/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "zfs_deleg.h" extern struct modlfs zfs_modlfs; extern void zfs_init(void); extern void zfs_fini(void); ldi_ident_t zfs_li = NULL; dev_info_t *zfs_dip; typedef int zfs_ioc_func_t(zfs_cmd_t *); typedef int zfs_secpolicy_func_t(zfs_cmd_t *, cred_t *); typedef enum { NO_NAME, POOL_NAME, DATASET_NAME } zfs_ioc_namecheck_t; typedef struct zfs_ioc_vec { zfs_ioc_func_t *zvec_func; zfs_secpolicy_func_t *zvec_secpolicy; zfs_ioc_namecheck_t zvec_namecheck; boolean_t zvec_his_log; boolean_t zvec_pool_check; } zfs_ioc_vec_t; /* This array is indexed by zfs_userquota_prop_t */ static const char *userquota_perms[] = { ZFS_DELEG_PERM_USERUSED, ZFS_DELEG_PERM_USERQUOTA, ZFS_DELEG_PERM_GROUPUSED, ZFS_DELEG_PERM_GROUPQUOTA, }; static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc); static int zfs_check_settable(const char *name, nvpair_t *property, cred_t *cr); static int zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errors); static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *, boolean_t *); int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t **); /* _NOTE(PRINTFLIKE(4)) - this is printf-like, but lint is too whiney */ void __dprintf(const char *file, const char *func, int line, const char *fmt, ...) { const char *newfile; char buf[256]; va_list adx; /* * Get rid of annoying "../common/" prefix to filename. */ newfile = strrchr(file, '/'); if (newfile != NULL) { newfile = newfile + 1; /* Get rid of leading / */ } else { newfile = file; } va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); /* * To get this data, use the zfs-dprintf probe as so: * dtrace -q -n 'zfs-dprintf \ * /stringof(arg0) == "dbuf.c"/ \ * {printf("%s: %s", stringof(arg1), stringof(arg3))}' * arg0 = file name * arg1 = function name * arg2 = line number * arg3 = message */ DTRACE_PROBE4(zfs__dprintf, char *, newfile, char *, func, int, line, char *, buf); } static void history_str_free(char *buf) { kmem_free(buf, HIS_MAX_RECORD_LEN); } static char * history_str_get(zfs_cmd_t *zc) { char *buf; if (zc->zc_history == NULL) return (NULL); buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP); if (copyinstr((void *)(uintptr_t)zc->zc_history, buf, HIS_MAX_RECORD_LEN, NULL) != 0) { history_str_free(buf); return (NULL); } buf[HIS_MAX_RECORD_LEN -1] = '\0'; return (buf); } /* * Check to see if the named dataset is currently defined as bootable */ static boolean_t zfs_is_bootfs(const char *name) { objset_t *os; if (dmu_objset_hold(name, FTAG, &os) == 0) { boolean_t ret; ret = (dmu_objset_id(os) == spa_bootfs(dmu_objset_spa(os))); dmu_objset_rele(os, FTAG); return (ret); } return (B_FALSE); } /* * zfs_earlier_version * * Return non-zero if the spa version is less than requested version. */ static int zfs_earlier_version(const char *name, int version) { spa_t *spa; if (spa_open(name, &spa, FTAG) == 0) { if (spa_version(spa) < version) { spa_close(spa, FTAG); return (1); } spa_close(spa, FTAG); } return (0); } /* * zpl_earlier_version * * Return TRUE if the ZPL version is less than requested version. */ static boolean_t zpl_earlier_version(const char *name, int version) { objset_t *os; boolean_t rc = B_TRUE; if (dmu_objset_hold(name, FTAG, &os) == 0) { uint64_t zplversion; if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (B_TRUE); } /* XXX reading from non-owned objset */ if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0) rc = zplversion < version; dmu_objset_rele(os, FTAG); } return (rc); } static void zfs_log_history(zfs_cmd_t *zc) { spa_t *spa; char *buf; if ((buf = history_str_get(zc)) == NULL) return; if (spa_open(zc->zc_name, &spa, FTAG) == 0) { if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY) (void) spa_history_log(spa, buf, LOG_CMD_NORMAL); spa_close(spa, FTAG); } history_str_free(buf); } /* * Policy for top-level read operations (list pools). Requires no privileges, * and can be used in the local zone, as there is no associated dataset. */ /* ARGSUSED */ static int zfs_secpolicy_none(zfs_cmd_t *zc, cred_t *cr) { return (0); } /* * Policy for dataset read operations (list children, get statistics). Requires * no privileges, but must be visible in the local zone. */ /* ARGSUSED */ static int zfs_secpolicy_read(zfs_cmd_t *zc, cred_t *cr) { if (INGLOBALZONE(curproc) || zone_dataset_visible(zc->zc_name, NULL)) return (0); return (ENOENT); } static int zfs_dozonecheck(const char *dataset, cred_t *cr) { uint64_t zoned; int writable = 1; /* * The dataset must be visible by this zone -- check this first * so they don't see EPERM on something they shouldn't know about. */ if (!INGLOBALZONE(curproc) && !zone_dataset_visible(dataset, &writable)) return (ENOENT); if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL)) return (ENOENT); if (INGLOBALZONE(curproc)) { /* * If the fs is zoned, only root can access it from the * global zone. */ if (secpolicy_zfs(cr) && zoned) return (EPERM); } else { /* * If we are in a local zone, the 'zoned' property must be set. */ if (!zoned) return (EPERM); /* must be writable by this zone */ if (!writable) return (EPERM); } return (0); } int zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr) { int error; error = zfs_dozonecheck(name, cr); if (error == 0) { error = secpolicy_zfs(cr); if (error) error = dsl_deleg_access(name, perm, cr); } return (error); } /* * Policy for setting the security label property. * * Returns 0 for success, non-zero for access and other errors. */ static int zfs_set_slabel_policy(const char *name, char *strval, cred_t *cr) { char ds_hexsl[MAXNAMELEN]; bslabel_t ds_sl, new_sl; boolean_t new_default = FALSE; uint64_t zoned; int needed_priv = -1; int error; /* First get the existing dataset label. */ error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1, sizeof (ds_hexsl), &ds_hexsl, NULL); if (error) return (EPERM); if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0) new_default = TRUE; /* The label must be translatable */ if (!new_default && (hexstr_to_label(strval, &new_sl) != 0)) return (EINVAL); /* * In a non-global zone, disallow attempts to set a label that * doesn't match that of the zone; otherwise no other checks * are needed. */ if (!INGLOBALZONE(curproc)) { if (new_default || !blequal(&new_sl, CR_SL(CRED()))) return (EPERM); return (0); } /* * For global-zone datasets (i.e., those whose zoned property is * "off", verify that the specified new label is valid for the * global zone. */ if (dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) return (EPERM); if (!zoned) { if (zfs_check_global_label(name, strval) != 0) return (EPERM); } /* * If the existing dataset label is nondefault, check if the * dataset is mounted (label cannot be changed while mounted). * Get the zfsvfs; if there isn't one, then the dataset isn't * mounted (or isn't a dataset, doesn't exist, ...). */ if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) { objset_t *os; static char *setsl_tag = "setsl_tag"; /* * Try to own the dataset; abort if there is any error, * (e.g., already mounted, in use, or other error). */ error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE, setsl_tag, &os); if (error) return (EPERM); dmu_objset_disown(os, setsl_tag); if (new_default) { needed_priv = PRIV_FILE_DOWNGRADE_SL; goto out_check; } if (hexstr_to_label(strval, &new_sl) != 0) return (EPERM); if (blstrictdom(&ds_sl, &new_sl)) needed_priv = PRIV_FILE_DOWNGRADE_SL; else if (blstrictdom(&new_sl, &ds_sl)) needed_priv = PRIV_FILE_UPGRADE_SL; } else { /* dataset currently has a default label */ if (!new_default) needed_priv = PRIV_FILE_UPGRADE_SL; } out_check: if (needed_priv != -1) return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL)); return (0); } static int zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval, cred_t *cr) { char *strval; /* * Check permissions for special properties. */ switch (prop) { case ZFS_PROP_ZONED: /* * Disallow setting of 'zoned' from within a local zone. */ if (!INGLOBALZONE(curproc)) return (EPERM); break; case ZFS_PROP_QUOTA: if (!INGLOBALZONE(curproc)) { uint64_t zoned; char setpoint[MAXNAMELEN]; /* * Unprivileged users are allowed to modify the * quota on things *under* (ie. contained by) * the thing they own. */ if (dsl_prop_get_integer(dsname, "zoned", &zoned, setpoint)) return (EPERM); if (!zoned || strlen(dsname) <= strlen(setpoint)) return (EPERM); } break; case ZFS_PROP_MLSLABEL: if (!is_system_labeled()) return (EPERM); if (nvpair_value_string(propval, &strval) == 0) { int err; err = zfs_set_slabel_policy(dsname, strval, CRED()); if (err != 0) return (err); } break; } return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr)); } int zfs_secpolicy_fsacl(zfs_cmd_t *zc, cred_t *cr) { int error; error = zfs_dozonecheck(zc->zc_name, cr); if (error) return (error); /* * permission to set permissions will be evaluated later in * dsl_deleg_can_allow() */ return (0); } int zfs_secpolicy_rollback(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_ROLLBACK, cr)); } int zfs_secpolicy_send(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_SEND, cr)); } static int zfs_secpolicy_deleg_share(zfs_cmd_t *zc, cred_t *cr) { vnode_t *vp; int error; if ((error = lookupname(zc->zc_value, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp)) != 0) return (error); /* Now make sure mntpnt and dataset are ZFS */ if (vp->v_vfsp->vfs_fstype != zfsfstype || (strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource), zc->zc_name) != 0)) { VN_RELE(vp); return (EPERM); } VN_RELE(vp); return (dsl_deleg_access(zc->zc_name, ZFS_DELEG_PERM_SHARE, cr)); } int zfs_secpolicy_share(zfs_cmd_t *zc, cred_t *cr) { if (!INGLOBALZONE(curproc)) return (EPERM); if (secpolicy_nfs(cr) == 0) { return (0); } else { return (zfs_secpolicy_deleg_share(zc, cr)); } } int zfs_secpolicy_smb_acl(zfs_cmd_t *zc, cred_t *cr) { if (!INGLOBALZONE(curproc)) return (EPERM); if (secpolicy_smb(cr) == 0) { return (0); } else { return (zfs_secpolicy_deleg_share(zc, cr)); } } static int zfs_get_parent(const char *datasetname, char *parent, int parentsize) { char *cp; /* * Remove the @bla or /bla from the end of the name to get the parent. */ (void) strncpy(parent, datasetname, parentsize); cp = strrchr(parent, '@'); if (cp != NULL) { cp[0] = '\0'; } else { cp = strrchr(parent, '/'); if (cp == NULL) return (ENOENT); cp[0] = '\0'; } return (0); } int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr)); } static int zfs_secpolicy_destroy(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_destroy_perms(zc->zc_name, cr)); } /* * Destroying snapshots with delegated permissions requires * descendent mount and destroy permissions. * Reassemble the full filesystem@snap name so dsl_deleg_access() * can do the correct permission check. * * Since this routine is used when doing a recursive destroy of snapshots * and destroying snapshots requires descendent permissions, a successfull * check of the top level snapshot applies to snapshots of all descendent * datasets as well. */ static int zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, cred_t *cr) { int error; char *dsname; dsname = kmem_asprintf("%s@%s", zc->zc_name, zc->zc_value); error = zfs_secpolicy_destroy_perms(dsname, cr); strfree(dsname); return (error); } int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) { char parentname[MAXNAMELEN]; int error; if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_RENAME, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); if ((error = zfs_get_parent(to, parentname, sizeof (parentname))) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (error); } static int zfs_secpolicy_rename(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr)); } static int zfs_secpolicy_promote(zfs_cmd_t *zc, cred_t *cr) { char parentname[MAXNAMELEN]; objset_t *clone; int error; error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_PROMOTE, cr); if (error) return (error); error = dmu_objset_hold(zc->zc_name, FTAG, &clone); if (error == 0) { dsl_dataset_t *pclone = NULL; dsl_dir_t *dd; dd = clone->os_dsl_dataset->ds_dir; rw_enter(&dd->dd_pool->dp_config_rwlock, RW_READER); error = dsl_dataset_hold_obj(dd->dd_pool, dd->dd_phys->dd_origin_obj, FTAG, &pclone); rw_exit(&dd->dd_pool->dp_config_rwlock); if (error) { dmu_objset_rele(clone, FTAG); return (error); } error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr); dsl_dataset_name(pclone, parentname); dmu_objset_rele(clone, FTAG); dsl_dataset_rele(pclone, FTAG); if (error == 0) error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_PROMOTE, cr); } return (error); } static int zfs_secpolicy_receive(zfs_cmd_t *zc, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_RECEIVE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_CREATE, cr)); } int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) { return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_SNAPSHOT, cr)); } static int zfs_secpolicy_snapshot(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_snapshot_perms(zc->zc_name, cr)); } static int zfs_secpolicy_create(zfs_cmd_t *zc, cred_t *cr) { char parentname[MAXNAMELEN]; int error; if ((error = zfs_get_parent(zc->zc_name, parentname, sizeof (parentname))) != 0) return (error); if (zc->zc_value[0] != '\0') { if ((error = zfs_secpolicy_write_perms(zc->zc_value, ZFS_DELEG_PERM_CLONE, cr)) != 0) return (error); } if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr); return (error); } static int zfs_secpolicy_umount(zfs_cmd_t *zc, cred_t *cr) { int error; error = secpolicy_fs_unmount(cr, NULL); if (error) { error = dsl_deleg_access(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr); } return (error); } /* * Policy for pool operations - create/destroy pools, add vdevs, etc. Requires * SYS_CONFIG privilege, which is not available in a local zone. */ /* ARGSUSED */ static int zfs_secpolicy_config(zfs_cmd_t *zc, cred_t *cr) { if (secpolicy_sys_config(cr, B_FALSE) != 0) return (EPERM); return (0); } /* * Policy for fault injection. Requires all privileges. */ /* ARGSUSED */ static int zfs_secpolicy_inject(zfs_cmd_t *zc, cred_t *cr) { return (secpolicy_zinject(cr)); } static int zfs_secpolicy_inherit(zfs_cmd_t *zc, cred_t *cr) { zfs_prop_t prop = zfs_name_to_prop(zc->zc_value); if (prop == ZPROP_INVAL) { if (!zfs_prop_user(zc->zc_value)) return (EINVAL); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_USERPROP, cr)); } else { return (zfs_secpolicy_setprop(zc->zc_name, prop, NULL, cr)); } } static int zfs_secpolicy_userspace_one(zfs_cmd_t *zc, cred_t *cr) { int err = zfs_secpolicy_read(zc, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (EINVAL); if (zc->zc_value[0] == 0) { /* * They are asking about a posix uid/gid. If it's * themself, allow it. */ if (zc->zc_objset_type == ZFS_PROP_USERUSED || zc->zc_objset_type == ZFS_PROP_USERQUOTA) { if (zc->zc_guid == crgetuid(cr)) return (0); } else { if (groupmember(zc->zc_guid, cr)) return (0); } } return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } static int zfs_secpolicy_userspace_many(zfs_cmd_t *zc, cred_t *cr) { int err = zfs_secpolicy_read(zc, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (EINVAL); return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } static int zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION, NULL, cr)); } static int zfs_secpolicy_hold(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_HOLD, cr)); } static int zfs_secpolicy_release(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_RELEASE, cr)); } /* * Returns the nvlist as specified by the user in the zfs_cmd_t. */ static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp) { char *packed; int error; nvlist_t *list = NULL; /* * Read in and unpack the user-supplied nvlist. */ if (size == 0) return (EINVAL); packed = kmem_alloc(size, KM_SLEEP); if ((error = ddi_copyin((void *)(uintptr_t)nvl, packed, size, iflag)) != 0) { kmem_free(packed, size); return (error); } if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) { kmem_free(packed, size); return (error); } kmem_free(packed, size); *nvp = list; return (0); } static int fit_error_list(zfs_cmd_t *zc, nvlist_t **errors) { size_t size; VERIFY(nvlist_size(*errors, &size, NV_ENCODE_NATIVE) == 0); if (size > zc->zc_nvlist_dst_size) { nvpair_t *more_errors; int n = 0; if (zc->zc_nvlist_dst_size < 1024) return (ENOMEM); VERIFY(nvlist_add_int32(*errors, ZPROP_N_MORE_ERRORS, 0) == 0); more_errors = nvlist_prev_nvpair(*errors, NULL); do { nvpair_t *pair = nvlist_prev_nvpair(*errors, more_errors); VERIFY(nvlist_remove_nvpair(*errors, pair) == 0); n++; VERIFY(nvlist_size(*errors, &size, NV_ENCODE_NATIVE) == 0); } while (size > zc->zc_nvlist_dst_size); VERIFY(nvlist_remove_nvpair(*errors, more_errors) == 0); VERIFY(nvlist_add_int32(*errors, ZPROP_N_MORE_ERRORS, n) == 0); ASSERT(nvlist_size(*errors, &size, NV_ENCODE_NATIVE) == 0); ASSERT(size <= zc->zc_nvlist_dst_size); } return (0); } static int put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl) { char *packed = NULL; int error = 0; size_t size; VERIFY(nvlist_size(nvl, &size, NV_ENCODE_NATIVE) == 0); if (size > zc->zc_nvlist_dst_size) { error = ENOMEM; } else { packed = kmem_alloc(size, KM_SLEEP); VERIFY(nvlist_pack(nvl, &packed, &size, NV_ENCODE_NATIVE, KM_SLEEP) == 0); if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst, size, zc->zc_iflags) != 0) error = EFAULT; kmem_free(packed, size); } zc->zc_nvlist_dst_size = size; return (error); } static int getzfsvfs(const char *dsname, zfsvfs_t **zfvp) { objset_t *os; int error; error = dmu_objset_hold(dsname, FTAG, &os); if (error) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (EINVAL); } mutex_enter(&os->os_user_ptr_lock); *zfvp = dmu_objset_get_user(os); if (*zfvp) { VFS_HOLD((*zfvp)->z_vfs); } else { error = ESRCH; } mutex_exit(&os->os_user_ptr_lock); dmu_objset_rele(os, FTAG); return (error); } /* * Find a zfsvfs_t for a mounted filesystem, or create our own, in which * case its z_vfs will be NULL, and it will be opened as the owner. */ static int zfsvfs_hold(const char *name, void *tag, zfsvfs_t **zfvp) { int error = 0; if (getzfsvfs(name, zfvp) != 0) error = zfsvfs_create(name, zfvp); if (error == 0) { rrw_enter(&(*zfvp)->z_teardown_lock, RW_READER, tag); if ((*zfvp)->z_unmounted) { /* * XXX we could probably try again, since the unmounting * thread should be just about to disassociate the * objset from the zfsvfs. */ rrw_exit(&(*zfvp)->z_teardown_lock, tag); return (EBUSY); } } return (error); } static void zfsvfs_rele(zfsvfs_t *zfsvfs, void *tag) { rrw_exit(&zfsvfs->z_teardown_lock, tag); if (zfsvfs->z_vfs) { VFS_RELE(zfsvfs->z_vfs); } else { dmu_objset_disown(zfsvfs->z_os, zfsvfs); zfsvfs_free(zfsvfs); } } static int zfs_ioc_pool_create(zfs_cmd_t *zc) { int error; nvlist_t *config, *props = NULL; nvlist_t *rootprops = NULL; nvlist_t *zplprops = NULL; char *buf; if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (props) { nvlist_t *nvl = NULL; uint64_t version = SPA_VERSION; (void) nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version); if (version < SPA_VERSION_INITIAL || version > SPA_VERSION) { error = EINVAL; goto pool_props_bad; } (void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl); if (nvl) { error = nvlist_dup(nvl, &rootprops, KM_SLEEP); if (error != 0) { nvlist_free(config); nvlist_free(props); return (error); } (void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS); } VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops_root(version, rootprops, zplprops, NULL); if (error) goto pool_props_bad; } buf = history_str_get(zc); error = spa_create(zc->zc_name, config, props, buf, zplprops); /* * Set the remaining root properties */ if (!error && (error = zfs_set_prop_nvlist(zc->zc_name, ZPROP_SRC_LOCAL, rootprops, NULL)) != 0) (void) spa_destroy(zc->zc_name); if (buf != NULL) history_str_free(buf); pool_props_bad: nvlist_free(rootprops); nvlist_free(zplprops); nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_pool_destroy(zfs_cmd_t *zc) { int error; zfs_log_history(zc); error = spa_destroy(zc->zc_name); if (error == 0) zvol_remove_minors(zc->zc_name); return (error); } static int zfs_ioc_pool_import(zfs_cmd_t *zc) { nvlist_t *config, *props = NULL; uint64_t guid; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) != 0) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || guid != zc->zc_guid) error = EINVAL; else if (zc->zc_cookie) error = spa_import_verbatim(zc->zc_name, config, props); else error = spa_import(zc->zc_name, config, props); if (zc->zc_nvlist_dst != 0) (void) put_nvlist(zc, config); nvlist_free(config); if (props) nvlist_free(props); return (error); } static int zfs_ioc_pool_export(zfs_cmd_t *zc) { int error; boolean_t force = (boolean_t)zc->zc_cookie; boolean_t hardforce = (boolean_t)zc->zc_guid; zfs_log_history(zc); error = spa_export(zc->zc_name, NULL, force, hardforce); if (error == 0) zvol_remove_minors(zc->zc_name); return (error); } static int zfs_ioc_pool_configs(zfs_cmd_t *zc) { nvlist_t *configs; int error; if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL) return (EEXIST); error = put_nvlist(zc, configs); nvlist_free(configs); return (error); } static int zfs_ioc_pool_stats(zfs_cmd_t *zc) { nvlist_t *config; int error; int ret = 0; error = spa_get_stats(zc->zc_name, &config, zc->zc_value, sizeof (zc->zc_value)); if (config != NULL) { ret = put_nvlist(zc, config); nvlist_free(config); /* * The config may be present even if 'error' is non-zero. * In this case we return success, and preserve the real errno * in 'zc_cookie'. */ zc->zc_cookie = error; } else { ret = error; } return (ret); } /* * Try to import the given pool, returning pool stats as appropriate so that * user land knows which devices are available and overall pool health. */ static int zfs_ioc_pool_tryimport(zfs_cmd_t *zc) { nvlist_t *tryconfig, *config; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &tryconfig)) != 0) return (error); config = spa_tryimport(tryconfig); nvlist_free(tryconfig); if (config == NULL) return (EINVAL); error = put_nvlist(zc, config); nvlist_free(config); return (error); } static int zfs_ioc_pool_scrub(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_scrub(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_freeze(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { spa_freeze(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_pool_upgrade(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (zc->zc_cookie < spa_version(spa) || zc->zc_cookie > SPA_VERSION) { spa_close(spa, FTAG); return (EINVAL); } spa_upgrade(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_history(zfs_cmd_t *zc) { spa_t *spa; char *hist_buf; uint64_t size; int error; if ((size = zc->zc_history_len) == 0) return (EINVAL); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (ENOTSUP); } hist_buf = kmem_alloc(size, KM_SLEEP); if ((error = spa_history_get(spa, &zc->zc_history_offset, &zc->zc_history_len, hist_buf)) == 0) { error = ddi_copyout(hist_buf, (void *)(uintptr_t)zc->zc_history, zc->zc_history_len, zc->zc_iflags); } spa_close(spa, FTAG); kmem_free(hist_buf, size); return (error); } static int zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc) { int error; if (error = dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value)) return (error); return (0); } /* * inputs: * zc_name name of filesystem * zc_obj object to find * * outputs: * zc_value name of object */ static int zfs_ioc_obj_to_path(zfs_cmd_t *zc) { objset_t *os; int error; /* XXX reading from objset not owned */ if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)) != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (EINVAL); } error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_rele(os, FTAG); return (error); } static int zfs_ioc_vdev_add(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *config, **l2cache, **spares; uint_t nl2cache = 0, nspares = 0; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config); (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache); (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_SPARES, &spares, &nspares); /* * A root pool with concatenated devices is not supported. * Thus, can not add a device to a root pool. * * Intent log device can not be added to a rootpool because * during mountroot, zil is replayed, a seperated log device * can not be accessed during the mountroot time. * * l2cache and spare devices are ok to be added to a rootpool. */ if (spa_bootfs(spa) != 0 && nl2cache == 0 && nspares == 0) { nvlist_free(config); spa_close(spa, FTAG); return (EDOM); } if (error == 0) { error = spa_vdev_add(spa, config); nvlist_free(config); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_remove(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_set_state(zfs_cmd_t *zc) { spa_t *spa; int error; vdev_state_t newstate = VDEV_STATE_UNKNOWN; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); switch (zc->zc_cookie) { case VDEV_STATE_ONLINE: error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate); break; case VDEV_STATE_OFFLINE: error = vdev_offline(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_FAULTED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_fault(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_DEGRADED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj); break; default: error = EINVAL; } zc->zc_cookie = newstate; spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_attach(zfs_cmd_t *zc) { spa_t *spa; int replacing = zc->zc_cookie; nvlist_t *config; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) == 0) { error = spa_vdev_attach(spa, zc->zc_guid, config, replacing); nvlist_free(config); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_detach(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_split(zfs_cmd_t *zc) { spa_t *spa; nvlist_t *config, *props = NULL; int error; boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) { spa_close(spa, FTAG); return (error); } if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { spa_close(spa, FTAG); nvlist_free(config); return (error); } error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp); spa_close(spa, FTAG); nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_vdev_setpath(zfs_cmd_t *zc) { spa_t *spa; char *path = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setpath(spa, guid, path); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_setfru(zfs_cmd_t *zc) { spa_t *spa; char *fru = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setfru(spa, guid, fru); spa_close(spa, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_objset_stats(zfs_cmd_t *zc) { objset_t *os = NULL; int error; nvlist_t *nv; if (error = dmu_objset_hold(zc->zc_name, FTAG, &os)) return (error); dmu_objset_fast_stat(os, &zc->zc_objset_stats); if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_all(os, &nv)) == 0) { dmu_objset_stats(os, nv); /* * NB: zvol_get_stats() will read the objset contents, * which we aren't supposed to do with a * DS_MODE_USER hold, because it could be * inconsistent. So this is a bit of a workaround... * XXX reading with out owning */ if (!zc->zc_objset_stats.dds_inconsistent) { if (dmu_objset_type(os) == DMU_OST_ZVOL) VERIFY(zvol_get_stats(os, nv) == 0); } error = put_nvlist(zc, nv); nvlist_free(nv); } dmu_objset_rele(os, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_nvlist_dst received property nvlist * zc_nvlist_dst_size size of received property nvlist * * Gets received properties (distinct from local properties on or after * SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from * local property values. */ static int zfs_ioc_objset_recvd_props(zfs_cmd_t *zc) { objset_t *os = NULL; int error; nvlist_t *nv; if (error = dmu_objset_hold(zc->zc_name, FTAG, &os)) return (error); /* * Without this check, we would return local property values if the * caller has not already received properties on or after * SPA_VERSION_RECVD_PROPS. */ if (!dsl_prop_get_hasrecvd(os)) { dmu_objset_rele(os, FTAG); return (ENOTSUP); } if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_received(os, &nv)) == 0) { error = put_nvlist(zc, nv); nvlist_free(nv); } dmu_objset_rele(os, FTAG); return (error); } static int nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop) { uint64_t value; int error; /* * zfs_get_zplprop() will either find a value or give us * the default value (if there is one). */ if ((error = zfs_get_zplprop(os, prop, &value)) != 0) return (error); VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0); return (0); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for zpl property nvlist * * outputs: * zc_nvlist_dst zpl property nvlist * zc_nvlist_dst_size size of zpl property nvlist */ static int zfs_ioc_objset_zplprops(zfs_cmd_t *zc) { objset_t *os; int err; /* XXX reading without owning */ if (err = dmu_objset_hold(zc->zc_name, FTAG, &os)) return (err); dmu_objset_fast_stat(os, &zc->zc_objset_stats); /* * NB: nvl_add_zplprop() will read the objset contents, * which we aren't supposed to do with a DS_MODE_USER * hold, because it could be inconsistent. */ if (zc->zc_nvlist_dst != NULL && !zc->zc_objset_stats.dds_inconsistent && dmu_objset_type(os) == DMU_OST_ZFS) { nvlist_t *nv; VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0) err = put_nvlist(zc, nv); nvlist_free(nv); } else { err = ENOENT; } dmu_objset_rele(os, FTAG); return (err); } static boolean_t dataset_name_hidden(const char *name) { /* * Skip over datasets that are not visible in this zone, * internal datasets (which have a $ in their name), and * temporary datasets (which have a % in their name). */ if (strchr(name, '$') != NULL) return (B_TRUE); if (strchr(name, '%') != NULL) return (B_TRUE); if (!INGLOBALZONE(curproc) && !zone_dataset_visible(name, NULL)) return (B_TRUE); return (B_FALSE); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_name name of next filesystem * zc_cookie zap cursor * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_dataset_list_next(zfs_cmd_t *zc) { objset_t *os; int error; char *p; size_t orig_len = strlen(zc->zc_name); top: if (error = dmu_objset_hold(zc->zc_name, FTAG, &os)) { if (error == ENOENT) error = ESRCH; return (error); } p = strrchr(zc->zc_name, '/'); if (p == NULL || p[1] != '\0') (void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name)); p = zc->zc_name + strlen(zc->zc_name); /* * Pre-fetch the datasets. dmu_objset_prefetch() always returns 0 * but is not declared void because its called by dmu_objset_find(). */ if (zc->zc_cookie == 0) { uint64_t cookie = 0; int len = sizeof (zc->zc_name) - (p - zc->zc_name); while (dmu_dir_list_next(os, len, p, NULL, &cookie) == 0) (void) dmu_objset_prefetch(p, NULL); } do { error = dmu_dir_list_next(os, sizeof (zc->zc_name) - (p - zc->zc_name), p, NULL, &zc->zc_cookie); if (error == ENOENT) error = ESRCH; } while (error == 0 && dataset_name_hidden(zc->zc_name) && !(zc->zc_iflags & FKIOCTL)); dmu_objset_rele(os, FTAG); /* * If it's an internal dataset (ie. with a '$' in its name), * don't try to get stats for it, otherwise we'll return ENOENT. */ if (error == 0 && strchr(zc->zc_name, '$') == NULL) { error = zfs_ioc_objset_stats(zc); /* fill in the stats */ if (error == ENOENT) { /* We lost a race with destroy, get the next one. */ zc->zc_name[orig_len] = '\0'; goto top; } } return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_name name of next snapshot * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_snapshot_list_next(zfs_cmd_t *zc) { objset_t *os; int error; top: if (zc->zc_cookie == 0) (void) dmu_objset_find(zc->zc_name, dmu_objset_prefetch, NULL, DS_FIND_SNAPSHOTS); error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error) return (error == ENOENT ? ESRCH : error); /* * A dataset name of maximum length cannot have any snapshots, * so exit immediately. */ if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= MAXNAMELEN) { dmu_objset_rele(os, FTAG); return (ESRCH); } error = dmu_snapshot_list_next(os, sizeof (zc->zc_name) - strlen(zc->zc_name), zc->zc_name + strlen(zc->zc_name), NULL, &zc->zc_cookie, NULL); dmu_objset_rele(os, FTAG); if (error == 0) { error = zfs_ioc_objset_stats(zc); /* fill in the stats */ if (error == ENOENT) { /* We lost a race with destroy, get the next one. */ *strchr(zc->zc_name, '@') = '\0'; goto top; } } else if (error == ENOENT) { error = ESRCH; } /* if we failed, undo the @ that we tacked on to zc_name */ if (error) *strchr(zc->zc_name, '@') = '\0'; return (error); } static int zfs_prop_set_userquota(const char *dsname, nvpair_t *pair) { const char *propname = nvpair_name(pair); uint64_t *valary; unsigned int vallen; const char *domain; zfs_userquota_prop_t type; uint64_t rid; uint64_t quota; zfsvfs_t *zfsvfs; int err; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } VERIFY(nvpair_value_uint64_array(pair, &valary, &vallen) == 0); VERIFY(vallen == 3); type = valary[0]; rid = valary[1]; quota = valary[2]; /* * The propname is encoded as * userquota@-. */ domain = strchr(propname, '-') + 1; err = zfsvfs_hold(dsname, FTAG, &zfsvfs); if (err == 0) { err = zfs_set_userquota(zfsvfs, type, domain, rid, quota); zfsvfs_rele(zfsvfs, FTAG); } return (err); } /* * If the named property is one that has a special function to set its value, * return 0 on success and a positive error code on failure; otherwise if it is * not one of the special properties handled by this function, return -1. * * XXX: It would be better for callers of the properety interface if we handled * these special cases in dsl_prop.c (in the dsl layer). */ static int zfs_prop_set_special(const char *dsname, zprop_source_t source, nvpair_t *pair) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval; int err; if (prop == ZPROP_INVAL) { if (zfs_prop_userquota(propname)) return (zfs_prop_set_userquota(dsname, pair)); return (-1); } if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } if (zfs_prop_get_type(prop) == PROP_TYPE_STRING) return (-1); VERIFY(0 == nvpair_value_uint64(pair, &intval)); switch (prop) { case ZFS_PROP_QUOTA: err = dsl_dir_set_quota(dsname, source, intval); break; case ZFS_PROP_REFQUOTA: err = dsl_dataset_set_quota(dsname, source, intval); break; case ZFS_PROP_RESERVATION: err = dsl_dir_set_reservation(dsname, source, intval); break; case ZFS_PROP_REFRESERVATION: err = dsl_dataset_set_reservation(dsname, source, intval); break; case ZFS_PROP_VOLSIZE: err = zvol_set_volsize(dsname, ddi_driver_major(zfs_dip), intval); break; case ZFS_PROP_VERSION: { zfsvfs_t *zfsvfs; uint64_t maxzplver = ZPL_VERSION; if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs)) != 0) break; if (zfs_earlier_version(dsname, SPA_VERSION_USERSPACE)) maxzplver = ZPL_VERSION_USERSPACE - 1; if (zfs_earlier_version(dsname, SPA_VERSION_FUID)) maxzplver = ZPL_VERSION_FUID - 1; if (intval > maxzplver) { zfsvfs_rele(zfsvfs, FTAG); return (ENOTSUP); } err = zfs_set_version(zfsvfs, intval); zfsvfs_rele(zfsvfs, FTAG); if (err == 0 && intval >= ZPL_VERSION_USERSPACE) { zfs_cmd_t *zc; zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strcpy(zc->zc_name, dsname); (void) zfs_ioc_userspace_upgrade(zc); kmem_free(zc, sizeof (zfs_cmd_t)); } break; } default: err = -1; } return (err); } /* * This function is best effort. If it fails to set any of the given properties, * it continues to set as many as it can and returns the first error * encountered. If the caller provides a non-NULL errlist, it also gives the * complete list of names of all the properties it failed to set along with the * corresponding error numbers. The caller is responsible for freeing the * returned errlist. * * If every property is set successfully, zero is returned and the list pointed * at by errlist is NULL. */ int zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl, nvlist_t **errlist) { nvpair_t *pair; nvpair_t *propval; int rv = 0; uint64_t intval; char *strval; nvlist_t *genericnvl; nvlist_t *errors; nvlist_t *retrynvl; VERIFY(nvlist_alloc(&genericnvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_alloc(&retrynvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); retry: pair = NULL; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); int err = 0; /* decode the property value */ propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &propval) == 0); } /* Validate value type */ if (prop == ZPROP_INVAL) { if (zfs_prop_user(propname)) { if (nvpair_type(propval) != DATA_TYPE_STRING) err = EINVAL; } else if (zfs_prop_userquota(propname)) { if (nvpair_type(propval) != DATA_TYPE_UINT64_ARRAY) err = EINVAL; } } else { if (nvpair_type(propval) == DATA_TYPE_STRING) { if (zfs_prop_get_type(prop) != PROP_TYPE_STRING) err = EINVAL; } else if (nvpair_type(propval) == DATA_TYPE_UINT64) { const char *unused; VERIFY(nvpair_value_uint64(propval, &intval) == 0); switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: break; case PROP_TYPE_STRING: err = EINVAL; break; case PROP_TYPE_INDEX: if (zfs_prop_index_to_string(prop, intval, &unused) != 0) err = EINVAL; break; default: cmn_err(CE_PANIC, "unknown property type"); } } else { err = EINVAL; } } /* Validate permissions */ if (err == 0) err = zfs_check_settable(dsname, pair, CRED()); if (err == 0) { err = zfs_prop_set_special(dsname, source, pair); if (err == -1) { /* * For better performance we build up a list of * properties to set in a single transaction. */ err = nvlist_add_nvpair(genericnvl, pair); } else if (err != 0 && nvl != retrynvl) { /* * This may be a spurious error caused by * receiving quota and reservation out of order. * Try again in a second pass. */ err = nvlist_add_nvpair(retrynvl, pair); } } if (err != 0) VERIFY(nvlist_add_int32(errors, propname, err) == 0); } if (nvl != retrynvl && !nvlist_empty(retrynvl)) { nvl = retrynvl; goto retry; } if (!nvlist_empty(genericnvl) && dsl_props_set(dsname, source, genericnvl) != 0) { /* * If this fails, we still want to set as many properties as we * can, so try setting them individually. */ pair = NULL; while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) { const char *propname = nvpair_name(pair); int err = 0; propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &propval) == 0); } if (nvpair_type(propval) == DATA_TYPE_STRING) { VERIFY(nvpair_value_string(propval, &strval) == 0); err = dsl_prop_set(dsname, propname, source, 1, strlen(strval) + 1, strval); } else { VERIFY(nvpair_value_uint64(propval, &intval) == 0); err = dsl_prop_set(dsname, propname, source, 8, 1, &intval); } if (err != 0) { VERIFY(nvlist_add_int32(errors, propname, err) == 0); } } } nvlist_free(genericnvl); nvlist_free(retrynvl); if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) { nvlist_free(errors); errors = NULL; } else { VERIFY(nvpair_value_int32(pair, &rv) == 0); } if (errlist == NULL) nvlist_free(errors); else *errlist = errors; return (rv); } /* * Check that all the properties are valid user properties. */ static int zfs_check_userprops(char *fsname, nvlist_t *nvl) { nvpair_t *pair = NULL; int error = 0; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); char *valstr; if (!zfs_prop_user(propname) || nvpair_type(pair) != DATA_TYPE_STRING) return (EINVAL); if (error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_USERPROP, CRED())) return (error); if (strlen(propname) >= ZAP_MAXNAMELEN) return (ENAMETOOLONG); VERIFY(nvpair_value_string(pair, &valstr) == 0); if (strlen(valstr) >= ZAP_MAXVALUELEN) return (E2BIG); } return (0); } static void props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops) { nvpair_t *pair; VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); pair = NULL; while ((pair = nvlist_next_nvpair(props, pair)) != NULL) { if (nvlist_exists(skipped, nvpair_name(pair))) continue; VERIFY(nvlist_add_nvpair(*newprops, pair) == 0); } } static int clear_received_props(objset_t *os, const char *fs, nvlist_t *props, nvlist_t *skipped) { int err = 0; nvlist_t *cleared_props = NULL; props_skip(props, skipped, &cleared_props); if (!nvlist_empty(cleared_props)) { /* * Acts on local properties until the dataset has received * properties at least once on or after SPA_VERSION_RECVD_PROPS. */ zprop_source_t flags = (ZPROP_SRC_NONE | (dsl_prop_get_hasrecvd(os) ? ZPROP_SRC_RECEIVED : 0)); err = zfs_set_prop_nvlist(fs, flags, cleared_props, NULL); } nvlist_free(cleared_props); return (err); } /* * inputs: * zc_name name of filesystem * zc_value name of property to set * zc_nvlist_src{_size} nvlist of properties to apply * zc_cookie received properties flag * * outputs: * zc_nvlist_dst{_size} error for each unapplied received property */ static int zfs_ioc_set_prop(zfs_cmd_t *zc) { nvlist_t *nvl; boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_RECEIVED : ZPROP_SRC_LOCAL); nvlist_t *errors = NULL; int error; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvl)) != 0) return (error); if (received) { nvlist_t *origprops; objset_t *os; if (dmu_objset_hold(zc->zc_name, FTAG, &os) == 0) { if (dsl_prop_get_received(os, &origprops) == 0) { (void) clear_received_props(os, zc->zc_name, origprops, nvl); nvlist_free(origprops); } dsl_prop_set_hasrecvd(os); dmu_objset_rele(os, FTAG); } } error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, &errors); if (zc->zc_nvlist_dst != NULL && errors != NULL) { (void) put_nvlist(zc, errors); } nvlist_free(errors); nvlist_free(nvl); return (error); } /* * inputs: * zc_name name of filesystem * zc_value name of property to inherit * zc_cookie revert to received value if TRUE * * outputs: none */ static int zfs_ioc_inherit_prop(zfs_cmd_t *zc) { const char *propname = zc->zc_value; zfs_prop_t prop = zfs_name_to_prop(propname); boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_NONE /* revert to received value, if any */ : ZPROP_SRC_INHERITED); /* explicitly inherit */ if (received) { nvlist_t *dummy; nvpair_t *pair; zprop_type_t type; int err; /* * zfs_prop_set_special() expects properties in the form of an * nvpair with type info. */ if (prop == ZPROP_INVAL) { if (!zfs_prop_user(propname)) return (EINVAL); type = PROP_TYPE_STRING; } else if (prop == ZFS_PROP_VOLSIZE || prop == ZFS_PROP_VERSION) { return (EINVAL); } else { type = zfs_prop_get_type(prop); } VERIFY(nvlist_alloc(&dummy, NV_UNIQUE_NAME, KM_SLEEP) == 0); switch (type) { case PROP_TYPE_STRING: VERIFY(0 == nvlist_add_string(dummy, propname, "")); break; case PROP_TYPE_NUMBER: case PROP_TYPE_INDEX: VERIFY(0 == nvlist_add_uint64(dummy, propname, 0)); break; default: nvlist_free(dummy); return (EINVAL); } pair = nvlist_next_nvpair(dummy, NULL); err = zfs_prop_set_special(zc->zc_name, source, pair); nvlist_free(dummy); if (err != -1) return (err); /* special property already handled */ } else { /* * Only check this in the non-received case. We want to allow * 'inherit -S' to revert non-inheritable properties like quota * and reservation to the received or default values even though * they are not considered inheritable. */ if (prop != ZPROP_INVAL && !zfs_prop_inheritable(prop)) return (EINVAL); } /* the property name has been validated by zfs_secpolicy_inherit() */ return (dsl_prop_set(zc->zc_name, zc->zc_value, source, 0, 0, NULL)); } static int zfs_ioc_pool_set_props(zfs_cmd_t *zc) { nvlist_t *props; spa_t *spa; int error; nvpair_t *pair; if (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props)) return (error); /* * If the only property is the configfile, then just do a spa_lookup() * to handle the faulted case. */ pair = nvlist_next_nvpair(props, NULL); if (pair != NULL && strcmp(nvpair_name(pair), zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 && nvlist_next_nvpair(props, pair) == NULL) { mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) { spa_configfile_set(spa, props, B_FALSE); spa_config_sync(spa, B_FALSE, B_TRUE); } mutex_exit(&spa_namespace_lock); if (spa != NULL) { nvlist_free(props); return (0); } } if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { nvlist_free(props); return (error); } error = spa_prop_set(spa, props); nvlist_free(props); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_props(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *nvp = NULL; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { /* * If the pool is faulted, there may be properties we can still * get (such as altroot and cachefile), so attempt to get them * anyway. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) error = spa_prop_get(spa, &nvp); mutex_exit(&spa_namespace_lock); } else { error = spa_prop_get(spa, &nvp); spa_close(spa, FTAG); } if (error == 0 && zc->zc_nvlist_dst != NULL) error = put_nvlist(zc, nvp); else error = EFAULT; nvlist_free(nvp); return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_src{_size} nvlist of delegated permissions * zc_perm_action allow/unallow flag * * outputs: none */ static int zfs_ioc_set_fsacl(zfs_cmd_t *zc) { int error; nvlist_t *fsaclnv = NULL; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &fsaclnv)) != 0) return (error); /* * Verify nvlist is constructed correctly */ if ((error = zfs_deleg_verify_nvlist(fsaclnv)) != 0) { nvlist_free(fsaclnv); return (EINVAL); } /* * If we don't have PRIV_SYS_MOUNT, then validate * that user is allowed to hand out each permission in * the nvlist(s) */ error = secpolicy_zfs(CRED()); if (error) { if (zc->zc_perm_action == B_FALSE) { error = dsl_deleg_can_allow(zc->zc_name, fsaclnv, CRED()); } else { error = dsl_deleg_can_unallow(zc->zc_name, fsaclnv, CRED()); } } if (error == 0) error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action); nvlist_free(fsaclnv); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * zc_nvlist_src{_size} nvlist of delegated permissions */ static int zfs_ioc_get_fsacl(zfs_cmd_t *zc) { nvlist_t *nvp; int error; if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) { error = put_nvlist(zc, nvp); nvlist_free(nvp); } return (error); } /* * Search the vfs list for a specified resource. Returns a pointer to it * or NULL if no suitable entry is found. The caller of this routine * is responsible for releasing the returned vfs pointer. */ static vfs_t * zfs_get_vfs(const char *resource) { struct vfs *vfsp; struct vfs *vfs_found = NULL; vfs_list_read_lock(); vfsp = rootvfs; do { if (strcmp(refstr_value(vfsp->vfs_resource), resource) == 0) { VFS_HOLD(vfsp); vfs_found = vfsp; break; } vfsp = vfsp->vfs_next; } while (vfsp != rootvfs); vfs_list_unlock(); return (vfs_found); } /* ARGSUSED */ static void zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { zfs_creat_t *zct = arg; zfs_create_fs(os, cr, zct->zct_zplprops, tx); } #define ZFS_PROP_UNDEFINED ((uint64_t)-1) /* * inputs: * createprops list of properties requested by creator * default_zplver zpl version to use if unspecified in createprops * fuids_ok fuids allowed in this version of the spa? * os parent objset pointer (NULL if root fs) * * outputs: * zplprops values for the zplprops we attach to the master node object * is_ci true if requested file system will be purely case-insensitive * * Determine the settings for utf8only, normalization and * casesensitivity. Specific values may have been requested by the * creator and/or we can inherit values from the parent dataset. If * the file system is of too early a vintage, a creator can not * request settings for these properties, even if the requested * setting is the default value. We don't actually want to create dsl * properties for these, so remove them from the source nvlist after * processing. */ static int zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver, boolean_t fuids_ok, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { uint64_t sense = ZFS_PROP_UNDEFINED; uint64_t norm = ZFS_PROP_UNDEFINED; uint64_t u8 = ZFS_PROP_UNDEFINED; ASSERT(zplprops != NULL); /* * Pull out creator prop choices, if any. */ if (createprops) { (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_VERSION), &zplver); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_CASE), &sense); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_CASE)); } /* * If the zpl version requested is whacky or the file system * or pool is version is too "young" to support normalization * and the creator tried to set a value for one of the props, * error out. */ if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) || (zplver >= ZPL_VERSION_FUID && !fuids_ok) || (zplver < ZPL_VERSION_NORMALIZATION && (norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED || sense != ZFS_PROP_UNDEFINED))) return (ENOTSUP); /* * Put the version in the zplprops */ VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0); if (norm == ZFS_PROP_UNDEFINED) VERIFY(zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm) == 0); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0); /* * If we're normalizing, names must always be valid UTF-8 strings. */ if (norm) u8 = 1; if (u8 == ZFS_PROP_UNDEFINED) VERIFY(zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8) == 0); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0); if (sense == ZFS_PROP_UNDEFINED) VERIFY(zfs_get_zplprop(os, ZFS_PROP_CASE, &sense) == 0); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0); if (is_ci) *is_ci = (sense == ZFS_CASE_INSENSITIVE); return (0); } static int zfs_fill_zplprops(const char *dataset, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok = B_TRUE; uint64_t zplver = ZPL_VERSION; objset_t *os = NULL; char parentname[MAXNAMELEN]; char *cp; int error; (void) strlcpy(parentname, dataset, sizeof (parentname)); cp = strrchr(parentname, '/'); ASSERT(cp != NULL); cp[0] = '\0'; if (zfs_earlier_version(dataset, SPA_VERSION_USERSPACE)) zplver = ZPL_VERSION_USERSPACE - 1; if (zfs_earlier_version(dataset, SPA_VERSION_FUID)) { zplver = ZPL_VERSION_FUID - 1; fuids_ok = B_FALSE; } /* * Open parent object set so we can inherit zplprop values. */ if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0) return (error); error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, createprops, zplprops, is_ci); dmu_objset_rele(os, FTAG); return (error); } static int zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok = B_TRUE; uint64_t zplver = ZPL_VERSION; int error; if (spa_vers < SPA_VERSION_FUID) { zplver = ZPL_VERSION_FUID - 1; fuids_ok = B_FALSE; } error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, createprops, zplprops, is_ci); return (error); } /* * inputs: * zc_objset_type type of objset to create (fs vs zvol) * zc_name name of new objset * zc_value name of snapshot to clone from (may be empty) * zc_nvlist_src{_size} nvlist of properties to apply * * outputs: none */ static int zfs_ioc_create(zfs_cmd_t *zc) { objset_t *clone; int error = 0; zfs_creat_t zct; nvlist_t *nvprops = NULL; void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx); dmu_objset_type_t type = zc->zc_objset_type; switch (type) { case DMU_OST_ZFS: cbfunc = zfs_create_cb; break; case DMU_OST_ZVOL: cbfunc = zvol_create_cb; break; default: cbfunc = NULL; break; } if (strchr(zc->zc_name, '@') || strchr(zc->zc_name, '%')) return (EINVAL); if (zc->zc_nvlist_src != NULL && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvprops)) != 0) return (error); zct.zct_zplprops = NULL; zct.zct_props = nvprops; if (zc->zc_value[0] != '\0') { /* * We're creating a clone of an existing snapshot. */ zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0) { nvlist_free(nvprops); return (EINVAL); } error = dmu_objset_hold(zc->zc_value, FTAG, &clone); if (error) { nvlist_free(nvprops); return (error); } error = dmu_objset_clone(zc->zc_name, dmu_objset_ds(clone), 0); dmu_objset_rele(clone, FTAG); if (error) { nvlist_free(nvprops); return (error); } } else { boolean_t is_insensitive = B_FALSE; if (cbfunc == NULL) { nvlist_free(nvprops); return (EINVAL); } if (type == DMU_OST_ZVOL) { uint64_t volsize, volblocksize; if (nvprops == NULL || nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0) { nvlist_free(nvprops); return (EINVAL); } if ((error = nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize)) != 0 && error != ENOENT) { nvlist_free(nvprops); return (EINVAL); } if (error != 0) volblocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); if ((error = zvol_check_volblocksize( volblocksize)) != 0 || (error = zvol_check_volsize(volsize, volblocksize)) != 0) { nvlist_free(nvprops); return (error); } } else if (type == DMU_OST_ZFS) { int error; /* * We have to have normalization and * case-folding flags correct when we do the * file system creation, so go figure them out * now. */ VERIFY(nvlist_alloc(&zct.zct_zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops(zc->zc_name, nvprops, zct.zct_zplprops, &is_insensitive); if (error != 0) { nvlist_free(nvprops); nvlist_free(zct.zct_zplprops); return (error); } } error = dmu_objset_create(zc->zc_name, type, is_insensitive ? DS_FLAG_CI_DATASET : 0, cbfunc, &zct); nvlist_free(zct.zct_zplprops); } /* * It would be nice to do this atomically. */ if (error == 0) { error = zfs_set_prop_nvlist(zc->zc_name, ZPROP_SRC_LOCAL, nvprops, NULL); if (error != 0) (void) dmu_objset_destroy(zc->zc_name, B_FALSE); } nvlist_free(nvprops); return (error); } /* * inputs: * zc_name name of filesystem * zc_value short name of snapshot * zc_cookie recursive flag * zc_nvlist_src[_size] property list * * outputs: * zc_value short snapname (i.e. part after the '@') */ static int zfs_ioc_snapshot(zfs_cmd_t *zc) { nvlist_t *nvprops = NULL; int error; boolean_t recursive = zc->zc_cookie; if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); if (zc->zc_nvlist_src != NULL && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvprops)) != 0) return (error); error = zfs_check_userprops(zc->zc_name, nvprops); if (error) goto out; if (!nvlist_empty(nvprops) && zfs_earlier_version(zc->zc_name, SPA_VERSION_SNAP_PROPS)) { error = ENOTSUP; goto out; } error = dmu_objset_snapshot(zc->zc_name, zc->zc_value, nvprops, recursive); out: nvlist_free(nvprops); return (error); } int zfs_unmount_snap(const char *name, void *arg) { vfs_t *vfsp = NULL; if (arg) { char *snapname = arg; char *fullname = kmem_asprintf("%s@%s", name, snapname); vfsp = zfs_get_vfs(fullname); strfree(fullname); } else if (strchr(name, '@')) { vfsp = zfs_get_vfs(name); } if (vfsp) { /* * Always force the unmount for snapshots. */ int flag = MS_FORCE; int err; if ((err = vn_vfswlock(vfsp->vfs_vnodecovered)) != 0) { VFS_RELE(vfsp); return (err); } VFS_RELE(vfsp); if ((err = dounmount(vfsp, flag, kcred)) != 0) return (err); } return (0); } /* * inputs: * zc_name name of filesystem * zc_value short name of snapshot * zc_defer_destroy mark for deferred destroy * * outputs: none */ static int zfs_ioc_destroy_snaps(zfs_cmd_t *zc) { int err; if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); err = dmu_objset_find(zc->zc_name, zfs_unmount_snap, zc->zc_value, DS_FIND_CHILDREN); if (err) return (err); return (dmu_snapshots_destroy(zc->zc_name, zc->zc_value, zc->zc_defer_destroy)); } /* * inputs: * zc_name name of dataset to destroy * zc_objset_type type of objset * zc_defer_destroy mark for deferred destroy * * outputs: none */ static int zfs_ioc_destroy(zfs_cmd_t *zc) { int err; if (strchr(zc->zc_name, '@') && zc->zc_objset_type == DMU_OST_ZFS) { err = zfs_unmount_snap(zc->zc_name, NULL); if (err) return (err); } err = dmu_objset_destroy(zc->zc_name, zc->zc_defer_destroy); if (zc->zc_objset_type == DMU_OST_ZVOL && err == 0) (void) zvol_remove_minor(zc->zc_name); return (err); } /* * inputs: * zc_name name of dataset to rollback (to most recent snapshot) * * outputs: none */ static int zfs_ioc_rollback(zfs_cmd_t *zc) { dsl_dataset_t *ds, *clone; int error; zfsvfs_t *zfsvfs; char *clone_name; error = dsl_dataset_hold(zc->zc_name, FTAG, &ds); if (error) return (error); /* must not be a snapshot */ if (dsl_dataset_is_snapshot(ds)) { dsl_dataset_rele(ds, FTAG); return (EINVAL); } /* must have a most recent snapshot */ if (ds->ds_phys->ds_prev_snap_txg < TXG_INITIAL) { dsl_dataset_rele(ds, FTAG); return (EINVAL); } /* * Create clone of most recent snapshot. */ clone_name = kmem_asprintf("%s/%%rollback", zc->zc_name); error = dmu_objset_clone(clone_name, ds->ds_prev, DS_FLAG_INCONSISTENT); if (error) goto out; error = dsl_dataset_own(clone_name, B_TRUE, FTAG, &clone); if (error) goto out; /* * Do clone swap. */ if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { error = zfs_suspend_fs(zfsvfs); if (error == 0) { int resume_err; if (dsl_dataset_tryown(ds, B_FALSE, FTAG)) { error = dsl_dataset_clone_swap(clone, ds, B_TRUE); dsl_dataset_disown(ds, FTAG); ds = NULL; } else { error = EBUSY; } resume_err = zfs_resume_fs(zfsvfs, zc->zc_name); error = error ? error : resume_err; } VFS_RELE(zfsvfs->z_vfs); } else { if (dsl_dataset_tryown(ds, B_FALSE, FTAG)) { error = dsl_dataset_clone_swap(clone, ds, B_TRUE); dsl_dataset_disown(ds, FTAG); ds = NULL; } else { error = EBUSY; } } /* * Destroy clone (which also closes it). */ (void) dsl_dataset_destroy(clone, FTAG, B_FALSE); out: strfree(clone_name); if (ds) dsl_dataset_rele(ds, FTAG); return (error); } /* * inputs: * zc_name old name of dataset * zc_value new name of dataset * zc_cookie recursive flag (only valid for snapshots) * * outputs: none */ static int zfs_ioc_rename(zfs_cmd_t *zc) { boolean_t recursive = zc->zc_cookie & 1; zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_value, '%')) return (EINVAL); /* * Unmount snapshot unless we're doing a recursive rename, * in which case the dataset code figures out which snapshots * to unmount. */ if (!recursive && strchr(zc->zc_name, '@') != NULL && zc->zc_objset_type == DMU_OST_ZFS) { int err = zfs_unmount_snap(zc->zc_name, NULL); if (err) return (err); } if (zc->zc_objset_type == DMU_OST_ZVOL) (void) zvol_remove_minor(zc->zc_name); return (dmu_objset_rename(zc->zc_name, zc->zc_value, recursive)); } static int zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr) { const char *propname = nvpair_name(pair); boolean_t issnap = (strchr(dsname, '@') != NULL); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval; int err; if (prop == ZPROP_INVAL) { if (zfs_prop_user(propname)) { if (err = zfs_secpolicy_write_perms(dsname, ZFS_DELEG_PERM_USERPROP, cr)) return (err); return (0); } if (!issnap && zfs_prop_userquota(propname)) { const char *perm = NULL; const char *uq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA]; const char *gq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA]; if (strncmp(propname, uq_prefix, strlen(uq_prefix)) == 0) { perm = ZFS_DELEG_PERM_USERQUOTA; } else if (strncmp(propname, gq_prefix, strlen(gq_prefix)) == 0) { perm = ZFS_DELEG_PERM_GROUPQUOTA; } else { /* USERUSED and GROUPUSED are read-only */ return (EINVAL); } if (err = zfs_secpolicy_write_perms(dsname, perm, cr)) return (err); return (0); } return (EINVAL); } if (issnap) return (EINVAL); if (nvpair_type(pair) == DATA_TYPE_NVLIST) { /* * dsl_prop_get_all_impl() returns properties in this * format. */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } /* * Check that this value is valid for this pool version */ switch (prop) { case ZFS_PROP_COMPRESSION: /* * If the user specified gzip compression, make sure * the SPA supports it. We ignore any errors here since * we'll catch them later. */ if (nvpair_type(pair) == DATA_TYPE_UINT64 && nvpair_value_uint64(pair, &intval) == 0) { if (intval >= ZIO_COMPRESS_GZIP_1 && intval <= ZIO_COMPRESS_GZIP_9 && zfs_earlier_version(dsname, SPA_VERSION_GZIP_COMPRESSION)) { return (ENOTSUP); } if (intval == ZIO_COMPRESS_ZLE && zfs_earlier_version(dsname, SPA_VERSION_ZLE_COMPRESSION)) return (ENOTSUP); /* * If this is a bootable dataset then * verify that the compression algorithm * is supported for booting. We must return * something other than ENOTSUP since it * implies a downrev pool version. */ if (zfs_is_bootfs(dsname) && !BOOTFS_COMPRESS_VALID(intval)) { return (ERANGE); } } break; case ZFS_PROP_COPIES: if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS)) return (ENOTSUP); break; case ZFS_PROP_DEDUP: if (zfs_earlier_version(dsname, SPA_VERSION_DEDUP)) return (ENOTSUP); break; case ZFS_PROP_SHARESMB: if (zpl_earlier_version(dsname, ZPL_VERSION_FUID)) return (ENOTSUP); break; case ZFS_PROP_ACLINHERIT: if (nvpair_type(pair) == DATA_TYPE_UINT64 && nvpair_value_uint64(pair, &intval) == 0) { if (intval == ZFS_ACL_PASSTHROUGH_X && zfs_earlier_version(dsname, SPA_VERSION_PASSTHROUGH_X)) return (ENOTSUP); } break; } return (zfs_secpolicy_setprop(dsname, prop, pair, CRED())); } /* * Removes properties from the given props list that fail permission checks * needed to clear them and to restore them in case of a receive error. For each * property, make sure we have both set and inherit permissions. * * Returns the first error encountered if any permission checks fail. If the * caller provides a non-NULL errlist, it also gives the complete list of names * of all the properties that failed a permission check along with the * corresponding error numbers. The caller is responsible for freeing the * returned errlist. * * If every property checks out successfully, zero is returned and the list * pointed at by errlist is NULL. */ static int zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errlist) { zfs_cmd_t *zc; nvpair_t *pair, *next_pair; nvlist_t *errors; int err, rv = 0; if (props == NULL) return (0); VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strcpy(zc->zc_name, dataset); pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { next_pair = nvlist_next_nvpair(props, pair); (void) strcpy(zc->zc_value, nvpair_name(pair)); if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 || (err = zfs_secpolicy_inherit(zc, CRED())) != 0) { VERIFY(nvlist_remove_nvpair(props, pair) == 0); VERIFY(nvlist_add_int32(errors, zc->zc_value, err) == 0); } pair = next_pair; } kmem_free(zc, sizeof (zfs_cmd_t)); if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) { nvlist_free(errors); errors = NULL; } else { VERIFY(nvpair_value_int32(pair, &rv) == 0); } if (errlist == NULL) nvlist_free(errors); else *errlist = errors; return (rv); } static boolean_t propval_equals(nvpair_t *p1, nvpair_t *p2) { if (nvpair_type(p1) == DATA_TYPE_NVLIST) { /* dsl_prop_get_all_impl() format */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p1, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p1) == 0); } if (nvpair_type(p2) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p2, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p2) == 0); } if (nvpair_type(p1) != nvpair_type(p2)) return (B_FALSE); if (nvpair_type(p1) == DATA_TYPE_STRING) { char *valstr1, *valstr2; VERIFY(nvpair_value_string(p1, (char **)&valstr1) == 0); VERIFY(nvpair_value_string(p2, (char **)&valstr2) == 0); return (strcmp(valstr1, valstr2) == 0); } else { uint64_t intval1, intval2; VERIFY(nvpair_value_uint64(p1, &intval1) == 0); VERIFY(nvpair_value_uint64(p2, &intval2) == 0); return (intval1 == intval2); } } /* * Remove properties from props if they are not going to change (as determined * by comparison with origprops). Remove them from origprops as well, since we * do not need to clear or restore properties that won't change. */ static void props_reduce(nvlist_t *props, nvlist_t *origprops) { nvpair_t *pair, *next_pair; if (origprops == NULL) return; /* all props need to be received */ pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { const char *propname = nvpair_name(pair); nvpair_t *match; next_pair = nvlist_next_nvpair(props, pair); if ((nvlist_lookup_nvpair(origprops, propname, &match) != 0) || !propval_equals(pair, match)) goto next; /* need to set received value */ /* don't clear the existing received value */ (void) nvlist_remove_nvpair(origprops, match); /* don't bother receiving the property */ (void) nvlist_remove_nvpair(props, pair); next: pair = next_pair; } } #ifdef DEBUG static boolean_t zfs_ioc_recv_inject_err; #endif /* * inputs: * zc_name name of containing filesystem * zc_nvlist_src{_size} nvlist of properties to apply * zc_value name of snapshot to create * zc_string name of clone origin (if DRR_FLAG_CLONE) * zc_cookie file descriptor to recv from * zc_begin_record the BEGIN record of the stream (not byteswapped) * zc_guid force flag * * outputs: * zc_cookie number of bytes read * zc_nvlist_dst{_size} error for each unapplied received property * zc_obj zprop_errflags_t */ static int zfs_ioc_recv(zfs_cmd_t *zc) { file_t *fp; objset_t *os; dmu_recv_cookie_t drc; boolean_t force = (boolean_t)zc->zc_guid; int fd; int error = 0; int props_error = 0; nvlist_t *errors; offset_t off; nvlist_t *props = NULL; /* sent properties */ nvlist_t *origprops = NULL; /* existing properties */ objset_t *origin = NULL; char *tosnap; char tofs[ZFS_MAXNAMELEN]; boolean_t first_recvd_props = B_FALSE; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_value, '@') == NULL || strchr(zc->zc_value, '%')) return (EINVAL); (void) strcpy(tofs, zc->zc_value); tosnap = strchr(tofs, '@'); *tosnap++ = '\0'; if (zc->zc_nvlist_src != NULL && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props)) != 0) return (error); fd = zc->zc_cookie; fp = getf(fd); if (fp == NULL) { nvlist_free(props); return (EBADF); } VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (props && dmu_objset_hold(tofs, FTAG, &os) == 0) { if ((spa_version(os->os_spa) >= SPA_VERSION_RECVD_PROPS) && !dsl_prop_get_hasrecvd(os)) { first_recvd_props = B_TRUE; } /* * If new received properties are supplied, they are to * completely replace the existing received properties, so stash * away the existing ones. */ if (dsl_prop_get_received(os, &origprops) == 0) { nvlist_t *errlist = NULL; /* * Don't bother writing a property if its value won't * change (and avoid the unnecessary security checks). * * The first receive after SPA_VERSION_RECVD_PROPS is a * special case where we blow away all local properties * regardless. */ if (!first_recvd_props) props_reduce(props, origprops); if (zfs_check_clearable(tofs, origprops, &errlist) != 0) (void) nvlist_merge(errors, errlist, 0); nvlist_free(errlist); } dmu_objset_rele(os, FTAG); } if (zc->zc_string[0]) { error = dmu_objset_hold(zc->zc_string, FTAG, &origin); if (error) goto out; } error = dmu_recv_begin(tofs, tosnap, zc->zc_top_ds, &zc->zc_begin_record, force, origin, &drc); if (origin) dmu_objset_rele(origin, FTAG); if (error) goto out; /* * Set properties before we receive the stream so that they are applied * to the new data. Note that we must call dmu_recv_stream() if * dmu_recv_begin() succeeds. */ if (props) { nvlist_t *errlist; if (dmu_objset_from_ds(drc.drc_logical_ds, &os) == 0) { if (drc.drc_newfs) { if (spa_version(os->os_spa) >= SPA_VERSION_RECVD_PROPS) first_recvd_props = B_TRUE; } else if (origprops != NULL) { if (clear_received_props(os, tofs, origprops, first_recvd_props ? NULL : props) != 0) zc->zc_obj |= ZPROP_ERR_NOCLEAR; } else { zc->zc_obj |= ZPROP_ERR_NOCLEAR; } dsl_prop_set_hasrecvd(os); } else if (!drc.drc_newfs) { zc->zc_obj |= ZPROP_ERR_NOCLEAR; } (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, props, &errlist); (void) nvlist_merge(errors, errlist, 0); nvlist_free(errlist); } if (fit_error_list(zc, &errors) != 0 || put_nvlist(zc, errors) != 0) { /* * Caller made zc->zc_nvlist_dst less than the minimum expected * size or supplied an invalid address. */ props_error = EINVAL; } off = fp->f_offset; error = dmu_recv_stream(&drc, fp->f_vnode, &off); if (error == 0) { zfsvfs_t *zfsvfs = NULL; if (getzfsvfs(tofs, &zfsvfs) == 0) { /* online recv */ int end_err; error = zfs_suspend_fs(zfsvfs); /* * If the suspend fails, then the recv_end will * likely also fail, and clean up after itself. */ end_err = dmu_recv_end(&drc); if (error == 0) error = zfs_resume_fs(zfsvfs, tofs); error = error ? error : end_err; VFS_RELE(zfsvfs->z_vfs); } else { error = dmu_recv_end(&drc); } } zc->zc_cookie = off - fp->f_offset; if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; #ifdef DEBUG if (zfs_ioc_recv_inject_err) { zfs_ioc_recv_inject_err = B_FALSE; error = 1; } #endif /* * On error, restore the original props. */ if (error && props) { if (dmu_objset_hold(tofs, FTAG, &os) == 0) { if (clear_received_props(os, tofs, props, NULL) != 0) { /* * We failed to clear the received properties. * Since we may have left a $recvd value on the * system, we can't clear the $hasrecvd flag. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } else if (first_recvd_props) { dsl_prop_unset_hasrecvd(os); } dmu_objset_rele(os, FTAG); } else if (!drc.drc_newfs) { /* We failed to clear the received properties. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } if (origprops == NULL && !drc.drc_newfs) { /* We failed to stash the original properties. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } /* * dsl_props_set() will not convert RECEIVED to LOCAL on or * after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL * explictly if we're restoring local properties cleared in the * first new-style receive. */ if (origprops != NULL && zfs_set_prop_nvlist(tofs, (first_recvd_props ? ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED), origprops, NULL) != 0) { /* * We stashed the original properties but failed to * restore them. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } } out: nvlist_free(props); nvlist_free(origprops); nvlist_free(errors); releasef(fd); if (error == 0) error = props_error; return (error); } /* * inputs: * zc_name name of snapshot to send * zc_value short name of incremental fromsnap (may be empty) * zc_cookie file descriptor to send stream to * zc_obj fromorigin flag (mutually exclusive with zc_value) * * outputs: none */ static int zfs_ioc_send(zfs_cmd_t *zc) { objset_t *fromsnap = NULL; objset_t *tosnap; file_t *fp; int error; offset_t off; error = dmu_objset_hold(zc->zc_name, FTAG, &tosnap); if (error) return (error); if (zc->zc_value[0] != '\0') { char *buf; char *cp; buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) strncpy(buf, zc->zc_name, MAXPATHLEN); cp = strchr(buf, '@'); if (cp) *(cp+1) = 0; (void) strncat(buf, zc->zc_value, MAXPATHLEN); error = dmu_objset_hold(buf, FTAG, &fromsnap); kmem_free(buf, MAXPATHLEN); if (error) { dmu_objset_rele(tosnap, FTAG); return (error); } } fp = getf(zc->zc_cookie); if (fp == NULL) { dmu_objset_rele(tosnap, FTAG); if (fromsnap) dmu_objset_rele(fromsnap, FTAG); return (EBADF); } off = fp->f_offset; error = dmu_sendbackup(tosnap, fromsnap, zc->zc_obj, fp->f_vnode, &off); if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; releasef(zc->zc_cookie); if (fromsnap) dmu_objset_rele(fromsnap, FTAG); dmu_objset_rele(tosnap, FTAG); return (error); } static int zfs_ioc_inject_fault(zfs_cmd_t *zc) { int id, error; error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id, &zc->zc_inject_record); if (error == 0) zc->zc_guid = (uint64_t)id; return (error); } static int zfs_ioc_clear_fault(zfs_cmd_t *zc) { return (zio_clear_fault((int)zc->zc_guid)); } static int zfs_ioc_inject_list_next(zfs_cmd_t *zc) { int id = (int)zc->zc_guid; int error; error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name), &zc->zc_inject_record); zc->zc_guid = id; return (error); } static int zfs_ioc_error_log(zfs_cmd_t *zc) { spa_t *spa; int error; size_t count = (size_t)zc->zc_nvlist_dst_size; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst, &count); if (error == 0) zc->zc_nvlist_dst_size = count; else zc->zc_nvlist_dst_size = spa_get_errlog_size(spa); spa_close(spa, FTAG); return (error); } static int zfs_ioc_clear(zfs_cmd_t *zc) { spa_t *spa; vdev_t *vd; int error; /* * On zpool clear we also fix up missing slogs */ mutex_enter(&spa_namespace_lock); spa = spa_lookup(zc->zc_name); if (spa == NULL) { mutex_exit(&spa_namespace_lock); return (EIO); } if (spa_get_log_state(spa) == SPA_LOG_MISSING) { /* we need to let spa_open/spa_load clear the chains */ spa_set_log_state(spa, SPA_LOG_CLEAR); } spa->spa_last_open_failed = 0; mutex_exit(&spa_namespace_lock); if (zc->zc_cookie & ZPOOL_NO_REWIND) { error = spa_open(zc->zc_name, &spa, FTAG); } else { nvlist_t *policy; nvlist_t *config = NULL; if (zc->zc_nvlist_src == NULL) return (EINVAL); if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) { error = spa_open_rewind(zc->zc_name, &spa, FTAG, policy, &config); if (config != NULL) { (void) put_nvlist(zc, config); nvlist_free(config); } nvlist_free(policy); } } if (error) return (error); spa_vdev_state_enter(spa, SCL_NONE); if (zc->zc_guid == 0) { vd = NULL; } else { vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE); if (vd == NULL) { (void) spa_vdev_state_exit(spa, NULL, ENODEV); spa_close(spa, FTAG); return (ENODEV); } } vdev_clear(spa, vd); (void) spa_vdev_state_exit(spa, NULL, 0); /* * Resume any suspended I/Os. */ if (zio_resume(spa) != 0) error = EIO; spa_close(spa, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_value name of origin snapshot * * outputs: * zc_string name of conflicting snapshot, if there is one */ static int zfs_ioc_promote(zfs_cmd_t *zc) { char *cp; /* * We don't need to unmount *all* the origin fs's snapshots, but * it's easier. */ cp = strchr(zc->zc_value, '@'); if (cp) *cp = '\0'; (void) dmu_objset_find(zc->zc_value, zfs_unmount_snap, NULL, DS_FIND_SNAPSHOTS); return (dsl_dataset_promote(zc->zc_name, zc->zc_string)); } /* * Retrieve a single {user|group}{used|quota}@... property. * * inputs: * zc_name name of filesystem * zc_objset_type zfs_userquota_prop_t * zc_value domain name (eg. "S-1-234-567-89") * zc_guid RID/UID/GID * * outputs: * zc_cookie property value */ static int zfs_ioc_userspace_one(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int error; if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (EINVAL); error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs); if (error) return (error); error = zfs_userspace_one(zfsvfs, zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_objset_type zfs_userquota_prop_t * zc_nvlist_dst[_size] buffer to fill (not really an nvlist) * * outputs: * zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t) * zc_cookie zap cursor */ static int zfs_ioc_userspace_many(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int error; error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs); if (error) return (error); int bufsize = zc->zc_nvlist_dst_size; void *buf = kmem_alloc(bufsize, KM_SLEEP); error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie, buf, &zc->zc_nvlist_dst_size); if (error == 0) { error = xcopyout(buf, (void *)(uintptr_t)zc->zc_nvlist_dst, zc->zc_nvlist_dst_size); } kmem_free(buf, bufsize); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * none */ static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc) { objset_t *os; int error = 0; zfsvfs_t *zfsvfs; if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { if (!dmu_objset_userused_enabled(zfsvfs->z_os)) { /* * If userused is not enabled, it may be because the * objset needs to be closed & reopened (to grow the * objset_phys_t). Suspend/resume the fs will do that. */ error = zfs_suspend_fs(zfsvfs); if (error == 0) error = zfs_resume_fs(zfsvfs, zc->zc_name); } if (error == 0) error = dmu_objset_userspace_upgrade(zfsvfs->z_os); VFS_RELE(zfsvfs->z_vfs); } else { /* XXX kind of reading contents without owning */ error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error) return (error); error = dmu_objset_userspace_upgrade(os); dmu_objset_rele(os, FTAG); } return (error); } /* * We don't want to have a hard dependency * against some special symbols in sharefs * nfs, and smbsrv. Determine them if needed when * the first file system is shared. * Neither sharefs, nfs or smbsrv are unloadable modules. */ int (*znfsexport_fs)(void *arg); int (*zshare_fs)(enum sharefs_sys_op, share_t *, uint32_t); int (*zsmbexport_fs)(void *arg, boolean_t add_share); int zfs_nfsshare_inited; int zfs_smbshare_inited; ddi_modhandle_t nfs_mod; ddi_modhandle_t sharefs_mod; ddi_modhandle_t smbsrv_mod; kmutex_t zfs_share_lock; static int zfs_init_sharefs() { int error; ASSERT(MUTEX_HELD(&zfs_share_lock)); /* Both NFS and SMB shares also require sharetab support. */ if (sharefs_mod == NULL && ((sharefs_mod = ddi_modopen("fs/sharefs", KRTLD_MODE_FIRST, &error)) == NULL)) { return (ENOSYS); } if (zshare_fs == NULL && ((zshare_fs = (int (*)(enum sharefs_sys_op, share_t *, uint32_t)) ddi_modsym(sharefs_mod, "sharefs_impl", &error)) == NULL)) { return (ENOSYS); } return (0); } static int zfs_ioc_share(zfs_cmd_t *zc) { int error; int opcode; switch (zc->zc_share.z_sharetype) { case ZFS_SHARE_NFS: case ZFS_UNSHARE_NFS: if (zfs_nfsshare_inited == 0) { mutex_enter(&zfs_share_lock); if (nfs_mod == NULL && ((nfs_mod = ddi_modopen("fs/nfs", KRTLD_MODE_FIRST, &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (ENOSYS); } if (znfsexport_fs == NULL && ((znfsexport_fs = (int (*)(void *)) ddi_modsym(nfs_mod, "nfs_export", &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (ENOSYS); } error = zfs_init_sharefs(); if (error) { mutex_exit(&zfs_share_lock); return (ENOSYS); } zfs_nfsshare_inited = 1; mutex_exit(&zfs_share_lock); } break; case ZFS_SHARE_SMB: case ZFS_UNSHARE_SMB: if (zfs_smbshare_inited == 0) { mutex_enter(&zfs_share_lock); if (smbsrv_mod == NULL && ((smbsrv_mod = ddi_modopen("drv/smbsrv", KRTLD_MODE_FIRST, &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (ENOSYS); } if (zsmbexport_fs == NULL && ((zsmbexport_fs = (int (*)(void *, boolean_t))ddi_modsym(smbsrv_mod, "smb_server_share", &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (ENOSYS); } error = zfs_init_sharefs(); if (error) { mutex_exit(&zfs_share_lock); return (ENOSYS); } zfs_smbshare_inited = 1; mutex_exit(&zfs_share_lock); } break; default: return (EINVAL); } switch (zc->zc_share.z_sharetype) { case ZFS_SHARE_NFS: case ZFS_UNSHARE_NFS: if (error = znfsexport_fs((void *) (uintptr_t)zc->zc_share.z_exportdata)) return (error); break; case ZFS_SHARE_SMB: case ZFS_UNSHARE_SMB: if (error = zsmbexport_fs((void *) (uintptr_t)zc->zc_share.z_exportdata, zc->zc_share.z_sharetype == ZFS_SHARE_SMB ? B_TRUE: B_FALSE)) { return (error); } break; } opcode = (zc->zc_share.z_sharetype == ZFS_SHARE_NFS || zc->zc_share.z_sharetype == ZFS_SHARE_SMB) ? SHAREFS_ADD : SHAREFS_REMOVE; /* * Add or remove share from sharetab */ error = zshare_fs(opcode, (void *)(uintptr_t)zc->zc_share.z_sharedata, zc->zc_share.z_sharemax); return (error); } ace_t full_access[] = { {(uid_t)-1, ACE_ALL_PERMS, ACE_EVERYONE, 0} }; /* * Remove all ACL files in shares dir */ static int zfs_smb_acl_purge(znode_t *dzp) { zap_cursor_t zc; zap_attribute_t zap; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; int error; for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id); (error = zap_cursor_retrieve(&zc, &zap)) == 0; zap_cursor_advance(&zc)) { if ((error = VOP_REMOVE(ZTOV(dzp), zap.za_name, kcred, NULL, 0)) != 0) break; } zap_cursor_fini(&zc); return (error); } static int zfs_ioc_smb_acl(zfs_cmd_t *zc) { vnode_t *vp; znode_t *dzp; vnode_t *resourcevp = NULL; znode_t *sharedir; zfsvfs_t *zfsvfs; nvlist_t *nvlist; char *src, *target; vattr_t vattr; vsecattr_t vsec; int error = 0; if ((error = lookupname(zc->zc_value, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp)) != 0) return (error); /* Now make sure mntpnt and dataset are ZFS */ if (vp->v_vfsp->vfs_fstype != zfsfstype || (strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource), zc->zc_name) != 0)) { VN_RELE(vp); return (EINVAL); } dzp = VTOZ(vp); zfsvfs = dzp->z_zfsvfs; ZFS_ENTER(zfsvfs); /* * Create share dir if its missing. */ mutex_enter(&zfsvfs->z_lock); if (zfsvfs->z_shares_dir == 0) { dmu_tx_t *tx; tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, TRUE, ZFS_SHARES_DIR); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { error = zfs_create_share_dir(zfsvfs, tx); dmu_tx_commit(tx); } if (error) { mutex_exit(&zfsvfs->z_lock); VN_RELE(vp); ZFS_EXIT(zfsvfs); return (error); } } mutex_exit(&zfsvfs->z_lock); ASSERT(zfsvfs->z_shares_dir); if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &sharedir)) != 0) { VN_RELE(vp); ZFS_EXIT(zfsvfs); return (error); } switch (zc->zc_cookie) { case ZFS_SMB_ACL_ADD: vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; vattr.va_type = VREG; vattr.va_mode = S_IFREG|0777; vattr.va_uid = 0; vattr.va_gid = 0; vsec.vsa_mask = VSA_ACE; vsec.vsa_aclentp = &full_access; vsec.vsa_aclentsz = sizeof (full_access); vsec.vsa_aclcnt = 1; error = VOP_CREATE(ZTOV(sharedir), zc->zc_string, &vattr, EXCL, 0, &resourcevp, kcred, 0, NULL, &vsec); if (resourcevp) VN_RELE(resourcevp); break; case ZFS_SMB_ACL_REMOVE: error = VOP_REMOVE(ZTOV(sharedir), zc->zc_string, kcred, NULL, 0); break; case ZFS_SMB_ACL_RENAME: if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvlist)) != 0) { VN_RELE(vp); ZFS_EXIT(zfsvfs); return (error); } if (nvlist_lookup_string(nvlist, ZFS_SMB_ACL_SRC, &src) || nvlist_lookup_string(nvlist, ZFS_SMB_ACL_TARGET, &target)) { VN_RELE(vp); VN_RELE(ZTOV(sharedir)); ZFS_EXIT(zfsvfs); nvlist_free(nvlist); return (error); } error = VOP_RENAME(ZTOV(sharedir), src, ZTOV(sharedir), target, kcred, NULL, 0); nvlist_free(nvlist); break; case ZFS_SMB_ACL_PURGE: error = zfs_smb_acl_purge(sharedir); break; default: error = EINVAL; break; } VN_RELE(vp); VN_RELE(ZTOV(sharedir)); ZFS_EXIT(zfsvfs); return (error); } /* * inputs: * zc_name name of filesystem * zc_value short name of snap * zc_string user-supplied tag for this reference * zc_cookie recursive flag * zc_temphold set if hold is temporary * * outputs: none */ static int zfs_ioc_hold(zfs_cmd_t *zc) { boolean_t recursive = zc->zc_cookie; if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); return (dsl_dataset_user_hold(zc->zc_name, zc->zc_value, zc->zc_string, recursive, zc->zc_temphold)); } /* * inputs: * zc_name name of dataset from which we're releasing a user reference * zc_value short name of snap * zc_string user-supplied tag for this reference * zc_cookie recursive flag * * outputs: none */ static int zfs_ioc_release(zfs_cmd_t *zc) { boolean_t recursive = zc->zc_cookie; if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); return (dsl_dataset_user_release(zc->zc_name, zc->zc_value, zc->zc_string, recursive)); } /* * inputs: * zc_name name of filesystem * * outputs: * zc_nvlist_src{_size} nvlist of snapshot holds */ static int zfs_ioc_get_holds(zfs_cmd_t *zc) { nvlist_t *nvp; int error; if ((error = dsl_dataset_get_holds(zc->zc_name, &nvp)) == 0) { error = put_nvlist(zc, nvp); nvlist_free(nvp); } return (error); } /* * pool create, destroy, and export don't log the history as part of * zfsdev_ioctl, but rather zfs_ioc_pool_create, and zfs_ioc_pool_export * do the logging of those commands. */ static zfs_ioc_vec_t zfs_ioc_vec[] = { { zfs_ioc_pool_create, zfs_secpolicy_config, POOL_NAME, B_FALSE, B_FALSE }, { zfs_ioc_pool_destroy, zfs_secpolicy_config, POOL_NAME, B_FALSE, B_FALSE }, { zfs_ioc_pool_import, zfs_secpolicy_config, POOL_NAME, B_TRUE, B_FALSE }, { zfs_ioc_pool_export, zfs_secpolicy_config, POOL_NAME, B_FALSE, B_FALSE }, { zfs_ioc_pool_configs, zfs_secpolicy_none, NO_NAME, B_FALSE, B_FALSE }, { zfs_ioc_pool_stats, zfs_secpolicy_read, POOL_NAME, B_FALSE, B_FALSE }, { zfs_ioc_pool_tryimport, zfs_secpolicy_config, NO_NAME, B_FALSE, B_FALSE }, { zfs_ioc_pool_scrub, zfs_secpolicy_config, POOL_NAME, B_TRUE, B_TRUE }, { zfs_ioc_pool_freeze, zfs_secpolicy_config, NO_NAME, B_FALSE, B_FALSE }, { zfs_ioc_pool_upgrade, zfs_secpolicy_config, POOL_NAME, B_TRUE, B_TRUE }, { zfs_ioc_pool_get_history, zfs_secpolicy_config, POOL_NAME, B_FALSE, B_FALSE }, { zfs_ioc_vdev_add, zfs_secpolicy_config, POOL_NAME, B_TRUE, B_TRUE }, { zfs_ioc_vdev_remove, zfs_secpolicy_config, POOL_NAME, B_TRUE, B_TRUE }, { zfs_ioc_vdev_set_state, zfs_secpolicy_config, POOL_NAME, B_TRUE, B_FALSE }, { zfs_ioc_vdev_attach, zfs_secpolicy_config, POOL_NAME, B_TRUE, B_TRUE }, { zfs_ioc_vdev_detach, zfs_secpolicy_config, POOL_NAME, B_TRUE, B_TRUE }, { zfs_ioc_vdev_setpath, zfs_secpolicy_config, POOL_NAME, B_FALSE, B_TRUE }, { zfs_ioc_vdev_setfru, zfs_secpolicy_config, POOL_NAME, B_FALSE, B_TRUE }, { zfs_ioc_objset_stats, zfs_secpolicy_read, DATASET_NAME, B_FALSE, B_TRUE }, { zfs_ioc_objset_zplprops, zfs_secpolicy_read, DATASET_NAME, B_FALSE, B_FALSE }, { zfs_ioc_dataset_list_next, zfs_secpolicy_read, DATASET_NAME, B_FALSE, B_TRUE }, { zfs_ioc_snapshot_list_next, zfs_secpolicy_read, DATASET_NAME, B_FALSE, B_TRUE }, { zfs_ioc_set_prop, zfs_secpolicy_none, DATASET_NAME, B_TRUE, B_TRUE }, { zfs_ioc_create, zfs_secpolicy_create, DATASET_NAME, B_TRUE, B_TRUE }, { zfs_ioc_destroy, zfs_secpolicy_destroy, DATASET_NAME, B_TRUE, B_TRUE}, { zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME, B_TRUE, B_TRUE }, { zfs_ioc_rename, zfs_secpolicy_rename, DATASET_NAME, B_TRUE, B_TRUE }, { zfs_ioc_recv, zfs_secpolicy_receive, DATASET_NAME, B_TRUE, B_TRUE }, { zfs_ioc_send, zfs_secpolicy_send, DATASET_NAME, B_TRUE, B_FALSE }, { zfs_ioc_inject_fault, zfs_secpolicy_inject, NO_NAME, B_FALSE, B_FALSE }, { zfs_ioc_clear_fault, zfs_secpolicy_inject, NO_NAME, B_FALSE, B_FALSE }, { zfs_ioc_inject_list_next, zfs_secpolicy_inject, NO_NAME, B_FALSE, B_FALSE }, { zfs_ioc_error_log, zfs_secpolicy_inject, POOL_NAME, B_FALSE, B_FALSE }, { zfs_ioc_clear, zfs_secpolicy_config, POOL_NAME, B_TRUE, B_FALSE }, { zfs_ioc_promote, zfs_secpolicy_promote, DATASET_NAME, B_TRUE, B_TRUE }, { zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, DATASET_NAME, B_TRUE, B_TRUE }, { zfs_ioc_snapshot, zfs_secpolicy_snapshot, DATASET_NAME, B_TRUE, B_TRUE }, { zfs_ioc_dsobj_to_dsname, zfs_secpolicy_config, POOL_NAME, B_FALSE, B_FALSE }, { zfs_ioc_obj_to_path, zfs_secpolicy_config, DATASET_NAME, B_FALSE, B_TRUE }, { zfs_ioc_pool_set_props, zfs_secpolicy_config, POOL_NAME, B_TRUE, B_TRUE }, { zfs_ioc_pool_get_props, zfs_secpolicy_read, POOL_NAME, B_FALSE, B_FALSE }, { zfs_ioc_set_fsacl, zfs_secpolicy_fsacl, DATASET_NAME, B_TRUE, B_TRUE }, { zfs_ioc_get_fsacl, zfs_secpolicy_read, DATASET_NAME, B_FALSE, B_FALSE }, { zfs_ioc_share, zfs_secpolicy_share, DATASET_NAME, B_FALSE, B_FALSE }, { zfs_ioc_inherit_prop, zfs_secpolicy_inherit, DATASET_NAME, B_TRUE, B_TRUE }, { zfs_ioc_smb_acl, zfs_secpolicy_smb_acl, DATASET_NAME, B_FALSE, B_FALSE }, { zfs_ioc_userspace_one, zfs_secpolicy_userspace_one, DATASET_NAME, B_FALSE, B_FALSE }, { zfs_ioc_userspace_many, zfs_secpolicy_userspace_many, DATASET_NAME, B_FALSE, B_FALSE }, { zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade, DATASET_NAME, B_FALSE, B_TRUE }, { zfs_ioc_hold, zfs_secpolicy_hold, DATASET_NAME, B_TRUE, B_TRUE }, { zfs_ioc_release, zfs_secpolicy_release, DATASET_NAME, B_TRUE, B_TRUE }, { zfs_ioc_get_holds, zfs_secpolicy_read, DATASET_NAME, B_FALSE, B_TRUE }, { zfs_ioc_objset_recvd_props, zfs_secpolicy_read, DATASET_NAME, B_FALSE, B_FALSE }, { zfs_ioc_vdev_split, zfs_secpolicy_config, POOL_NAME, B_TRUE, B_TRUE } }; int pool_status_check(const char *name, zfs_ioc_namecheck_t type) { spa_t *spa; int error; ASSERT(type == POOL_NAME || type == DATASET_NAME); error = spa_open(name, &spa, FTAG); if (error == 0) { if (spa_suspended(spa)) error = EAGAIN; spa_close(spa, FTAG); } return (error); } static int zfsdev_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) { zfs_cmd_t *zc; uint_t vec; int error, rc; if (getminor(dev) != 0) return (zvol_ioctl(dev, cmd, arg, flag, cr, rvalp)); vec = cmd - ZFS_IOC; ASSERT3U(getmajor(dev), ==, ddi_driver_major(zfs_dip)); if (vec >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0])) return (EINVAL); zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); error = ddi_copyin((void *)arg, zc, sizeof (zfs_cmd_t), flag); if (error != 0) error = EFAULT; if ((error == 0) && !(flag & FKIOCTL)) error = zfs_ioc_vec[vec].zvec_secpolicy(zc, cr); /* * Ensure that all pool/dataset names are valid before we pass down to * the lower layers. */ if (error == 0) { zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; zc->zc_iflags = flag & FKIOCTL; switch (zfs_ioc_vec[vec].zvec_namecheck) { case POOL_NAME: if (pool_namecheck(zc->zc_name, NULL, NULL) != 0) error = EINVAL; if (zfs_ioc_vec[vec].zvec_pool_check) error = pool_status_check(zc->zc_name, zfs_ioc_vec[vec].zvec_namecheck); break; case DATASET_NAME: if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0) error = EINVAL; if (zfs_ioc_vec[vec].zvec_pool_check) error = pool_status_check(zc->zc_name, zfs_ioc_vec[vec].zvec_namecheck); break; case NO_NAME: break; } } if (error == 0) error = zfs_ioc_vec[vec].zvec_func(zc); rc = ddi_copyout(zc, (void *)arg, sizeof (zfs_cmd_t), flag); if (error == 0) { if (rc != 0) error = EFAULT; if (zfs_ioc_vec[vec].zvec_his_log) zfs_log_history(zc); } kmem_free(zc, sizeof (zfs_cmd_t)); return (error); } static int zfs_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { if (cmd != DDI_ATTACH) return (DDI_FAILURE); if (ddi_create_minor_node(dip, "zfs", S_IFCHR, 0, DDI_PSEUDO, 0) == DDI_FAILURE) return (DDI_FAILURE); zfs_dip = dip; ddi_report_dev(dip); return (DDI_SUCCESS); } static int zfs_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { if (spa_busy() || zfs_busy() || zvol_busy()) return (DDI_FAILURE); if (cmd != DDI_DETACH) return (DDI_FAILURE); zfs_dip = NULL; ddi_prop_remove_all(dip); ddi_remove_minor_node(dip, NULL); return (DDI_SUCCESS); } /*ARGSUSED*/ static int zfs_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { switch (infocmd) { case DDI_INFO_DEVT2DEVINFO: *result = zfs_dip; return (DDI_SUCCESS); case DDI_INFO_DEVT2INSTANCE: *result = (void *)0; return (DDI_SUCCESS); } return (DDI_FAILURE); } /* * OK, so this is a little weird. * * /dev/zfs is the control node, i.e. minor 0. * /dev/zvol/[r]dsk/pool/dataset are the zvols, minor > 0. * * /dev/zfs has basically nothing to do except serve up ioctls, * so most of the standard driver entry points are in zvol.c. */ static struct cb_ops zfs_cb_ops = { zvol_open, /* open */ zvol_close, /* close */ zvol_strategy, /* strategy */ nodev, /* print */ zvol_dump, /* dump */ zvol_read, /* read */ zvol_write, /* write */ zfsdev_ioctl, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* poll */ ddi_prop_op, /* prop_op */ NULL, /* streamtab */ D_NEW | D_MP | D_64BIT, /* Driver compatibility flag */ CB_REV, /* version */ nodev, /* async read */ nodev, /* async write */ }; static struct dev_ops zfs_dev_ops = { DEVO_REV, /* version */ 0, /* refcnt */ zfs_info, /* info */ nulldev, /* identify */ nulldev, /* probe */ zfs_attach, /* attach */ zfs_detach, /* detach */ nodev, /* reset */ &zfs_cb_ops, /* driver operations */ NULL, /* no bus operations */ NULL, /* power */ ddi_quiesce_not_needed, /* quiesce */ }; static struct modldrv zfs_modldrv = { &mod_driverops, "ZFS storage pool", &zfs_dev_ops }; static struct modlinkage modlinkage = { MODREV_1, (void *)&zfs_modlfs, (void *)&zfs_modldrv, NULL }; uint_t zfs_fsyncer_key; extern uint_t rrw_tsd_key; int _init(void) { int error; spa_init(FREAD | FWRITE); zfs_init(); zvol_init(); if ((error = mod_install(&modlinkage)) != 0) { zvol_fini(); zfs_fini(); spa_fini(); return (error); } tsd_create(&zfs_fsyncer_key, NULL); tsd_create(&rrw_tsd_key, NULL); error = ldi_ident_from_mod(&modlinkage, &zfs_li); ASSERT(error == 0); mutex_init(&zfs_share_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } int _fini(void) { int error; if (spa_busy() || zfs_busy() || zvol_busy() || zio_injection_enabled) return (EBUSY); if ((error = mod_remove(&modlinkage)) != 0) return (error); zvol_fini(); zfs_fini(); spa_fini(); if (zfs_nfsshare_inited) (void) ddi_modclose(nfs_mod); if (zfs_smbshare_inited) (void) ddi_modclose(smbsrv_mod); if (zfs_nfsshare_inited || zfs_smbshare_inited) (void) ddi_modclose(sharefs_mod); tsd_destroy(&zfs_fsyncer_key); ldi_ident_release(zfs_li); zfs_li = NULL; mutex_destroy(&zfs_share_lock); return (error); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); }