)) ecore_ilt_client_id_init_op(pdev, ILT_CLIENT_SRC, initop); ecore_ilt_client_id_init_op(pdev, ILT_CLIENT_TM, initop); } static void ecore_ilt_init_op(struct _lm_device_t *pdev, u8 initop) { ecore_ilt_client_id_init_op(pdev, ILT_CLIENT_CDU, initop); ecore_ilt_client_id_init_op(pdev, ILT_CLIENT_QM, initop); if (CNIC_SUPPORT(pdev) && !CONFIGURE_NIC_MODE(pdev)) ecore_ilt_client_id_init_op(pdev, ILT_CLIENT_SRC, initop); } static void ecore_ilt_init_client_psz(struct _lm_device_t *pdev, int cli_num, u32 psz_reg, u8 initop) { struct ecore_ilt *ilt = PDEV_ILT(pdev); struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT) return; switch (initop) { case INITOP_INIT: /* set in the init-value array */ case INITOP_SET: REG_WR(pdev, psz_reg, ILOG2(ilt_cli->page_size >> 12)); break; case INITOP_CLEAR: break; } } /* * called during init common stage, ilt clients should be initialized * prioir to calling this function */ static void ecore_ilt_init_page_size(struct _lm_device_t *pdev, u8 initop) { ecore_ilt_init_client_psz(pdev, ILT_CLIENT_CDU, PXP2_REG_RQ_CDU_P_SIZE, initop); ecore_ilt_init_client_psz(pdev, ILT_CLIENT_QM, PXP2_REG_RQ_QM_P_SIZE, initop); ecore_ilt_init_client_psz(pdev, ILT_CLIENT_SRC, PXP2_REG_RQ_SRC_P_SIZE, initop); ecore_ilt_init_client_psz(pdev, ILT_CLIENT_TM, PXP2_REG_RQ_TM_P_SIZE, initop); } /**************************************************************************** * QM initializations ****************************************************************************/ #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */ #define QM_INIT_MIN_CID_COUNT 31 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT) /* called during init port stage */ static void ecore_qm_init_cid_count(struct _lm_device_t *pdev, int qm_cid_count, u8 initop) { int port = PDEV_PORT(pdev); if (QM_INIT(qm_cid_count)) { switch (initop) { case INITOP_INIT: /* set in the init-value array */ case INITOP_SET: REG_WR(pdev, QM_REG_CONNNUM_0 + port*4, qm_cid_count/16 - 1); break; case INITOP_CLEAR: break; } } } static void ecore_qm_set_ptr_table(struct _lm_device_t *pdev, int qm_cid_count, u32 base_reg, u32 reg) { int i; u32 wb_data[2] = {0, 0}; for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) { REG_WR(pdev, base_reg + i*4, qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC)); ecore_init_wr_wb(pdev, reg + i*8, wb_data, 2); } } /* called during init common stage */ static void ecore_qm_init_ptr_table(struct _lm_device_t *pdev, int qm_cid_count, u8 initop) { if (!QM_INIT(qm_cid_count)) return; switch (initop) { case INITOP_INIT: /* set in the init-value array */ case INITOP_SET: ecore_qm_set_ptr_table(pdev, qm_cid_count, QM_REG_BASEADDR, QM_REG_PTRTBL); if (CHIP_IS_E1H(pdev)) ecore_qm_set_ptr_table(pdev, qm_cid_count, QM_REG_BASEADDR_EXT_A, QM_REG_PTRTBL_EXT_A); break; case INITOP_CLEAR: break; } } #endif /**************************************************************************** * SRC initializations ****************************************************************************/ #ifdef ECORE_L5 /* called during init func stage */ static void ecore_src_init_t2(struct _lm_device_t *pdev, struct src_ent *t2, lm_address_t t2_mapping, int src_cid_count) { int i; int port = PDEV_PORT(pdev); /* Initialize T2 */ for (i = 0; i < src_cid_count-1; i++) t2[i].next = (u64)(t2_mapping.as_u64 + (i+1)*sizeof(struct src_ent)); /* tell the searcher where the T2 table is */ REG_WR(pdev, SRC_REG_COUNTFREE0 + port*4, src_cid_count); ecore_wr_64(pdev, SRC_REG_FIRSTFREE0 + port*16, U64_LO(t2_mapping.as_u64), U64_HI(t2_mapping.as_u64)); ecore_wr_64(pdev, SRC_REG_LASTFREE0 + port*16, U64_LO((u64)t2_mapping.as_u64 + (src_cid_count-1) * sizeof(struct src_ent)), U64_HI((u64)t2_mapping.as_u64 + (src_cid_count-1) * sizeof(struct src_ent))); } #endif #endif /* ECORE_INIT_OPS_H */