/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * This file contains the top half of the zfs directory structure * implementation. The bottom half is in zap_leaf.c. * * The zdir is an extendable hash data structure. There is a table of * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are * each a constant size and hold a variable number of directory entries. * The buckets (aka "leaf nodes") are implemented in zap_leaf.c. * * The pointer table holds a power of 2 number of pointers. * (1<zd_data->zd_phys->zd_prefix_len). The bucket pointed to * by the pointer at index i in the table holds entries whose hash value * has a zd_prefix_len - bit prefix */ #include #include #include #include #include #include #include #include #include int fzap_default_block_shift = 14; /* 16k blocksize */ static void zap_leaf_pageout(dmu_buf_t *db, void *vl); static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks); void fzap_byteswap(void *vbuf, size_t size) { uint64_t block_type; block_type = *(uint64_t *)vbuf; if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF)) zap_leaf_byteswap(vbuf, size); else { /* it's a ptrtbl block */ byteswap_uint64_array(vbuf, size); } } void fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags) { dmu_buf_t *db; zap_leaf_t *l; int i; zap_phys_t *zp; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); zap->zap_ismicro = FALSE; (void) dmu_buf_update_user(zap->zap_dbuf, zap, zap, &zap->zap_f.zap_phys, zap_evict); mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); zap->zap_f.zap_block_shift = highbit(zap->zap_dbuf->db_size) - 1; zp = zap->zap_f.zap_phys; /* * explicitly zero it since it might be coming from an * initialized microzap */ bzero(zap->zap_dbuf->db_data, zap->zap_dbuf->db_size); zp->zap_block_type = ZBT_HEADER; zp->zap_magic = ZAP_MAGIC; zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap); zp->zap_freeblk = 2; /* block 1 will be the first leaf */ zp->zap_num_leafs = 1; zp->zap_num_entries = 0; zp->zap_salt = zap->zap_salt; zp->zap_normflags = zap->zap_normflags; zp->zap_flags = flags; /* block 1 will be the first leaf */ for (i = 0; i < (1<zap_ptrtbl.zt_shift); i++) ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1; /* * set up block 1 - the first leaf */ VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 1<l_dbuf = db; l->l_phys = db->db_data; zap_leaf_init(l, zp->zap_normflags != 0); kmem_free(l, sizeof (zap_leaf_t)); dmu_buf_rele(db, FTAG); } static int zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx) { if (RW_WRITE_HELD(&zap->zap_rwlock)) return (1); if (rw_tryupgrade(&zap->zap_rwlock)) { dmu_buf_will_dirty(zap->zap_dbuf, tx); return (1); } return (0); } /* * Generic routines for dealing with the pointer & cookie tables. */ static int zap_table_grow(zap_t *zap, zap_table_phys_t *tbl, void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n), dmu_tx_t *tx) { uint64_t b, newblk; dmu_buf_t *db_old, *db_new; int err; int bs = FZAP_BLOCK_SHIFT(zap); int hepb = 1<<(bs-4); /* hepb = half the number of entries in a block */ ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); ASSERT(tbl->zt_blk != 0); ASSERT(tbl->zt_numblks > 0); if (tbl->zt_nextblk != 0) { newblk = tbl->zt_nextblk; } else { newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2); tbl->zt_nextblk = newblk; ASSERT3U(tbl->zt_blks_copied, ==, 0); dmu_prefetch(zap->zap_objset, zap->zap_object, tbl->zt_blk << bs, tbl->zt_numblks << bs); } /* * Copy the ptrtbl from the old to new location. */ b = tbl->zt_blks_copied; err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_blk + b) << bs, FTAG, &db_old); if (err) return (err); /* first half of entries in old[b] go to new[2*b+0] */ VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, (newblk + 2*b+0) << bs, FTAG, &db_new)); dmu_buf_will_dirty(db_new, tx); transfer_func(db_old->db_data, db_new->db_data, hepb); dmu_buf_rele(db_new, FTAG); /* second half of entries in old[b] go to new[2*b+1] */ VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, (newblk + 2*b+1) << bs, FTAG, &db_new)); dmu_buf_will_dirty(db_new, tx); transfer_func((uint64_t *)db_old->db_data + hepb, db_new->db_data, hepb); dmu_buf_rele(db_new, FTAG); dmu_buf_rele(db_old, FTAG); tbl->zt_blks_copied++; dprintf("copied block %llu of %llu\n", tbl->zt_blks_copied, tbl->zt_numblks); if (tbl->zt_blks_copied == tbl->zt_numblks) { (void) dmu_free_range(zap->zap_objset, zap->zap_object, tbl->zt_blk << bs, tbl->zt_numblks << bs, tx); tbl->zt_blk = newblk; tbl->zt_numblks *= 2; tbl->zt_shift++; tbl->zt_nextblk = 0; tbl->zt_blks_copied = 0; dprintf("finished; numblocks now %llu (%lluk entries)\n", tbl->zt_numblks, 1<<(tbl->zt_shift-10)); } return (0); } static int zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val, dmu_tx_t *tx) { int err; uint64_t blk, off; int bs = FZAP_BLOCK_SHIFT(zap); dmu_buf_t *db; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT(tbl->zt_blk != 0); dprintf("storing %llx at index %llx\n", val, idx); blk = idx >> (bs-3); off = idx & ((1<<(bs-3))-1); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_blk + blk) << bs, FTAG, &db); if (err) return (err); dmu_buf_will_dirty(db, tx); if (tbl->zt_nextblk != 0) { uint64_t idx2 = idx * 2; uint64_t blk2 = idx2 >> (bs-3); uint64_t off2 = idx2 & ((1<<(bs-3))-1); dmu_buf_t *db2; err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_nextblk + blk2) << bs, FTAG, &db2); if (err) { dmu_buf_rele(db, FTAG); return (err); } dmu_buf_will_dirty(db2, tx); ((uint64_t *)db2->db_data)[off2] = val; ((uint64_t *)db2->db_data)[off2+1] = val; dmu_buf_rele(db2, FTAG); } ((uint64_t *)db->db_data)[off] = val; dmu_buf_rele(db, FTAG); return (0); } static int zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp) { uint64_t blk, off; int err; dmu_buf_t *db; int bs = FZAP_BLOCK_SHIFT(zap); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); blk = idx >> (bs-3); off = idx & ((1<<(bs-3))-1); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_blk + blk) << bs, FTAG, &db); if (err) return (err); *valp = ((uint64_t *)db->db_data)[off]; dmu_buf_rele(db, FTAG); if (tbl->zt_nextblk != 0) { /* * read the nextblk for the sake of i/o error checking, * so that zap_table_load() will catch errors for * zap_table_store. */ blk = (idx*2) >> (bs-3); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_nextblk + blk) << bs, FTAG, &db); dmu_buf_rele(db, FTAG); } return (err); } /* * Routines for growing the ptrtbl. */ static void zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n) { int i; for (i = 0; i < n; i++) { uint64_t lb = src[i]; dst[2*i+0] = lb; dst[2*i+1] = lb; } } static int zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx) { /* * The pointer table should never use more hash bits than we * have (otherwise we'd be using useless zero bits to index it). * If we are within 2 bits of running out, stop growing, since * this is already an aberrant condition. */ if (zap->zap_f.zap_phys->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2) return (ENOSPC); if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) { /* * We are outgrowing the "embedded" ptrtbl (the one * stored in the header block). Give it its own entire * block, which will double the size of the ptrtbl. */ uint64_t newblk; dmu_buf_t *db_new; int err; ASSERT3U(zap->zap_f.zap_phys->zap_ptrtbl.zt_shift, ==, ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); ASSERT3U(zap->zap_f.zap_phys->zap_ptrtbl.zt_blk, ==, 0); newblk = zap_allocate_blocks(zap, 1); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new); if (err) return (err); dmu_buf_will_dirty(db_new, tx); zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); dmu_buf_rele(db_new, FTAG); zap->zap_f.zap_phys->zap_ptrtbl.zt_blk = newblk; zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks = 1; zap->zap_f.zap_phys->zap_ptrtbl.zt_shift++; ASSERT3U(1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift, ==, zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks << (FZAP_BLOCK_SHIFT(zap)-3)); return (0); } else { return (zap_table_grow(zap, &zap->zap_f.zap_phys->zap_ptrtbl, zap_ptrtbl_transfer, tx)); } } static void zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx) { dmu_buf_will_dirty(zap->zap_dbuf, tx); mutex_enter(&zap->zap_f.zap_num_entries_mtx); ASSERT(delta > 0 || zap->zap_f.zap_phys->zap_num_entries >= -delta); zap->zap_f.zap_phys->zap_num_entries += delta; mutex_exit(&zap->zap_f.zap_num_entries_mtx); } static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks) { uint64_t newblk; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); newblk = zap->zap_f.zap_phys->zap_freeblk; zap->zap_f.zap_phys->zap_freeblk += nblocks; return (newblk); } static zap_leaf_t * zap_create_leaf(zap_t *zap, dmu_tx_t *tx) { void *winner; zap_leaf_t *l = kmem_alloc(sizeof (zap_leaf_t), KM_SLEEP); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); rw_init(&l->l_rwlock, 0, 0, 0); rw_enter(&l->l_rwlock, RW_WRITER); l->l_blkid = zap_allocate_blocks(zap, 1); l->l_dbuf = NULL; l->l_phys = NULL; VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf)); winner = dmu_buf_set_user(l->l_dbuf, l, &l->l_phys, zap_leaf_pageout); ASSERT(winner == NULL); dmu_buf_will_dirty(l->l_dbuf, tx); zap_leaf_init(l, zap->zap_normflags != 0); zap->zap_f.zap_phys->zap_num_leafs++; return (l); } int fzap_count(zap_t *zap, uint64_t *count) { ASSERT(!zap->zap_ismicro); mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */ *count = zap->zap_f.zap_phys->zap_num_entries; mutex_exit(&zap->zap_f.zap_num_entries_mtx); return (0); } /* * Routines for obtaining zap_leaf_t's */ void zap_put_leaf(zap_leaf_t *l) { rw_exit(&l->l_rwlock); dmu_buf_rele(l->l_dbuf, NULL); } _NOTE(ARGSUSED(0)) static void zap_leaf_pageout(dmu_buf_t *db, void *vl) { zap_leaf_t *l = vl; rw_destroy(&l->l_rwlock); kmem_free(l, sizeof (zap_leaf_t)); } static zap_leaf_t * zap_open_leaf(uint64_t blkid, dmu_buf_t *db) { zap_leaf_t *l, *winner; ASSERT(blkid != 0); l = kmem_alloc(sizeof (zap_leaf_t), KM_SLEEP); rw_init(&l->l_rwlock, 0, 0, 0); rw_enter(&l->l_rwlock, RW_WRITER); l->l_blkid = blkid; l->l_bs = highbit(db->db_size)-1; l->l_dbuf = db; l->l_phys = NULL; winner = dmu_buf_set_user(db, l, &l->l_phys, zap_leaf_pageout); rw_exit(&l->l_rwlock); if (winner != NULL) { /* someone else set it first */ zap_leaf_pageout(NULL, l); l = winner; } /* * lhr_pad was previously used for the next leaf in the leaf * chain. There should be no chained leafs (as we have removed * support for them). */ ASSERT3U(l->l_phys->l_hdr.lh_pad1, ==, 0); /* * There should be more hash entries than there can be * chunks to put in the hash table */ ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3); /* The chunks should begin at the end of the hash table */ ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, &l->l_phys->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]); /* The chunks should end at the end of the block */ ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) - (uintptr_t)l->l_phys, ==, l->l_dbuf->db_size); return (l); } static int zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) { dmu_buf_t *db; zap_leaf_t *l; int bs = FZAP_BLOCK_SHIFT(zap); int err; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, blkid << bs, NULL, &db); if (err) return (err); ASSERT3U(db->db_object, ==, zap->zap_object); ASSERT3U(db->db_offset, ==, blkid << bs); ASSERT3U(db->db_size, ==, 1 << bs); ASSERT(blkid != 0); l = dmu_buf_get_user(db); if (l == NULL) l = zap_open_leaf(blkid, db); rw_enter(&l->l_rwlock, lt); /* * Must lock before dirtying, otherwise l->l_phys could change, * causing ASSERT below to fail. */ if (lt == RW_WRITER) dmu_buf_will_dirty(db, tx); ASSERT3U(l->l_blkid, ==, blkid); ASSERT3P(l->l_dbuf, ==, db); ASSERT3P(l->l_phys, ==, l->l_dbuf->db_data); ASSERT3U(l->l_phys->l_hdr.lh_block_type, ==, ZBT_LEAF); ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); *lp = l; return (0); } static int zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp) { ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) { ASSERT3U(idx, <, (1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift)); *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); return (0); } else { return (zap_table_load(zap, &zap->zap_f.zap_phys->zap_ptrtbl, idx, valp)); } } static int zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx) { ASSERT(tx != NULL); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); if (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk == 0) { ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk; return (0); } else { return (zap_table_store(zap, &zap->zap_f.zap_phys->zap_ptrtbl, idx, blk, tx)); } } static int zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) { uint64_t idx, blk; int err; ASSERT(zap->zap_dbuf == NULL || zap->zap_f.zap_phys == zap->zap_dbuf->db_data); ASSERT3U(zap->zap_f.zap_phys->zap_magic, ==, ZAP_MAGIC); idx = ZAP_HASH_IDX(h, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); err = zap_idx_to_blk(zap, idx, &blk); if (err != 0) return (err); err = zap_get_leaf_byblk(zap, blk, tx, lt, lp); ASSERT(err || ZAP_HASH_IDX(h, (*lp)->l_phys->l_hdr.lh_prefix_len) == (*lp)->l_phys->l_hdr.lh_prefix); return (err); } static int zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx, zap_leaf_t **lp) { zap_t *zap = zn->zn_zap; uint64_t hash = zn->zn_hash; zap_leaf_t *nl; int prefix_diff, i, err; uint64_t sibling; int old_prefix_len = l->l_phys->l_hdr.lh_prefix_len; ASSERT3U(old_prefix_len, <=, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, l->l_phys->l_hdr.lh_prefix); if (zap_tryupgradedir(zap, tx) == 0 || old_prefix_len == zap->zap_f.zap_phys->zap_ptrtbl.zt_shift) { /* We failed to upgrade, or need to grow the pointer table */ objset_t *os = zap->zap_objset; uint64_t object = zap->zap_object; zap_put_leaf(l); zap_unlockdir(zap); err = zap_lockdir(os, object, tx, RW_WRITER, FALSE, FALSE, &zn->zn_zap); zap = zn->zn_zap; if (err) return (err); ASSERT(!zap->zap_ismicro); while (old_prefix_len == zap->zap_f.zap_phys->zap_ptrtbl.zt_shift) { err = zap_grow_ptrtbl(zap, tx); if (err) return (err); } err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l); if (err) return (err); if (l->l_phys->l_hdr.lh_prefix_len != old_prefix_len) { /* it split while our locks were down */ *lp = l; return (0); } } ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); ASSERT3U(old_prefix_len, <, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, l->l_phys->l_hdr.lh_prefix); prefix_diff = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - (old_prefix_len + 1); sibling = (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff; /* check for i/o errors before doing zap_leaf_split */ for (i = 0; i < (1ULL<l_blkid); } nl = zap_create_leaf(zap, tx); zap_leaf_split(l, nl, zap->zap_normflags != 0); /* set sibling pointers */ for (i = 0; i < (1ULL<l_blkid, tx); ASSERT3U(err, ==, 0); /* we checked for i/o errors above */ } if (hash & (1ULL << (64 - l->l_phys->l_hdr.lh_prefix_len))) { /* we want the sibling */ zap_put_leaf(l); *lp = nl; } else { zap_put_leaf(nl); *lp = l; } return (0); } static void zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx) { zap_t *zap = zn->zn_zap; int shift = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift; int leaffull = (l->l_phys->l_hdr.lh_prefix_len == shift && l->l_phys->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER); zap_put_leaf(l); if (leaffull || zap->zap_f.zap_phys->zap_ptrtbl.zt_nextblk) { int err; /* * We are in the middle of growing the pointer table, or * this leaf will soon make us grow it. */ if (zap_tryupgradedir(zap, tx) == 0) { objset_t *os = zap->zap_objset; uint64_t zapobj = zap->zap_object; zap_unlockdir(zap); err = zap_lockdir(os, zapobj, tx, RW_WRITER, FALSE, FALSE, &zn->zn_zap); zap = zn->zn_zap; if (err) return; } /* could have finished growing while our locks were down */ if (zap->zap_f.zap_phys->zap_ptrtbl.zt_shift == shift) (void) zap_grow_ptrtbl(zap, tx); } } static int fzap_checkname(zap_name_t *zn) { if (zn->zn_key_orig_len > ZAP_MAXNAMELEN) return (ENAMETOOLONG); return (0); } static int fzap_checksize(uint64_t integer_size, uint64_t num_integers) { /* Only integer sizes supported by C */ switch (integer_size) { case 1: case 2: case 4: case 8: break; default: return (EINVAL); } if (integer_size * num_integers > ZAP_MAXVALUELEN) return (E2BIG); return (0); } static int fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers) { int err; if ((err = fzap_checkname(zn)) != 0) return (err); return (fzap_checksize(integer_size, num_integers)); } /* * Routines for manipulating attributes. */ int fzap_lookup(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, void *buf, char *realname, int rn_len, boolean_t *ncp) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; if ((err = fzap_checkname(zn)) != 0) return (err); err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { if ((err = fzap_checksize(integer_size, num_integers)) != 0) { zap_put_leaf(l); return (err); } err = zap_entry_read(&zeh, integer_size, num_integers, buf); (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname); if (ncp) { *ncp = zap_entry_normalization_conflict(&zeh, zn, NULL, zn->zn_zap); } } zap_put_leaf(l); return (err); } int fzap_add_cd(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, const void *val, uint32_t cd, dmu_tx_t *tx) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; zap_t *zap = zn->zn_zap; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT(!zap->zap_ismicro); ASSERT(fzap_check(zn, integer_size, num_integers) == 0); err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); retry: err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { err = EEXIST; goto out; } if (err != ENOENT) goto out; err = zap_entry_create(l, zn, cd, integer_size, num_integers, val, &zeh); if (err == 0) { zap_increment_num_entries(zap, 1, tx); } else if (err == EAGAIN) { err = zap_expand_leaf(zn, l, tx, &l); zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ if (err == 0) goto retry; } out: if (zap != NULL) zap_put_leaf_maybe_grow_ptrtbl(zn, l, tx); return (err); } int fzap_add(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { int err = fzap_check(zn, integer_size, num_integers); if (err != 0) return (err); return (fzap_add_cd(zn, integer_size, num_integers, val, ZAP_NEED_CD, tx)); } int fzap_update(zap_name_t *zn, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_leaf_t *l; int err, create; zap_entry_handle_t zeh; zap_t *zap = zn->zn_zap; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); err = fzap_check(zn, integer_size, num_integers); if (err != 0) return (err); err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); retry: err = zap_leaf_lookup(l, zn, &zeh); create = (err == ENOENT); ASSERT(err == 0 || err == ENOENT); if (create) { err = zap_entry_create(l, zn, ZAP_NEED_CD, integer_size, num_integers, val, &zeh); if (err == 0) zap_increment_num_entries(zap, 1, tx); } else { err = zap_entry_update(&zeh, integer_size, num_integers, val); } if (err == EAGAIN) { err = zap_expand_leaf(zn, l, tx, &l); zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ if (err == 0) goto retry; } if (zap != NULL) zap_put_leaf_maybe_grow_ptrtbl(zn, l, tx); return (err); } int fzap_length(zap_name_t *zn, uint64_t *integer_size, uint64_t *num_integers) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err != 0) goto out; if (integer_size) *integer_size = zeh.zeh_integer_size; if (num_integers) *num_integers = zeh.zeh_num_integers; out: zap_put_leaf(l); return (err); } int fzap_remove(zap_name_t *zn, dmu_tx_t *tx) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { zap_entry_remove(&zeh); zap_increment_num_entries(zn->zn_zap, -1, tx); } zap_put_leaf(l); return (err); } /* * Helper functions for consumers. */ int zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask, char *name) { zap_cursor_t zc; zap_attribute_t *za; int err; if (mask == 0) mask = -1ULL; za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); for (zap_cursor_init(&zc, os, zapobj); (err = zap_cursor_retrieve(&zc, za)) == 0; zap_cursor_advance(&zc)) { if ((za->za_first_integer & mask) == (value & mask)) { (void) strcpy(name, za->za_name); break; } } zap_cursor_fini(&zc); kmem_free(za, sizeof (zap_attribute_t)); return (err); } int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) { zap_cursor_t zc; zap_attribute_t za; int err; for (zap_cursor_init(&zc, os, fromobj); zap_cursor_retrieve(&zc, &za) == 0; (void) zap_cursor_advance(&zc)) { if (za.za_integer_length != 8 || za.za_num_integers != 1) return (EINVAL); err = zap_add(os, intoobj, za.za_name, 8, 1, &za.za_first_integer, tx); if (err) return (err); } zap_cursor_fini(&zc); return (0); } int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_add(os, obj, name, 8, 1, &value, tx)); } int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_remove(os, obj, name, tx)); } int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_lookup(os, obj, name, 8, 1, &value)); } int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, dmu_tx_t *tx) { char name[20]; uint64_t value = 0; int err; if (delta == 0) return (0); (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); err = zap_lookup(os, obj, name, 8, 1, &value); if (err != 0 && err != ENOENT) return (err); value += delta; if (value == 0) err = zap_remove(os, obj, name, tx); else err = zap_update(os, obj, name, 8, 1, &value, tx); return (err); } /* * Routines for iterating over the attributes. */ int fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za) { int err = ENOENT; zap_entry_handle_t zeh; zap_leaf_t *l; /* retrieve the next entry at or after zc_hash/zc_cd */ /* if no entry, return ENOENT */ if (zc->zc_leaf && (ZAP_HASH_IDX(zc->zc_hash, zc->zc_leaf->l_phys->l_hdr.lh_prefix_len) != zc->zc_leaf->l_phys->l_hdr.lh_prefix)) { rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; } again: if (zc->zc_leaf == NULL) { err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER, &zc->zc_leaf); if (err != 0) return (err); } else { rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); } l = zc->zc_leaf; err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh); if (err == ENOENT) { uint64_t nocare = (1ULL << (64 - l->l_phys->l_hdr.lh_prefix_len)) - 1; zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1; zc->zc_cd = 0; if (l->l_phys->l_hdr.lh_prefix_len == 0 || zc->zc_hash == 0) { zc->zc_hash = -1ULL; } else { zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; goto again; } } if (err == 0) { zc->zc_hash = zeh.zeh_hash; zc->zc_cd = zeh.zeh_cd; za->za_integer_length = zeh.zeh_integer_size; za->za_num_integers = zeh.zeh_num_integers; if (zeh.zeh_num_integers == 0) { za->za_first_integer = 0; } else { err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer); ASSERT(err == 0 || err == EOVERFLOW); } err = zap_entry_read_name(zap, &zeh, sizeof (za->za_name), za->za_name); ASSERT(err == 0); za->za_normalization_conflict = zap_entry_normalization_conflict(&zeh, NULL, za->za_name, zap); } rw_exit(&zc->zc_leaf->l_rwlock); return (err); } static void zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs) { int i, err; uint64_t lastblk = 0; /* * NB: if a leaf has more pointers than an entire ptrtbl block * can hold, then it'll be accounted for more than once, since * we won't have lastblk. */ for (i = 0; i < len; i++) { zap_leaf_t *l; if (tbl[i] == lastblk) continue; lastblk = tbl[i]; err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l); if (err == 0) { zap_leaf_stats(zap, l, zs); zap_put_leaf(l); } } } int fzap_cursor_move_to_key(zap_cursor_t *zc, zap_name_t *zn) { int err; zap_leaf_t *l; zap_entry_handle_t zeh; if (zn->zn_key_orig_len > ZAP_MAXNAMELEN) return (ENAMETOOLONG); err = zap_deref_leaf(zc->zc_zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err != 0) return (err); zc->zc_leaf = l; zc->zc_hash = zeh.zeh_hash; zc->zc_cd = zeh.zeh_cd; return (err); } void fzap_get_stats(zap_t *zap, zap_stats_t *zs) { int bs = FZAP_BLOCK_SHIFT(zap); zs->zs_blocksize = 1ULL << bs; /* * Set zap_phys_t fields */ zs->zs_num_leafs = zap->zap_f.zap_phys->zap_num_leafs; zs->zs_num_entries = zap->zap_f.zap_phys->zap_num_entries; zs->zs_num_blocks = zap->zap_f.zap_phys->zap_freeblk; zs->zs_block_type = zap->zap_f.zap_phys->zap_block_type; zs->zs_magic = zap->zap_f.zap_phys->zap_magic; zs->zs_salt = zap->zap_f.zap_phys->zap_salt; /* * Set zap_ptrtbl fields */ zs->zs_ptrtbl_len = 1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift; zs->zs_ptrtbl_nextblk = zap->zap_f.zap_phys->zap_ptrtbl.zt_nextblk; zs->zs_ptrtbl_blks_copied = zap->zap_f.zap_phys->zap_ptrtbl.zt_blks_copied; zs->zs_ptrtbl_zt_blk = zap->zap_f.zap_phys->zap_ptrtbl.zt_blk; zs->zs_ptrtbl_zt_numblks = zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks; zs->zs_ptrtbl_zt_shift = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift; if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) { /* the ptrtbl is entirely in the header block. */ zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs); } else { int b; dmu_prefetch(zap->zap_objset, zap->zap_object, zap->zap_f.zap_phys->zap_ptrtbl.zt_blk << bs, zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks << bs); for (b = 0; b < zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks; b++) { dmu_buf_t *db; int err; err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk + b) << bs, FTAG, &db); if (err == 0) { zap_stats_ptrtbl(zap, db->db_data, 1<<(bs-3), zs); dmu_buf_rele(db, FTAG); } } } } int fzap_count_write(zap_name_t *zn, int add, uint64_t *towrite, uint64_t *tooverwrite) { zap_t *zap = zn->zn_zap; zap_leaf_t *l; int err; /* * Account for the header block of the fatzap. */ if (!add && dmu_buf_freeable(zap->zap_dbuf)) { *tooverwrite += zap->zap_dbuf->db_size; } else { *towrite += zap->zap_dbuf->db_size; } /* * Account for the pointer table blocks. * If we are adding we need to account for the following cases : * - If the pointer table is embedded, this operation could force an * external pointer table. * - If this already has an external pointer table this operation * could extend the table. */ if (add) { if (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk == 0) *towrite += zap->zap_dbuf->db_size; else *towrite += (zap->zap_dbuf->db_size * 3); } /* * Now, check if the block containing leaf is freeable * and account accordingly. */ err = zap_deref_leaf(zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) { return (err); } if (!add && dmu_buf_freeable(l->l_dbuf)) { *tooverwrite += l->l_dbuf->db_size; } else { /* * If this an add operation, the leaf block could split. * Hence, we need to account for an additional leaf block. */ *towrite += (add ? 2 : 1) * l->l_dbuf->db_size; } zap_put_leaf(l); return (0); }