/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #define CRYPTO_OPS_OFFSET(f) offsetof(crypto_ops_t, co_##f) #define CRYPTO_CIPHER_OFFSET(f) offsetof(crypto_cipher_ops_t, f) /* * Encryption and decryption routines. */ /* * The following are the possible returned values common to all the routines * below. The applicability of some of these return values depends on the * presence of the arguments. * * CRYPTO_SUCCESS: The operation completed successfully. * CRYPTO_QUEUED: A request was submitted successfully. The callback * routine will be called when the operation is done. * CRYPTO_INVALID_MECH_NUMBER, CRYPTO_INVALID_MECH_PARAM, or * CRYPTO_INVALID_MECH for problems with the 'mech'. * CRYPTO_INVALID_DATA for bogus 'data' * CRYPTO_HOST_MEMORY for failure to allocate memory to handle this work. * CRYPTO_INVALID_CONTEXT: Not a valid context. * CRYPTO_BUSY: Cannot process the request now. Schedule a * crypto_bufcall(), or try later. * CRYPTO_NOT_SUPPORTED and CRYPTO_MECH_NOT_SUPPORTED: No provider is * capable of a function or a mechanism. * CRYPTO_INVALID_KEY: bogus 'key' argument. * CRYPTO_INVALID_PLAINTEXT: bogus 'plaintext' argument. * CRYPTO_INVALID_CIPHERTEXT: bogus 'ciphertext' argument. */ /* * crypto_cipher_init_prov() * * Arguments: * * pd: provider descriptor * sid: session id * mech: crypto_mechanism_t pointer. * mech_type is a valid value previously returned by * crypto_mech2id(); * When the mech's parameter is not NULL, its definition depends * on the standard definition of the mechanism. * key: pointer to a crypto_key_t structure. * tmpl: a crypto_ctx_template_t, opaque template of a context of an * encryption or decryption with the 'mech' using 'key'. * 'tmpl' is created by a previous call to * crypto_create_ctx_template(). * ctxp: Pointer to a crypto_context_t. * func: CRYPTO_FG_ENCRYPT or CRYPTO_FG_DECRYPT. * cr: crypto_call_req_t calling conditions and call back info. * * Description: * This is a common function invoked internally by both * crypto_encrypt_init() and crypto_decrypt_init(). * Asynchronously submits a request for, or synchronously performs the * initialization of an encryption or a decryption operation. * When possible and applicable, will internally use the pre-expanded key * schedule from the context template, tmpl. * When complete and successful, 'ctxp' will contain a crypto_context_t * valid for later calls to encrypt_update() and encrypt_final(), or * decrypt_update() and decrypt_final(). * The caller should hold a reference on the specified provider * descriptor before calling this function. * * Context: * Process or interrupt, according to the semantics dictated by the 'cr'. * * Returns: * See comment in the beginning of the file. */ static int crypto_cipher_init_prov(crypto_provider_t provider, crypto_session_id_t sid, crypto_mechanism_t *mech, crypto_key_t *key, crypto_spi_ctx_template_t tmpl, crypto_context_t *ctxp, crypto_call_req_t *crq, crypto_func_group_t func) { int error; crypto_ctx_t *ctx; kcf_req_params_t params; kcf_provider_desc_t *pd = provider; kcf_provider_desc_t *real_provider = pd; ASSERT(KCF_PROV_REFHELD(pd)); if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) { if (func == CRYPTO_FG_ENCRYPT) { error = kcf_get_hardware_provider(mech->cm_type, key, CRYPTO_MECH_INVALID, NULL, pd, &real_provider, CRYPTO_FG_ENCRYPT); } else { error = kcf_get_hardware_provider(mech->cm_type, key, CRYPTO_MECH_INVALID, NULL, pd, &real_provider, CRYPTO_FG_DECRYPT); } if (error != CRYPTO_SUCCESS) return (error); } /* Allocate and initialize the canonical context */ if ((ctx = kcf_new_ctx(crq, real_provider, sid)) == NULL) { if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) KCF_PROV_REFRELE(real_provider); return (CRYPTO_HOST_MEMORY); } /* The fast path for SW providers. */ if (CHECK_FASTPATH(crq, pd)) { crypto_mechanism_t lmech; lmech = *mech; KCF_SET_PROVIDER_MECHNUM(mech->cm_type, real_provider, &lmech); if (func == CRYPTO_FG_ENCRYPT) error = KCF_PROV_ENCRYPT_INIT(real_provider, ctx, &lmech, key, tmpl, KCF_SWFP_RHNDL(crq)); else { ASSERT(func == CRYPTO_FG_DECRYPT); error = KCF_PROV_DECRYPT_INIT(real_provider, ctx, &lmech, key, tmpl, KCF_SWFP_RHNDL(crq)); } KCF_PROV_INCRSTATS(pd, error); goto done; } /* Check if context sharing is possible */ if (pd->pd_prov_type == CRYPTO_HW_PROVIDER && key->ck_format == CRYPTO_KEY_RAW && KCF_CAN_SHARE_OPSTATE(pd, mech->cm_type)) { kcf_context_t *tctxp = (kcf_context_t *)ctx; kcf_provider_desc_t *tpd = NULL; crypto_mech_info_t *sinfo; if ((kcf_get_sw_prov(mech->cm_type, &tpd, &tctxp->kc_mech, B_FALSE) == CRYPTO_SUCCESS)) { int tlen; sinfo = &(KCF_TO_PROV_MECHINFO(tpd, mech->cm_type)); /* * key->ck_length from the consumer is always in bits. * We convert it to be in the same unit registered by * the provider in order to do a comparison. */ if (sinfo->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BYTES) tlen = CRYPTO_BITS2BYTES(key->ck_length); else tlen = key->ck_length; /* * Check if the software provider can support context * sharing and support this key length. */ if ((sinfo->cm_mech_flags & CRYPTO_CAN_SHARE_OPSTATE) && (tlen >= sinfo->cm_min_key_length) && (tlen <= sinfo->cm_max_key_length)) { ctx->cc_flags = CRYPTO_INIT_OPSTATE; tctxp->kc_sw_prov_desc = tpd; } else KCF_PROV_REFRELE(tpd); } } if (func == CRYPTO_FG_ENCRYPT) { KCF_WRAP_ENCRYPT_OPS_PARAMS(¶ms, KCF_OP_INIT, sid, mech, key, NULL, NULL, tmpl); } else { ASSERT(func == CRYPTO_FG_DECRYPT); KCF_WRAP_DECRYPT_OPS_PARAMS(¶ms, KCF_OP_INIT, sid, mech, key, NULL, NULL, tmpl); } error = kcf_submit_request(real_provider, ctx, crq, ¶ms, B_FALSE); if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) KCF_PROV_REFRELE(real_provider); done: if ((error == CRYPTO_SUCCESS) || (error == CRYPTO_QUEUED)) *ctxp = (crypto_context_t)ctx; else { /* Release the hold done in kcf_new_ctx(). */ KCF_CONTEXT_REFRELE((kcf_context_t *)ctx->cc_framework_private); } return (error); } /* * Same as crypto_cipher_init_prov(), but relies on the scheduler to pick * an appropriate provider. See crypto_cipher_init_prov() comments for more * details. */ static int crypto_cipher_init(crypto_mechanism_t *mech, crypto_key_t *key, crypto_ctx_template_t tmpl, crypto_context_t *ctxp, crypto_call_req_t *crq, crypto_func_group_t func) { int error; kcf_mech_entry_t *me; kcf_provider_desc_t *pd; kcf_ctx_template_t *ctx_tmpl; crypto_spi_ctx_template_t spi_ctx_tmpl = NULL; kcf_prov_tried_t *list = NULL; retry: /* pd is returned held */ if ((pd = kcf_get_mech_provider(mech->cm_type, key, &me, &error, list, func, 0)) == NULL) { if (list != NULL) kcf_free_triedlist(list); return (error); } /* * For SW providers, check the validity of the context template * It is very rare that the generation number mis-matches, so * is acceptable to fail here, and let the consumer recover by * freeing this tmpl and create a new one for the key and new SW * provider */ if ((pd->pd_prov_type == CRYPTO_SW_PROVIDER) && ((ctx_tmpl = (kcf_ctx_template_t *)tmpl) != NULL)) { if (ctx_tmpl->ct_generation != me->me_gen_swprov) { if (list != NULL) kcf_free_triedlist(list); KCF_PROV_REFRELE(pd); return (CRYPTO_OLD_CTX_TEMPLATE); } else { spi_ctx_tmpl = ctx_tmpl->ct_prov_tmpl; } } error = crypto_cipher_init_prov(pd, pd->pd_sid, mech, key, spi_ctx_tmpl, ctxp, crq, func); if (error != CRYPTO_SUCCESS && error != CRYPTO_QUEUED && IS_RECOVERABLE(error)) { /* Add pd to the linked list of providers tried. */ if (kcf_insert_triedlist(&list, pd, KCF_KMFLAG(crq)) != NULL) goto retry; } if (list != NULL) kcf_free_triedlist(list); KCF_PROV_REFRELE(pd); return (error); } /* * crypto_encrypt_prov() * * Arguments: * pd: provider descriptor * sid: session id * mech: crypto_mechanism_t pointer. * mech_type is a valid value previously returned by * crypto_mech2id(); * When the mech's parameter is not NULL, its definition depends * on the standard definition of the mechanism. * key: pointer to a crypto_key_t structure. * plaintext: The message to be encrypted * ciphertext: Storage for the encrypted message. The length needed * depends on the mechanism, and the plaintext's size. * tmpl: a crypto_ctx_template_t, opaque template of a context of an * encryption with the 'mech' using 'key'. 'tmpl' is created by * a previous call to crypto_create_ctx_template(). * cr: crypto_call_req_t calling conditions and call back info. * * Description: * Asynchronously submits a request for, or synchronously performs a * single-part encryption of 'plaintext' with the mechanism 'mech', using * the key 'key'. * When complete and successful, 'ciphertext' will contain the encrypted * message. * * Context: * Process or interrupt, according to the semantics dictated by the 'cr'. * * Returns: * See comment in the beginning of the file. */ int crypto_encrypt_prov(crypto_provider_t provider, crypto_session_id_t sid, crypto_mechanism_t *mech, crypto_data_t *plaintext, crypto_key_t *key, crypto_ctx_template_t tmpl, crypto_data_t *ciphertext, crypto_call_req_t *crq) { kcf_req_params_t params; kcf_provider_desc_t *pd = provider; kcf_provider_desc_t *real_provider = pd; int error; ASSERT(KCF_PROV_REFHELD(pd)); if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) { error = kcf_get_hardware_provider(mech->cm_type, key, CRYPTO_MECH_INVALID, NULL, pd, &real_provider, CRYPTO_FG_ENCRYPT_ATOMIC); if (error != CRYPTO_SUCCESS) return (error); } KCF_WRAP_ENCRYPT_OPS_PARAMS(¶ms, KCF_OP_ATOMIC, sid, mech, key, plaintext, ciphertext, tmpl); error = kcf_submit_request(real_provider, NULL, crq, ¶ms, B_FALSE); if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) KCF_PROV_REFRELE(real_provider); return (error); } /* * Same as crypto_encrypt_prov(), but relies on the scheduler to pick * a provider. See crypto_encrypt_prov() for more details. */ int crypto_encrypt(crypto_mechanism_t *mech, crypto_data_t *plaintext, crypto_key_t *key, crypto_ctx_template_t tmpl, crypto_data_t *ciphertext, crypto_call_req_t *crq) { int error; kcf_mech_entry_t *me; kcf_req_params_t params; kcf_provider_desc_t *pd; kcf_ctx_template_t *ctx_tmpl; crypto_spi_ctx_template_t spi_ctx_tmpl = NULL; kcf_prov_tried_t *list = NULL; retry: /* pd is returned held */ if ((pd = kcf_get_mech_provider(mech->cm_type, key, &me, &error, list, CRYPTO_FG_ENCRYPT_ATOMIC, plaintext->cd_length)) == NULL) { if (list != NULL) kcf_free_triedlist(list); return (error); } /* * For SW providers, check the validity of the context template * It is very rare that the generation number mis-matches, so * is acceptable to fail here, and let the consumer recover by * freeing this tmpl and create a new one for the key and new SW * provider */ if ((pd->pd_prov_type == CRYPTO_SW_PROVIDER) && ((ctx_tmpl = (kcf_ctx_template_t *)tmpl) != NULL)) { if (ctx_tmpl->ct_generation != me->me_gen_swprov) { if (list != NULL) kcf_free_triedlist(list); KCF_PROV_REFRELE(pd); return (CRYPTO_OLD_CTX_TEMPLATE); } else { spi_ctx_tmpl = ctx_tmpl->ct_prov_tmpl; } } /* The fast path for SW providers. */ if (CHECK_FASTPATH(crq, pd)) { crypto_mechanism_t lmech; lmech = *mech; KCF_SET_PROVIDER_MECHNUM(mech->cm_type, pd, &lmech); error = KCF_PROV_ENCRYPT_ATOMIC(pd, pd->pd_sid, &lmech, key, plaintext, ciphertext, spi_ctx_tmpl, KCF_SWFP_RHNDL(crq)); KCF_PROV_INCRSTATS(pd, error); } else { KCF_WRAP_ENCRYPT_OPS_PARAMS(¶ms, KCF_OP_ATOMIC, pd->pd_sid, mech, key, plaintext, ciphertext, spi_ctx_tmpl); error = kcf_submit_request(pd, NULL, crq, ¶ms, B_FALSE); } if (error != CRYPTO_SUCCESS && error != CRYPTO_QUEUED && IS_RECOVERABLE(error)) { /* Add pd to the linked list of providers tried. */ if (kcf_insert_triedlist(&list, pd, KCF_KMFLAG(crq)) != NULL) goto retry; } if (list != NULL) kcf_free_triedlist(list); KCF_PROV_REFRELE(pd); return (error); } /* * crypto_encrypt_init_prov() * * Calls crypto_cipher_init_prov() to initialize an encryption operation. */ int crypto_encrypt_init_prov(crypto_provider_t pd, crypto_session_id_t sid, crypto_mechanism_t *mech, crypto_key_t *key, crypto_ctx_template_t tmpl, crypto_context_t *ctxp, crypto_call_req_t *crq) { return (crypto_cipher_init_prov(pd, sid, mech, key, tmpl, ctxp, crq, CRYPTO_FG_ENCRYPT)); } /* * crypto_encrypt_init() * * Calls crypto_cipher_init() to initialize an encryption operation */ int crypto_encrypt_init(crypto_mechanism_t *mech, crypto_key_t *key, crypto_ctx_template_t tmpl, crypto_context_t *ctxp, crypto_call_req_t *crq) { return (crypto_cipher_init(mech, key, tmpl, ctxp, crq, CRYPTO_FG_ENCRYPT)); } /* * crypto_encrypt_update() * * Arguments: * context: A crypto_context_t initialized by encrypt_init(). * plaintext: The message part to be encrypted * ciphertext: Storage for the encrypted message part. * cr: crypto_call_req_t calling conditions and call back info. * * Description: * Asynchronously submits a request for, or synchronously performs a * part of an encryption operation. * * Context: * Process or interrupt, according to the semantics dictated by the 'cr'. * * Returns: * See comment in the beginning of the file. */ int crypto_encrypt_update(crypto_context_t context, crypto_data_t *plaintext, crypto_data_t *ciphertext, crypto_call_req_t *cr) { crypto_ctx_t *ctx = (crypto_ctx_t *)context; kcf_context_t *kcf_ctx; kcf_provider_desc_t *pd; int error; kcf_req_params_t params; if ((ctx == NULL) || ((kcf_ctx = (kcf_context_t *)ctx->cc_framework_private) == NULL) || ((pd = kcf_ctx->kc_prov_desc) == NULL)) { return (CRYPTO_INVALID_CONTEXT); } ASSERT(pd->pd_prov_type != CRYPTO_LOGICAL_PROVIDER); /* The fast path for SW providers. */ if (CHECK_FASTPATH(cr, pd)) { error = KCF_PROV_ENCRYPT_UPDATE(pd, ctx, plaintext, ciphertext, NULL); KCF_PROV_INCRSTATS(pd, error); return (error); } /* Check if we should use a software provider for small jobs */ if ((ctx->cc_flags & CRYPTO_USE_OPSTATE) && cr == NULL) { if (plaintext->cd_length < kcf_ctx->kc_mech->me_threshold && kcf_ctx->kc_sw_prov_desc != NULL && KCF_IS_PROV_USABLE(kcf_ctx->kc_sw_prov_desc)) { pd = kcf_ctx->kc_sw_prov_desc; } } KCF_WRAP_ENCRYPT_OPS_PARAMS(¶ms, KCF_OP_UPDATE, ctx->cc_session, NULL, NULL, plaintext, ciphertext, NULL); error = kcf_submit_request(pd, ctx, cr, ¶ms, B_FALSE); return (error); } /* * crypto_encrypt_final() * * Arguments: * context: A crypto_context_t initialized by encrypt_init(). * ciphertext: Storage for the last part of encrypted message * cr: crypto_call_req_t calling conditions and call back info. * * Description: * Asynchronously submits a request for, or synchronously performs the * final part of an encryption operation. * * Context: * Process or interrupt, according to the semantics dictated by the 'cr'. * * Returns: * See comment in the beginning of the file. */ int crypto_encrypt_final(crypto_context_t context, crypto_data_t *ciphertext, crypto_call_req_t *cr) { crypto_ctx_t *ctx = (crypto_ctx_t *)context; kcf_context_t *kcf_ctx; kcf_provider_desc_t *pd; int error; kcf_req_params_t params; if ((ctx == NULL) || ((kcf_ctx = (kcf_context_t *)ctx->cc_framework_private) == NULL) || ((pd = kcf_ctx->kc_prov_desc) == NULL)) { return (CRYPTO_INVALID_CONTEXT); } ASSERT(pd->pd_prov_type != CRYPTO_LOGICAL_PROVIDER); /* The fast path for SW providers. */ if (CHECK_FASTPATH(cr, pd)) { error = KCF_PROV_ENCRYPT_FINAL(pd, ctx, ciphertext, NULL); KCF_PROV_INCRSTATS(pd, error); } else { KCF_WRAP_ENCRYPT_OPS_PARAMS(¶ms, KCF_OP_FINAL, ctx->cc_session, NULL, NULL, NULL, ciphertext, NULL); error = kcf_submit_request(pd, ctx, cr, ¶ms, B_FALSE); } /* Release the hold done in kcf_new_ctx() during init step. */ KCF_CONTEXT_COND_RELEASE(error, kcf_ctx); return (error); } /* * crypto_decrypt_prov() * * Arguments: * pd: provider descriptor * sid: session id * mech: crypto_mechanism_t pointer. * mech_type is a valid value previously returned by * crypto_mech2id(); * When the mech's parameter is not NULL, its definition depends * on the standard definition of the mechanism. * key: pointer to a crypto_key_t structure. * ciphertext: The message to be encrypted * plaintext: Storage for the encrypted message. The length needed * depends on the mechanism, and the plaintext's size. * tmpl: a crypto_ctx_template_t, opaque template of a context of an * encryption with the 'mech' using 'key'. 'tmpl' is created by * a previous call to crypto_create_ctx_template(). * cr: crypto_call_req_t calling conditions and call back info. * * Description: * Asynchronously submits a request for, or synchronously performs a * single-part decryption of 'ciphertext' with the mechanism 'mech', using * the key 'key'. * When complete and successful, 'plaintext' will contain the decrypted * message. * * Context: * Process or interrupt, according to the semantics dictated by the 'cr'. * * Returns: * See comment in the beginning of the file. */ int crypto_decrypt_prov(crypto_provider_t provider, crypto_session_id_t sid, crypto_mechanism_t *mech, crypto_data_t *ciphertext, crypto_key_t *key, crypto_ctx_template_t tmpl, crypto_data_t *plaintext, crypto_call_req_t *crq) { kcf_req_params_t params; kcf_provider_desc_t *pd = provider; kcf_provider_desc_t *real_provider = pd; int rv; ASSERT(KCF_PROV_REFHELD(pd)); if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) { rv = kcf_get_hardware_provider(mech->cm_type, key, CRYPTO_MECH_INVALID, NULL, pd, &real_provider, CRYPTO_FG_DECRYPT_ATOMIC); if (rv != CRYPTO_SUCCESS) return (rv); } KCF_WRAP_DECRYPT_OPS_PARAMS(¶ms, KCF_OP_ATOMIC, sid, mech, key, ciphertext, plaintext, tmpl); rv = kcf_submit_request(real_provider, NULL, crq, ¶ms, B_FALSE); if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) KCF_PROV_REFRELE(real_provider); return (rv); } /* * Same as crypto_decrypt_prov(), but relies on the KCF scheduler to * choose a provider. See crypto_decrypt_prov() comments for more * information. */ int crypto_decrypt(crypto_mechanism_t *mech, crypto_data_t *ciphertext, crypto_key_t *key, crypto_ctx_template_t tmpl, crypto_data_t *plaintext, crypto_call_req_t *crq) { int error; kcf_mech_entry_t *me; kcf_req_params_t params; kcf_provider_desc_t *pd; kcf_ctx_template_t *ctx_tmpl; crypto_spi_ctx_template_t spi_ctx_tmpl = NULL; kcf_prov_tried_t *list = NULL; retry: /* pd is returned held */ if ((pd = kcf_get_mech_provider(mech->cm_type, key, &me, &error, list, CRYPTO_FG_DECRYPT_ATOMIC, ciphertext->cd_length)) == NULL) { if (list != NULL) kcf_free_triedlist(list); return (error); } /* * For SW providers, check the validity of the context template * It is very rare that the generation number mis-matches, so * is acceptable to fail here, and let the consumer recover by * freeing this tmpl and create a new one for the key and new SW * provider */ if ((pd->pd_prov_type == CRYPTO_SW_PROVIDER) && ((ctx_tmpl = (kcf_ctx_template_t *)tmpl) != NULL)) { if (ctx_tmpl->ct_generation != me->me_gen_swprov) { if (list != NULL) kcf_free_triedlist(list); KCF_PROV_REFRELE(pd); return (CRYPTO_OLD_CTX_TEMPLATE); } else { spi_ctx_tmpl = ctx_tmpl->ct_prov_tmpl; } } /* The fast path for SW providers. */ if (CHECK_FASTPATH(crq, pd)) { crypto_mechanism_t lmech; lmech = *mech; KCF_SET_PROVIDER_MECHNUM(mech->cm_type, pd, &lmech); error = KCF_PROV_DECRYPT_ATOMIC(pd, pd->pd_sid, &lmech, key, ciphertext, plaintext, spi_ctx_tmpl, KCF_SWFP_RHNDL(crq)); KCF_PROV_INCRSTATS(pd, error); } else { KCF_WRAP_DECRYPT_OPS_PARAMS(¶ms, KCF_OP_ATOMIC, pd->pd_sid, mech, key, ciphertext, plaintext, spi_ctx_tmpl); error = kcf_submit_request(pd, NULL, crq, ¶ms, B_FALSE); } if (error != CRYPTO_SUCCESS && error != CRYPTO_QUEUED && IS_RECOVERABLE(error)) { /* Add pd to the linked list of providers tried. */ if (kcf_insert_triedlist(&list, pd, KCF_KMFLAG(crq)) != NULL) goto retry; } if (list != NULL) kcf_free_triedlist(list); KCF_PROV_REFRELE(pd); return (error); } /* * crypto_decrypt_init_prov() * * Calls crypto_cipher_init_prov() to initialize a decryption operation */ int crypto_decrypt_init_prov(crypto_provider_t pd, crypto_session_id_t sid, crypto_mechanism_t *mech, crypto_key_t *key, crypto_ctx_template_t tmpl, crypto_context_t *ctxp, crypto_call_req_t *crq) { return (crypto_cipher_init_prov(pd, sid, mech, key, tmpl, ctxp, crq, CRYPTO_FG_DECRYPT)); } /* * crypto_decrypt_init() * * Calls crypto_cipher_init() to initialize a decryption operation */ int crypto_decrypt_init(crypto_mechanism_t *mech, crypto_key_t *key, crypto_ctx_template_t tmpl, crypto_context_t *ctxp, crypto_call_req_t *crq) { return (crypto_cipher_init(mech, key, tmpl, ctxp, crq, CRYPTO_FG_DECRYPT)); } /* * crypto_decrypt_update() * * Arguments: * context: A crypto_context_t initialized by decrypt_init(). * ciphertext: The message part to be decrypted * plaintext: Storage for the decrypted message part. * cr: crypto_call_req_t calling conditions and call back info. * * Description: * Asynchronously submits a request for, or synchronously performs a * part of an decryption operation. * * Context: * Process or interrupt, according to the semantics dictated by the 'cr'. * * Returns: * See comment in the beginning of the file. */ int crypto_decrypt_update(crypto_context_t context, crypto_data_t *ciphertext, crypto_data_t *plaintext, crypto_call_req_t *cr) { crypto_ctx_t *ctx = (crypto_ctx_t *)context; kcf_context_t *kcf_ctx; kcf_provider_desc_t *pd; int error; kcf_req_params_t params; if ((ctx == NULL) || ((kcf_ctx = (kcf_context_t *)ctx->cc_framework_private) == NULL) || ((pd = kcf_ctx->kc_prov_desc) == NULL)) { return (CRYPTO_INVALID_CONTEXT); } ASSERT(pd->pd_prov_type != CRYPTO_LOGICAL_PROVIDER); /* The fast path for SW providers. */ if (CHECK_FASTPATH(cr, pd)) { error = KCF_PROV_DECRYPT_UPDATE(pd, ctx, ciphertext, plaintext, NULL); KCF_PROV_INCRSTATS(pd, error); return (error); } /* Check if we should use a software provider for small jobs */ if ((ctx->cc_flags & CRYPTO_USE_OPSTATE) && cr == NULL) { if (ciphertext->cd_length < kcf_ctx->kc_mech->me_threshold && kcf_ctx->kc_sw_prov_desc != NULL && KCF_IS_PROV_USABLE(kcf_ctx->kc_sw_prov_desc)) { pd = kcf_ctx->kc_sw_prov_desc; } } KCF_WRAP_DECRYPT_OPS_PARAMS(¶ms, KCF_OP_UPDATE, ctx->cc_session, NULL, NULL, ciphertext, plaintext, NULL); error = kcf_submit_request(pd, ctx, cr, ¶ms, B_FALSE); return (error); } /* * crypto_decrypt_final() * * Arguments: * context: A crypto_context_t initialized by decrypt_init(). * plaintext: Storage for the last part of the decrypted message * cr: crypto_call_req_t calling conditions and call back info. * * Description: * Asynchronously submits a request for, or synchronously performs the * final part of a decryption operation. * * Context: * Process or interrupt, according to the semantics dictated by the 'cr'. * * Returns: * See comment in the beginning of the file. */ int crypto_decrypt_final(crypto_context_t context, crypto_data_t *plaintext, crypto_call_req_t *cr) { crypto_ctx_t *ctx = (crypto_ctx_t *)context; kcf_context_t *kcf_ctx; kcf_provider_desc_t *pd; int error; kcf_req_params_t params; if ((ctx == NULL) || ((kcf_ctx = (kcf_context_t *)ctx->cc_framework_private) == NULL) || ((pd = kcf_ctx->kc_prov_desc) == NULL)) { return (CRYPTO_INVALID_CONTEXT); } ASSERT(pd->pd_prov_type != CRYPTO_LOGICAL_PROVIDER); /* The fast path for SW providers. */ if (CHECK_FASTPATH(cr, pd)) { error = KCF_PROV_DECRYPT_FINAL(pd, ctx, plaintext, NULL); KCF_PROV_INCRSTATS(pd, error); } else { KCF_WRAP_DECRYPT_OPS_PARAMS(¶ms, KCF_OP_FINAL, ctx->cc_session, NULL, NULL, NULL, plaintext, NULL); error = kcf_submit_request(pd, ctx, cr, ¶ms, B_FALSE); } /* Release the hold done in kcf_new_ctx() during init step. */ KCF_CONTEXT_COND_RELEASE(error, kcf_ctx); return (error); } /* * See comments for crypto_encrypt_update(). */ int crypto_encrypt_single(crypto_context_t context, crypto_data_t *plaintext, crypto_data_t *ciphertext, crypto_call_req_t *cr) { crypto_ctx_t *ctx = (crypto_ctx_t *)context; kcf_context_t *kcf_ctx; kcf_provider_desc_t *pd; int error; kcf_req_params_t params; if ((ctx == NULL) || ((kcf_ctx = (kcf_context_t *)ctx->cc_framework_private) == NULL) || ((pd = kcf_ctx->kc_prov_desc) == NULL)) { return (CRYPTO_INVALID_CONTEXT); } /* The fast path for SW providers. */ if (CHECK_FASTPATH(cr, pd)) { error = KCF_PROV_ENCRYPT(pd, ctx, plaintext, ciphertext, NULL); KCF_PROV_INCRSTATS(pd, error); } else { KCF_WRAP_ENCRYPT_OPS_PARAMS(¶ms, KCF_OP_SINGLE, pd->pd_sid, NULL, NULL, plaintext, ciphertext, NULL); error = kcf_submit_request(pd, ctx, cr, ¶ms, B_FALSE); } /* Release the hold done in kcf_new_ctx() during init step. */ KCF_CONTEXT_COND_RELEASE(error, kcf_ctx); return (error); } /* * See comments for crypto_decrypt_update(). */ int crypto_decrypt_single(crypto_context_t context, crypto_data_t *ciphertext, crypto_data_t *plaintext, crypto_call_req_t *cr) { crypto_ctx_t *ctx = (crypto_ctx_t *)context; kcf_context_t *kcf_ctx; kcf_provider_desc_t *pd; int error; kcf_req_params_t params; if ((ctx == NULL) || ((kcf_ctx = (kcf_context_t *)ctx->cc_framework_private) == NULL) || ((pd = kcf_ctx->kc_prov_desc) == NULL)) { return (CRYPTO_INVALID_CONTEXT); } /* The fast path for SW providers. */ if (CHECK_FASTPATH(cr, pd)) { error = KCF_PROV_DECRYPT(pd, ctx, ciphertext, plaintext, NULL); KCF_PROV_INCRSTATS(pd, error); } else { KCF_WRAP_DECRYPT_OPS_PARAMS(¶ms, KCF_OP_SINGLE, pd->pd_sid, NULL, NULL, ciphertext, plaintext, NULL); error = kcf_submit_request(pd, ctx, cr, ¶ms, B_FALSE); } /* Release the hold done in kcf_new_ctx() during init step. */ KCF_CONTEXT_COND_RELEASE(error, kcf_ctx); return (error); }