/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * University Copyright- Copyright (c) 1982, 1986, 1988 * The Regents of the University of California * All Rights Reserved * * University Acknowledgment- Portions of this document are derived from * software developed by the University of California, Berkeley, and its * contributors. */ /* * svc_tcp.c, Server side for TCP/IP based RPC. * * Actually implements two flavors of transporter - * a tcp rendezvouser (a listner and connection establisher) * and a record/tcp stream. */ #include #include #include #include #include #include #include extern bool_t abort(); extern int errno; extern SVCXPRT *svc_xprt_alloc(); extern void svc_xprt_free(); extern int _socket(int, int, int); extern int _bind(int, const struct sockaddr *, int); extern int _getsockname(int, struct sockaddr *, int *); extern int _listen(int, int); extern int _accept(int, struct sockaddr *, int *); extern int bindresvport(int, struct sockaddr_in *); static struct xp_ops *svctcp_ops(); static struct xp_ops *svctcp_rendezvous_ops(); static int readtcp(), writetcp(); static SVCXPRT *makefd_xprt(); struct tcp_rendezvous { /* kept in xprt->xp_p1 */ u_int sendsize; u_int recvsize; }; struct tcp_conn { /* kept in xprt->xp_p1 */ enum xprt_stat strm_stat; uint32_t x_id; XDR xdrs; char verf_body[MAX_AUTH_BYTES]; }; /* * Usage: * xprt = svctcp_create(sock, send_buf_size, recv_buf_size); * * Creates, registers, and returns a (rpc) tcp based transporter. * Once *xprt is initialized, it is registered as a transporter * see (svc.h, xprt_register). This routine returns * a NULL if a problem occurred. * * If sock<0 then a socket is created, else sock is used. * If the socket, sock is not bound to a port then svctcp_create * binds it to an arbitrary port. The routine then starts a tcp * listener on the socket's associated port. In any (successful) case, * xprt->xp_sock is the registered socket number and xprt->xp_port is the * associated port number. * * Since tcp streams do buffered io similar to stdio, the caller can specify * how big the send and receive buffers are via the second and third parms; * 0 => use the system default. */ SVCXPRT * svctcp_create(sock, sendsize, recvsize) register int sock; u_int sendsize; u_int recvsize; { bool_t madesock = FALSE; register SVCXPRT *xprt; register struct tcp_rendezvous *r; struct sockaddr_in addr; int len = sizeof (struct sockaddr_in); if (sock == RPC_ANYSOCK) { if ((sock = _socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0) { (void) syslog(LOG_ERR, "svctcp_create - tcp", " socket creation problem: %m"); return ((SVCXPRT *)NULL); } madesock = TRUE; } memset((char *)&addr, 0, sizeof (addr)); addr.sin_family = AF_INET; if (bindresvport(sock, &addr)) { addr.sin_port = 0; (void) _bind(sock, (struct sockaddr *)&addr, len); } if ((_getsockname(sock, (struct sockaddr *)&addr, &len) != 0) || (_listen(sock, 2) != 0)) { (void) syslog(LOG_ERR, "svctcp_create - cannot", " getsockname or listen: %m"); if (madesock) (void) close(sock); return ((SVCXPRT *)NULL); } r = (struct tcp_rendezvous *)mem_alloc(sizeof (*r)); if (r == NULL) { (void) syslog(LOG_ERR, "svctcp_create: out of memory"); if (madesock) (void) close(sock); return (NULL); } r->sendsize = sendsize; r->recvsize = recvsize; xprt = svc_xprt_alloc(); if (xprt == NULL) { (void) syslog(LOG_ERR, "svctcp_create: out of memory"); mem_free((char *) r, sizeof (*r)); if (madesock) (void) close(sock); return (NULL); } xprt->xp_p2 = NULL; xprt->xp_netid = NULL; xprt->xp_p1 = (caddr_t)r; xprt->xp_verf = _null_auth; xprt->xp_ops = svctcp_rendezvous_ops(); xprt->xp_port = ntohs(addr.sin_port); xprt->xp_sock = sock; xprt->xp_rtaddr.buf = xprt->xp_raddr; xprt_register(xprt); return (xprt); } /* * Like svtcp_create(), except the routine takes any *open* UNIX file * descriptor as its first input. */ SVCXPRT * svcfd_create(fd, sendsize, recvsize) int fd; u_int sendsize; u_int recvsize; { return (makefd_xprt(fd, sendsize, recvsize)); } static SVCXPRT * makefd_xprt(fd, sendsize, recvsize) int fd; u_int sendsize; u_int recvsize; { register SVCXPRT *xprt; register struct tcp_conn *cd; xprt = svc_xprt_alloc(); if (xprt == (SVCXPRT *)NULL) { (void) syslog(LOG_ERR, "svc_tcp: makefd_xprt: out of memory"); goto done; } cd = (struct tcp_conn *)mem_alloc(sizeof (struct tcp_conn)); if (cd == (struct tcp_conn *)NULL) { (void) syslog(LOG_ERR, "svc_tcp: makefd_xprt: out of memory"); svc_xprt_free(xprt); xprt = (SVCXPRT *)NULL; goto done; } cd->strm_stat = XPRT_IDLE; xdrrec_create(&(cd->xdrs), sendsize, recvsize, (caddr_t)xprt, readtcp, writetcp); xprt->xp_p2 = NULL; xprt->xp_netid = NULL; xprt->xp_p1 = (caddr_t)cd; xprt->xp_verf.oa_base = cd->verf_body; xprt->xp_addrlen = 0; xprt->xp_ops = svctcp_ops(); /* truely deals with calls */ xprt->xp_port = 0; /* this is a connection, not a rendezvouser */ xprt->xp_sock = fd; /* to handle svc_getcaller() properly */ xprt->xp_rtaddr.buf = xprt->xp_raddr; xprt_register(xprt); done: return (xprt); } static bool_t rendezvous_request(xprt, rpc_msg) register SVCXPRT *xprt; struct rpc_msg *rpc_msg; { int sock; struct tcp_rendezvous *r; struct sockaddr_in addr; int len; r = (struct tcp_rendezvous *)xprt->xp_p1; again: len = sizeof (struct sockaddr_in); if ((sock = _accept(xprt->xp_sock, (struct sockaddr *)&addr, &len)) < 0) { if (errno == EINTR) goto again; return (FALSE); } /* * make a new transporter (re-uses xprt) */ xprt = makefd_xprt(sock, r->sendsize, r->recvsize); memcpy((char *)&xprt->xp_raddr, (char *)&addr, len); xprt->xp_addrlen = len; return (FALSE); /* there is never an rpc msg to be processed */ } static enum xprt_stat rendezvous_stat(xprt) SVCXPRT *xprt; { return (XPRT_IDLE); } static void svctcp_destroy(xprt) register SVCXPRT *xprt; { register struct tcp_conn *cd = (struct tcp_conn *)xprt->xp_p1; xprt_unregister(xprt); (void) close(xprt->xp_sock); if (xprt->xp_port != 0) { /* a rendezvouser socket */ xprt->xp_port = 0; } else { /* an actual connection socket */ XDR_DESTROY(&(cd->xdrs)); } mem_free((caddr_t)cd, sizeof (struct tcp_conn)); svc_xprt_free(xprt); } /* * All read operations timeout after 35 seconds. * A timeout is fatal for the connection. */ static struct timeval wait_per_try = { 35, 0 }; /* * reads data from the tcp conection. * any error is fatal and the connection is closed. * (And a read of zero bytes is a half closed stream => error.) */ static int readtcp(xprt, buf, len) register SVCXPRT *xprt; caddr_t buf; register int len; { register int sock = xprt->xp_sock; fd_set mask; fd_set readfds; FD_ZERO(&mask); FD_SET(sock, &mask); do { readfds = mask; if (select(__rpc_dtbsize(), &readfds, NULL, NULL, &wait_per_try) <= 0) { if (errno == EINTR) { continue; } goto fatal_err; } } while (!FD_ISSET(sock, &readfds)); if ((len = read(sock, buf, len)) > 0) { return (len); } fatal_err: ((struct tcp_conn *)(xprt->xp_p1))->strm_stat = XPRT_DIED; return (-1); } /* * writes data to the tcp connection. * Any error is fatal and the connection is closed. */ static int writetcp(xprt, buf, len) register SVCXPRT *xprt; caddr_t buf; int len; { register int i, cnt; for (cnt = len; cnt > 0; cnt -= i, buf += i) { if ((i = write(xprt->xp_sock, buf, cnt)) < 0) { ((struct tcp_conn *)(xprt->xp_p1))->strm_stat = XPRT_DIED; return (-1); } } return (len); } static enum xprt_stat svctcp_stat(xprt) SVCXPRT *xprt; { register struct tcp_conn *cd = (struct tcp_conn *)(xprt->xp_p1); if (cd->strm_stat == XPRT_DIED) return (XPRT_DIED); if (! xdrrec_eof(&(cd->xdrs))) return (XPRT_MOREREQS); return (XPRT_IDLE); } static bool_t svctcp_recv(xprt, msg) SVCXPRT *xprt; register struct rpc_msg *msg; { register struct tcp_conn *cd = (struct tcp_conn *)(xprt->xp_p1); register XDR *xdrs = &(cd->xdrs); xdrs->x_op = XDR_DECODE; (void) xdrrec_skiprecord(xdrs); if (xdr_callmsg(xdrs, msg)) { cd->x_id = msg->rm_xid; return (TRUE); } return (FALSE); } static bool_t svctcp_getargs(xprt, xdr_args, args_ptr) SVCXPRT *xprt; xdrproc_t xdr_args; caddr_t args_ptr; { return ((*xdr_args)(&(((struct tcp_conn *)(xprt->xp_p1))->xdrs), args_ptr)); } static bool_t svctcp_freeargs(xprt, xdr_args, args_ptr) SVCXPRT *xprt; xdrproc_t xdr_args; caddr_t args_ptr; { register XDR *xdrs = &(((struct tcp_conn *)(xprt->xp_p1))->xdrs); xdrs->x_op = XDR_FREE; return ((*xdr_args)(xdrs, args_ptr)); } static bool_t svctcp_reply(xprt, msg) SVCXPRT *xprt; register struct rpc_msg *msg; { register struct tcp_conn *cd = (struct tcp_conn *)(xprt->xp_p1); register XDR *xdrs = &(cd->xdrs); register bool_t stat; xdrs->x_op = XDR_ENCODE; msg->rm_xid = cd->x_id; stat = xdr_replymsg(xdrs, msg); (void) xdrrec_endofrecord(xdrs, TRUE); return (stat); } static struct xp_ops * svctcp_ops() { static struct xp_ops ops; if (ops.xp_recv == NULL) { ops.xp_recv = svctcp_recv; ops.xp_stat = svctcp_stat; ops.xp_getargs = svctcp_getargs; ops.xp_reply = svctcp_reply; ops.xp_freeargs = svctcp_freeargs; ops.xp_destroy = svctcp_destroy; } return (&ops); } static struct xp_ops * svctcp_rendezvous_ops() { static struct xp_ops ops; if (ops.xp_recv == NULL) { ops.xp_recv = rendezvous_request; ops.xp_stat = rendezvous_stat; ops.xp_getargs = abort; ops.xp_reply = abort; ops.xp_freeargs = abort, ops.xp_destroy = svctcp_destroy; } return (&ops); }