/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2016 Gvozden Nešković. All rights reserved. */ #include #include #include #include #include #include #include #include #ifndef isspace #define isspace(c) ((c) == ' ' || (c) == '\t' || (c) == '\n' || \ (c) == '\r' || (c) == '\f' || (c) == '\013') #endif extern boolean_t raidz_will_scalar_work(void); /* Opaque implementation with NULL methods to represent original methods */ static const raidz_impl_ops_t vdev_raidz_original_impl = { .name = "original", .is_supported = raidz_will_scalar_work, }; /* RAIDZ parity op that contain the fastest methods */ static raidz_impl_ops_t vdev_raidz_fastest_impl = { .name = "fastest" }; /* All compiled in implementations */ const raidz_impl_ops_t *raidz_all_maths[] = { &vdev_raidz_original_impl, &vdev_raidz_scalar_impl, #if defined(__amd64) &vdev_raidz_sse2_impl, &vdev_raidz_ssse3_impl, &vdev_raidz_avx2_impl, #endif }; /* Indicate that benchmark has been completed */ static boolean_t raidz_math_initialized = B_FALSE; /* Select raidz implementation */ #define IMPL_FASTEST (UINT32_MAX) #define IMPL_CYCLE (UINT32_MAX - 1) #define IMPL_ORIGINAL (0) #define IMPL_SCALAR (1) #define RAIDZ_IMPL_READ(i) (*(volatile uint32_t *) &(i)) static uint32_t zfs_vdev_raidz_impl = IMPL_SCALAR; static uint32_t user_sel_impl = IMPL_FASTEST; /* Hold all supported implementations */ static size_t raidz_supp_impl_cnt = 0; static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)]; #if defined(_KERNEL) /* * kstats values for supported implementations * Values represent per disk throughput of 8 disk+parity raidz vdev [B/s] * * PORTING NOTE: * On illumos this is not a kstat. OpenZFS uses their home-grown kstat code * which implements a free-form kstat using additional functionality that does * not exist in illumos. Because there are no software consumers of this * information, we omit a kstat API. If an administrator needs to see this * data for some reason, they can use mdb. * * The format of the kstat data on OpenZFS would be a "header" that looks like * this (a column for each entry in the "raidz_gen_name" and "raidz_rec_name" * arrays, starting with the parity function "implementation" name): * impl gen_p gen_pq gen_pqr rec_p rec_q rec_r rec_pq rec_pr rec_qr rec_pqr * This is followed by a row for each parity function implementation, showing * the "speed" values calculated for that implementation for each of the * parity generation and reconstruction functions in the "raidz_all_maths" * array. */ static raidz_impl_kstat_t raidz_impl_kstats[ARRAY_SIZE(raidz_all_maths) + 1]; #endif /* * Returns the RAIDZ operations for raidz_map() parity calculations. When * a SIMD implementation is not allowed in the current context, then fallback * to the fastest generic implementation. */ const raidz_impl_ops_t * vdev_raidz_math_get_ops(void) { if (!kfpu_allowed()) return (&vdev_raidz_scalar_impl); raidz_impl_ops_t *ops = NULL; const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl); switch (impl) { case IMPL_FASTEST: ASSERT(raidz_math_initialized); ops = &vdev_raidz_fastest_impl; break; case IMPL_CYCLE: /* Cycle through all supported implementations */ ASSERT(raidz_math_initialized); ASSERT3U(raidz_supp_impl_cnt, >, 0); static size_t cycle_impl_idx = 0; size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt; ops = raidz_supp_impl[idx]; break; case IMPL_ORIGINAL: ops = (raidz_impl_ops_t *)&vdev_raidz_original_impl; break; case IMPL_SCALAR: ops = (raidz_impl_ops_t *)&vdev_raidz_scalar_impl; break; default: ASSERT3U(impl, <, raidz_supp_impl_cnt); ASSERT3U(raidz_supp_impl_cnt, >, 0); if (impl < ARRAY_SIZE(raidz_all_maths)) ops = raidz_supp_impl[impl]; break; } ASSERT3P(ops, !=, NULL); return (ops); } /* * Select parity generation method for raidz_map */ int vdev_raidz_math_generate(raidz_map_t *rm) { raidz_gen_f gen_parity = NULL; switch (raidz_parity(rm)) { case 1: gen_parity = rm->rm_ops->gen[RAIDZ_GEN_P]; break; case 2: gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQ]; break; case 3: gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQR]; break; default: gen_parity = NULL; cmn_err(CE_PANIC, "invalid RAID-Z configuration %u", (uint_t)raidz_parity(rm)); break; } /* if method is NULL execute the original implementation */ if (gen_parity == NULL) return (RAIDZ_ORIGINAL_IMPL); gen_parity(rm); return (0); } static raidz_rec_f reconstruct_fun_p_sel(raidz_map_t *rm, const int *parity_valid, const int nbaddata) { if (nbaddata == 1 && parity_valid[CODE_P]) { return (rm->rm_ops->rec[RAIDZ_REC_P]); } return ((raidz_rec_f) NULL); } static raidz_rec_f reconstruct_fun_pq_sel(raidz_map_t *rm, const int *parity_valid, const int nbaddata) { if (nbaddata == 1) { if (parity_valid[CODE_P]) { return (rm->rm_ops->rec[RAIDZ_REC_P]); } else if (parity_valid[CODE_Q]) { return (rm->rm_ops->rec[RAIDZ_REC_Q]); } } else if (nbaddata == 2 && parity_valid[CODE_P] && parity_valid[CODE_Q]) { return (rm->rm_ops->rec[RAIDZ_REC_PQ]); } return ((raidz_rec_f) NULL); } static raidz_rec_f reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid, const int nbaddata) { if (nbaddata == 1) { if (parity_valid[CODE_P]) { return (rm->rm_ops->rec[RAIDZ_REC_P]); } else if (parity_valid[CODE_Q]) { return (rm->rm_ops->rec[RAIDZ_REC_Q]); } else if (parity_valid[CODE_R]) { return (rm->rm_ops->rec[RAIDZ_REC_R]); } } else if (nbaddata == 2) { if (parity_valid[CODE_P] && parity_valid[CODE_Q]) { return (rm->rm_ops->rec[RAIDZ_REC_PQ]); } else if (parity_valid[CODE_P] && parity_valid[CODE_R]) { return (rm->rm_ops->rec[RAIDZ_REC_PR]); } else if (parity_valid[CODE_Q] && parity_valid[CODE_R]) { return (rm->rm_ops->rec[RAIDZ_REC_QR]); } } else if (nbaddata == 3 && parity_valid[CODE_P] && parity_valid[CODE_Q] && parity_valid[CODE_R]) { return (rm->rm_ops->rec[RAIDZ_REC_PQR]); } return ((raidz_rec_f) NULL); } /* * Select data reconstruction method for raidz_map * @parity_valid - Parity validity flag * @dt - Failed data index array * @nbaddata - Number of failed data columns */ int vdev_raidz_math_reconstruct(raidz_map_t *rm, const int *parity_valid, const int *dt, const int nbaddata) { raidz_rec_f rec_fn = NULL; switch (raidz_parity(rm)) { case PARITY_P: rec_fn = reconstruct_fun_p_sel(rm, parity_valid, nbaddata); break; case PARITY_PQ: rec_fn = reconstruct_fun_pq_sel(rm, parity_valid, nbaddata); break; case PARITY_PQR: rec_fn = reconstruct_fun_pqr_sel(rm, parity_valid, nbaddata); break; default: cmn_err(CE_PANIC, "invalid RAID-Z configuration %u", (uint_t)raidz_parity(rm)); break; } if (rec_fn == NULL) return (RAIDZ_ORIGINAL_IMPL); else return (rec_fn(rm, dt)); } const char *raidz_gen_name[] = { "gen_p", "gen_pq", "gen_pqr" }; const char *raidz_rec_name[] = { "rec_p", "rec_q", "rec_r", "rec_pq", "rec_pr", "rec_qr", "rec_pqr" }; #if defined(_KERNEL) #define BENCH_D_COLS (8ULL) #define BENCH_COLS (BENCH_D_COLS + PARITY_PQR) #define BENCH_ZIO_SIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT) /* 128 kiB */ #define BENCH_NS MSEC2NSEC(1) /* 1ms */ typedef void (*benchmark_fn)(raidz_map_t *rm, const int fn); static void benchmark_gen_impl(raidz_map_t *rm, const int fn) { (void) fn; vdev_raidz_generate_parity(rm); } static void benchmark_rec_impl(raidz_map_t *rm, const int fn) { static const int rec_tgt[7][3] = { {1, 2, 3}, /* rec_p: bad QR & D[0] */ {0, 2, 3}, /* rec_q: bad PR & D[0] */ {0, 1, 3}, /* rec_r: bad PQ & D[0] */ {2, 3, 4}, /* rec_pq: bad R & D[0][1] */ {1, 3, 4}, /* rec_pr: bad Q & D[0][1] */ {0, 3, 4}, /* rec_qr: bad P & D[0][1] */ {3, 4, 5} /* rec_pqr: bad & D[0][1][2] */ }; vdev_raidz_reconstruct(rm, rec_tgt[fn], 3); } /* * Benchmarking of all supported implementations (raidz_supp_impl_cnt) * is performed by setting the rm_ops pointer and calling the top level * generate/reconstruct methods of bench_rm. */ static void benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn) { uint64_t run_cnt, speed, best_speed = 0; hrtime_t t_start, t_diff; raidz_impl_ops_t *curr_impl; raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt]; int impl, i; for (impl = 0; impl < raidz_supp_impl_cnt; impl++) { /* set an implementation to benchmark */ curr_impl = raidz_supp_impl[impl]; bench_rm->rm_ops = curr_impl; run_cnt = 0; t_start = gethrtime(); do { for (i = 0; i < 5; i++, run_cnt++) bench_fn(bench_rm, fn); t_diff = gethrtime() - t_start; } while (t_diff < BENCH_NS); speed = run_cnt * BENCH_ZIO_SIZE * NANOSEC; speed /= (t_diff * BENCH_COLS); if (bench_fn == benchmark_gen_impl) raidz_impl_kstats[impl].gen[fn] = speed; else raidz_impl_kstats[impl].rec[fn] = speed; /* Update fastest implementation method */ if (speed > best_speed) { best_speed = speed; if (bench_fn == benchmark_gen_impl) { fstat->gen[fn] = impl; vdev_raidz_fastest_impl.gen[fn] = curr_impl->gen[fn]; } else { fstat->rec[fn] = impl; vdev_raidz_fastest_impl.rec[fn] = curr_impl->rec[fn]; } } } } #endif /* * Initialize and benchmark all supported implementations. */ static void benchmark_raidz(void) { raidz_impl_ops_t *curr_impl; int i, c; /* Move supported impl into raidz_supp_impl */ for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) { curr_impl = (raidz_impl_ops_t *)raidz_all_maths[i]; if (curr_impl->init) curr_impl->init(); if (curr_impl->is_supported()) raidz_supp_impl[c++] = (raidz_impl_ops_t *)curr_impl; } membar_producer(); /* complete raidz_supp_impl[] init */ raidz_supp_impl_cnt = c; /* number of supported impl */ #if defined(_KERNEL) zio_t *bench_zio = NULL; raidz_map_t *bench_rm = NULL; uint64_t bench_parity; /* Fake a zio and run the benchmark on a warmed up buffer */ bench_zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP); bench_zio->io_offset = 0; bench_zio->io_size = BENCH_ZIO_SIZE; /* only data columns */ bench_zio->io_abd = abd_alloc_linear(BENCH_ZIO_SIZE, B_TRUE); memset(abd_to_buf(bench_zio->io_abd), 0xAA, BENCH_ZIO_SIZE); /* Benchmark parity generation methods */ for (int fn = 0; fn < RAIDZ_GEN_NUM; fn++) { bench_parity = fn + 1; /* New raidz_map is needed for each generate_p/q/r */ bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT, BENCH_D_COLS + bench_parity, bench_parity); benchmark_raidz_impl(bench_rm, fn, benchmark_gen_impl); vdev_raidz_map_free(bench_rm); } /* Benchmark data reconstruction methods */ bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT, BENCH_COLS, PARITY_PQR); for (int fn = 0; fn < RAIDZ_REC_NUM; fn++) benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl); vdev_raidz_map_free(bench_rm); /* cleanup the bench zio */ abd_free(bench_zio->io_abd); kmem_free(bench_zio, sizeof (zio_t)); #else /* * Skip the benchmark in user space to avoid impacting libzpool * consumers (zdb, zhack, zinject, ztest). The last implementation * is assumed to be the fastest and used by default. */ memcpy(&vdev_raidz_fastest_impl, raidz_supp_impl[raidz_supp_impl_cnt - 1], sizeof (vdev_raidz_fastest_impl)); strcpy(vdev_raidz_fastest_impl.name, "fastest"); #endif /* _KERNEL */ } void vdev_raidz_math_init(void) { /* Determine the fastest available implementation. */ benchmark_raidz(); /* Finish initialization */ atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl); raidz_math_initialized = B_TRUE; } void vdev_raidz_math_fini(void) { raidz_impl_ops_t const *curr_impl; for (int i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) { curr_impl = raidz_all_maths[i]; if (curr_impl->fini) curr_impl->fini(); } } static const struct { char *name; uint32_t sel; } math_impl_opts[] = { { "cycle", IMPL_CYCLE }, { "fastest", IMPL_FASTEST }, { "original", IMPL_ORIGINAL }, { "scalar", IMPL_SCALAR } }; /* * Function sets desired raidz implementation. * * If we are called before init(), user preference will be saved in * user_sel_impl, and applied in later init() call. This occurs when module * parameter is specified on module load. Otherwise, directly update * zfs_vdev_raidz_impl. * * @val Name of raidz implementation to use * @param Unused. */ int vdev_raidz_impl_set(const char *val) { int err = EINVAL; char req_name[RAIDZ_IMPL_NAME_MAX]; uint32_t impl = RAIDZ_IMPL_READ(user_sel_impl); size_t i; /* sanitize input */ i = strnlen(val, RAIDZ_IMPL_NAME_MAX); if (i == 0 || i == RAIDZ_IMPL_NAME_MAX) return (err); strlcpy(req_name, val, RAIDZ_IMPL_NAME_MAX); while (i > 0 && !!isspace(req_name[i-1])) i--; req_name[i] = '\0'; /* Check mandatory options */ for (i = 0; i < ARRAY_SIZE(math_impl_opts); i++) { if (strcmp(req_name, math_impl_opts[i].name) == 0) { impl = math_impl_opts[i].sel; err = 0; break; } } /* check all supported impl if init() was already called */ if (err != 0 && raidz_math_initialized) { /* check all supported implementations */ for (i = 0; i < raidz_supp_impl_cnt; i++) { if (strcmp(req_name, raidz_supp_impl[i]->name) == 0) { impl = i; err = 0; break; } } } if (err == 0) { if (raidz_math_initialized) atomic_swap_32(&zfs_vdev_raidz_impl, impl); else atomic_swap_32(&user_sel_impl, impl); } return (err); } #if defined(_KERNEL) && defined(__linux__) static int zfs_vdev_raidz_impl_set(const char *val, zfs_kernel_param_t *kp) { return (vdev_raidz_impl_set(val)); } static int zfs_vdev_raidz_impl_get(char *buffer, zfs_kernel_param_t *kp) { int i, cnt = 0; char *fmt; const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl); ASSERT(raidz_math_initialized); /* list mandatory options */ for (i = 0; i < ARRAY_SIZE(math_impl_opts) - 2; i++) { fmt = (impl == math_impl_opts[i].sel) ? "[%s] " : "%s "; cnt += sprintf(buffer + cnt, fmt, math_impl_opts[i].name); } /* list all supported implementations */ for (i = 0; i < raidz_supp_impl_cnt; i++) { fmt = (i == impl) ? "[%s] " : "%s "; cnt += sprintf(buffer + cnt, fmt, raidz_supp_impl[i]->name); } return (cnt); } module_param_call(zfs_vdev_raidz_impl, zfs_vdev_raidz_impl_set, zfs_vdev_raidz_impl_get, NULL, 0644); MODULE_PARM_DESC(zfs_vdev_raidz_impl, "Select raidz implementation."); #endif