/* * Stupid C parser, version 1e-6. * * Let's see how hard this is to do. * * Copyright (C) 2003 Transmeta Corp. * 2003-2004 Linus Torvalds * Copyright (C) 2004 Christopher Li * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include "lib.h" #include "allocate.h" #include "token.h" #include "parse.h" #include "symbol.h" #include "scope.h" #include "expression.h" #include "target.h" static struct symbol_list **function_symbol_list; struct symbol_list *function_computed_target_list; struct statement_list *function_computed_goto_list; static struct token *statement(struct token *token, struct statement **tree); static struct token *handle_attributes(struct token *token, struct decl_state *ctx, unsigned int keywords); typedef struct token *declarator_t(struct token *, struct decl_state *); static declarator_t struct_specifier, union_specifier, enum_specifier, attribute_specifier, typeof_specifier, parse_asm_declarator, typedef_specifier, inline_specifier, auto_specifier, register_specifier, static_specifier, extern_specifier, thread_specifier, const_qualifier, volatile_qualifier; static declarator_t restrict_qualifier; static declarator_t atomic_qualifier; static struct token *parse_if_statement(struct token *token, struct statement *stmt); static struct token *parse_return_statement(struct token *token, struct statement *stmt); static struct token *parse_loop_iterator(struct token *token, struct statement *stmt); static struct token *parse_default_statement(struct token *token, struct statement *stmt); static struct token *parse_case_statement(struct token *token, struct statement *stmt); static struct token *parse_switch_statement(struct token *token, struct statement *stmt); static struct token *parse_for_statement(struct token *token, struct statement *stmt); static struct token *parse_while_statement(struct token *token, struct statement *stmt); static struct token *parse_do_statement(struct token *token, struct statement *stmt); static struct token *parse_goto_statement(struct token *token, struct statement *stmt); static struct token *parse_context_statement(struct token *token, struct statement *stmt); static struct token *parse_range_statement(struct token *token, struct statement *stmt); static struct token *parse_asm_statement(struct token *token, struct statement *stmt); static struct token *toplevel_asm_declaration(struct token *token, struct symbol_list **list); static struct token *parse_static_assert(struct token *token, struct symbol_list **unused); typedef struct token *attr_t(struct token *, struct symbol *, struct decl_state *); static attr_t attribute_packed, attribute_aligned, attribute_modifier, attribute_ext_visible, attribute_bitwise, attribute_address_space, attribute_context, attribute_designated_init, attribute_transparent_union, ignore_attribute, attribute_mode, attribute_force; typedef struct symbol *to_mode_t(struct symbol *); static to_mode_t to_QI_mode, to_HI_mode, to_SI_mode, to_DI_mode, to_TI_mode; static to_mode_t to_pointer_mode, to_word_mode; enum { Set_T = 1, Set_S = 2, Set_Char = 4, Set_Int = 8, Set_Double = 16, Set_Float = 32, Set_Signed = 64, Set_Unsigned = 128, Set_Short = 256, Set_Long = 512, Set_Vlong = 1024, Set_Int128 = 2048, Set_Any = Set_T | Set_Short | Set_Long | Set_Signed | Set_Unsigned }; enum { CInt = 0, CSInt, CUInt, CReal, CChar, CSChar, CUChar, }; enum { SNone = 0, STypedef, SAuto, SRegister, SExtern, SStatic, SForced, SMax, }; static void asm_modifier(struct token *token, unsigned long *mods, unsigned long mod) { if (*mods & mod) warning(token->pos, "duplicated asm modifier"); *mods |= mod; } static void asm_modifier_volatile(struct token *token, unsigned long *mods) { asm_modifier(token, mods, MOD_VOLATILE); } static void asm_modifier_inline(struct token *token, unsigned long *mods) { asm_modifier(token, mods, MOD_INLINE); } static struct symbol_op typedef_op = { .type = KW_MODIFIER, .declarator = typedef_specifier, }; static struct symbol_op inline_op = { .type = KW_MODIFIER, .declarator = inline_specifier, .asm_modifier = asm_modifier_inline, }; static declarator_t noreturn_specifier; static struct symbol_op noreturn_op = { .type = KW_MODIFIER, .declarator = noreturn_specifier, }; static declarator_t alignas_specifier; static struct symbol_op alignas_op = { .type = KW_MODIFIER, .declarator = alignas_specifier, }; static struct symbol_op auto_op = { .type = KW_MODIFIER, .declarator = auto_specifier, }; static struct symbol_op register_op = { .type = KW_MODIFIER, .declarator = register_specifier, }; static struct symbol_op static_op = { .type = KW_MODIFIER, .declarator = static_specifier, }; static struct symbol_op extern_op = { .type = KW_MODIFIER, .declarator = extern_specifier, }; static struct symbol_op thread_op = { .type = KW_MODIFIER, .declarator = thread_specifier, }; static struct symbol_op const_op = { .type = KW_QUALIFIER, .declarator = const_qualifier, }; static struct symbol_op volatile_op = { .type = KW_QUALIFIER, .declarator = volatile_qualifier, .asm_modifier = asm_modifier_volatile, }; static struct symbol_op restrict_op = { .type = KW_QUALIFIER, .declarator = restrict_qualifier, }; static struct symbol_op atomic_op = { .type = KW_QUALIFIER, .declarator = atomic_qualifier, }; static struct symbol_op typeof_op = { .type = KW_SPECIFIER, .declarator = typeof_specifier, .test = Set_Any, .set = Set_S|Set_T, }; static struct symbol_op attribute_op = { .type = KW_ATTRIBUTE, .declarator = attribute_specifier, }; static struct symbol_op struct_op = { .type = KW_SPECIFIER, .declarator = struct_specifier, .test = Set_Any, .set = Set_S|Set_T, }; static struct symbol_op union_op = { .type = KW_SPECIFIER, .declarator = union_specifier, .test = Set_Any, .set = Set_S|Set_T, }; static struct symbol_op enum_op = { .type = KW_SPECIFIER, .declarator = enum_specifier, .test = Set_Any, .set = Set_S|Set_T, }; static struct symbol_op spec_op = { .type = KW_SPECIFIER | KW_EXACT, .test = Set_Any, .set = Set_S|Set_T, }; static struct symbol_op char_op = { .type = KW_SPECIFIER, .test = Set_T|Set_Long|Set_Short, .set = Set_T|Set_Char, .class = CChar, }; static struct symbol_op int_op = { .type = KW_SPECIFIER, .test = Set_T, .set = Set_T|Set_Int, }; static struct symbol_op double_op = { .type = KW_SPECIFIER, .test = Set_T|Set_Signed|Set_Unsigned|Set_Short|Set_Vlong, .set = Set_T|Set_Double, .class = CReal, }; static struct symbol_op float_op = { .type = KW_SPECIFIER | KW_SHORT, .test = Set_T|Set_Signed|Set_Unsigned|Set_Short|Set_Long, .set = Set_T|Set_Float, .class = CReal, }; static struct symbol_op short_op = { .type = KW_SPECIFIER | KW_SHORT, .test = Set_S|Set_Char|Set_Float|Set_Double|Set_Long|Set_Short, .set = Set_Short, }; static struct symbol_op signed_op = { .type = KW_SPECIFIER, .test = Set_S|Set_Float|Set_Double|Set_Signed|Set_Unsigned, .set = Set_Signed, .class = CSInt, }; static struct symbol_op unsigned_op = { .type = KW_SPECIFIER, .test = Set_S|Set_Float|Set_Double|Set_Signed|Set_Unsigned, .set = Set_Unsigned, .class = CUInt, }; static struct symbol_op long_op = { .type = KW_SPECIFIER | KW_LONG, .test = Set_S|Set_Char|Set_Float|Set_Short|Set_Vlong, .set = Set_Long, }; static struct symbol_op int128_op = { .type = KW_SPECIFIER | KW_LONG, .test = Set_S|Set_T|Set_Char|Set_Short|Set_Int|Set_Float|Set_Double|Set_Long|Set_Vlong|Set_Int128, .set = Set_T|Set_Int128, }; static struct symbol_op if_op = { .statement = parse_if_statement, }; static struct symbol_op return_op = { .statement = parse_return_statement, }; static struct symbol_op loop_iter_op = { .statement = parse_loop_iterator, }; static struct symbol_op default_op = { .statement = parse_default_statement, }; static struct symbol_op case_op = { .statement = parse_case_statement, }; static struct symbol_op switch_op = { .statement = parse_switch_statement, }; static struct symbol_op for_op = { .statement = parse_for_statement, }; static struct symbol_op while_op = { .statement = parse_while_statement, }; static struct symbol_op do_op = { .statement = parse_do_statement, }; static struct symbol_op goto_op = { .statement = parse_goto_statement, }; static struct symbol_op __context___op = { .statement = parse_context_statement, }; static struct symbol_op range_op = { .statement = parse_range_statement, }; static struct symbol_op asm_op = { .type = KW_ASM, .declarator = parse_asm_declarator, .statement = parse_asm_statement, .toplevel = toplevel_asm_declaration, }; static struct symbol_op static_assert_op = { .toplevel = parse_static_assert, }; static struct symbol_op packed_op = { .attribute = attribute_packed, }; static struct symbol_op aligned_op = { .attribute = attribute_aligned, }; static struct symbol_op attr_mod_op = { .attribute = attribute_modifier, }; static struct symbol_op ext_visible_op = { .attribute = attribute_ext_visible, }; static struct symbol_op attr_bitwise_op = { .attribute = attribute_bitwise, }; static struct symbol_op attr_force_op = { .attribute = attribute_force, }; static struct symbol_op address_space_op = { .attribute = attribute_address_space, }; static struct symbol_op mode_op = { .attribute = attribute_mode, }; static struct symbol_op context_op = { .attribute = attribute_context, }; static struct symbol_op designated_init_op = { .attribute = attribute_designated_init, }; static struct symbol_op transparent_union_op = { .attribute = attribute_transparent_union, }; static struct symbol_op ignore_attr_op = { .attribute = ignore_attribute, }; static struct symbol_op mode_QI_op = { .type = KW_MODE, .to_mode = to_QI_mode }; static struct symbol_op mode_HI_op = { .type = KW_MODE, .to_mode = to_HI_mode }; static struct symbol_op mode_SI_op = { .type = KW_MODE, .to_mode = to_SI_mode }; static struct symbol_op mode_DI_op = { .type = KW_MODE, .to_mode = to_DI_mode }; static struct symbol_op mode_TI_op = { .type = KW_MODE, .to_mode = to_TI_mode }; static struct symbol_op mode_pointer_op = { .type = KW_MODE, .to_mode = to_pointer_mode }; static struct symbol_op mode_word_op = { .type = KW_MODE, .to_mode = to_word_mode }; /* Using NS_TYPEDEF will also make the keyword a reserved one */ static struct init_keyword { const char *name; enum namespace ns; unsigned long modifiers; struct symbol_op *op; struct symbol *type; } keyword_table[] = { /* Type qualifiers */ { "const", NS_TYPEDEF, .op = &const_op }, { "__const", NS_TYPEDEF, .op = &const_op }, { "__const__", NS_TYPEDEF, .op = &const_op }, { "volatile", NS_TYPEDEF, .op = &volatile_op }, { "__volatile", NS_TYPEDEF, .op = &volatile_op }, { "__volatile__", NS_TYPEDEF, .op = &volatile_op }, { "restrict", NS_TYPEDEF, .op = &restrict_op}, { "__restrict", NS_TYPEDEF, .op = &restrict_op}, { "__restrict__", NS_TYPEDEF, .op = &restrict_op}, { "_Atomic", NS_TYPEDEF, .op = &atomic_op}, /* Typedef.. */ { "typedef", NS_TYPEDEF, .op = &typedef_op }, /* Type specifiers */ { "void", NS_TYPEDEF, .type = &void_ctype, .op = &spec_op}, { "char", NS_TYPEDEF, .op = &char_op }, { "short", NS_TYPEDEF, .op = &short_op }, { "int", NS_TYPEDEF, .op = &int_op }, { "long", NS_TYPEDEF, .op = &long_op }, { "float", NS_TYPEDEF, .op = &float_op }, { "double", NS_TYPEDEF, .op = &double_op }, { "signed", NS_TYPEDEF, .op = &signed_op }, { "__signed", NS_TYPEDEF, .op = &signed_op }, { "__signed__", NS_TYPEDEF, .op = &signed_op }, { "unsigned", NS_TYPEDEF, .op = &unsigned_op }, { "__int128", NS_TYPEDEF, .op = &int128_op }, { "_Bool", NS_TYPEDEF, .type = &bool_ctype, .op = &spec_op }, /* Predeclared types */ { "__builtin_va_list", NS_TYPEDEF, .type = &ptr_ctype, .op = &spec_op }, { "__builtin_ms_va_list", NS_TYPEDEF, .type = &ptr_ctype, .op = &spec_op }, { "__int128_t", NS_TYPEDEF, .type = &lllong_ctype, .op = &spec_op }, { "__uint128_t",NS_TYPEDEF, .type = &ulllong_ctype, .op = &spec_op }, { "_Float32", NS_TYPEDEF, .type = &float32_ctype, .op = &spec_op }, { "_Float32x", NS_TYPEDEF, .type = &float32x_ctype, .op = &spec_op }, { "_Float64", NS_TYPEDEF, .type = &float64_ctype, .op = &spec_op }, { "_Float64x", NS_TYPEDEF, .type = &float64x_ctype, .op = &spec_op }, { "_Float128", NS_TYPEDEF, .type = &float128_ctype, .op = &spec_op }, /* Extended types */ { "typeof", NS_TYPEDEF, .op = &typeof_op }, { "__typeof", NS_TYPEDEF, .op = &typeof_op }, { "__typeof__", NS_TYPEDEF, .op = &typeof_op }, { "__attribute", NS_TYPEDEF, .op = &attribute_op }, { "__attribute__", NS_TYPEDEF, .op = &attribute_op }, { "struct", NS_TYPEDEF, .op = &struct_op }, { "union", NS_TYPEDEF, .op = &union_op }, { "enum", NS_TYPEDEF, .op = &enum_op }, { "inline", NS_TYPEDEF, .op = &inline_op }, { "__inline", NS_TYPEDEF, .op = &inline_op }, { "__inline__", NS_TYPEDEF, .op = &inline_op }, { "_Noreturn", NS_TYPEDEF, .op = &noreturn_op }, { "_Alignas", NS_TYPEDEF, .op = &alignas_op }, /* Static assertion */ { "_Static_assert", NS_KEYWORD, .op = &static_assert_op }, /* Storage class */ { "auto", NS_TYPEDEF, .op = &auto_op }, { "register", NS_TYPEDEF, .op = ®ister_op }, { "static", NS_TYPEDEF, .op = &static_op }, { "extern", NS_TYPEDEF, .op = &extern_op }, { "__thread", NS_TYPEDEF, .op = &thread_op }, { "_Thread_local", NS_TYPEDEF, .op = &thread_op }, /* Statement */ { "if", NS_KEYWORD, .op = &if_op }, { "return", NS_KEYWORD, .op = &return_op }, { "break", NS_KEYWORD, .op = &loop_iter_op }, { "continue", NS_KEYWORD, .op = &loop_iter_op }, { "default", NS_KEYWORD, .op = &default_op }, { "case", NS_KEYWORD, .op = &case_op }, { "switch", NS_KEYWORD, .op = &switch_op }, { "for", NS_KEYWORD, .op = &for_op }, { "while", NS_KEYWORD, .op = &while_op }, { "do", NS_KEYWORD, .op = &do_op }, { "goto", NS_KEYWORD, .op = &goto_op }, { "__context__",NS_KEYWORD, .op = &__context___op }, { "__range__", NS_KEYWORD, .op = &range_op }, { "asm", NS_KEYWORD, .op = &asm_op }, { "__asm", NS_KEYWORD, .op = &asm_op }, { "__asm__", NS_KEYWORD, .op = &asm_op }, /* Attribute */ { "packed", NS_KEYWORD, .op = &packed_op }, { "__packed__", NS_KEYWORD, .op = &packed_op }, { "aligned", NS_KEYWORD, .op = &aligned_op }, { "__aligned__",NS_KEYWORD, .op = &aligned_op }, { "nocast", NS_KEYWORD, MOD_NOCAST, .op = &attr_mod_op }, { "noderef", NS_KEYWORD, MOD_NODEREF, .op = &attr_mod_op }, { "safe", NS_KEYWORD, MOD_SAFE, .op = &attr_mod_op }, { "force", NS_KEYWORD, .op = &attr_force_op }, { "bitwise", NS_KEYWORD, MOD_BITWISE, .op = &attr_bitwise_op }, { "__bitwise__",NS_KEYWORD, MOD_BITWISE, .op = &attr_bitwise_op }, { "address_space",NS_KEYWORD, .op = &address_space_op }, { "context", NS_KEYWORD, .op = &context_op }, { "designated_init", NS_KEYWORD, .op = &designated_init_op }, { "__designated_init__", NS_KEYWORD, .op = &designated_init_op }, { "transparent_union", NS_KEYWORD, .op = &transparent_union_op }, { "__transparent_union__", NS_KEYWORD, .op = &transparent_union_op }, { "noreturn", NS_KEYWORD, MOD_NORETURN, .op = &attr_mod_op }, { "__noreturn__", NS_KEYWORD, MOD_NORETURN, .op = &attr_mod_op }, { "pure", NS_KEYWORD, MOD_PURE, .op = &attr_mod_op }, {"__pure__", NS_KEYWORD, MOD_PURE, .op = &attr_mod_op }, {"const", NS_KEYWORD, MOD_PURE, .op = &attr_mod_op }, {"__const", NS_KEYWORD, MOD_PURE, .op = &attr_mod_op }, {"__const__", NS_KEYWORD, MOD_PURE, .op = &attr_mod_op }, {"externally_visible", NS_KEYWORD, .op = &ext_visible_op }, {"__externally_visible__", NS_KEYWORD, .op = &ext_visible_op }, { "mode", NS_KEYWORD, .op = &mode_op }, { "__mode__", NS_KEYWORD, .op = &mode_op }, { "QI", NS_KEYWORD, .op = &mode_QI_op }, { "__QI__", NS_KEYWORD, .op = &mode_QI_op }, { "HI", NS_KEYWORD, .op = &mode_HI_op }, { "__HI__", NS_KEYWORD, .op = &mode_HI_op }, { "SI", NS_KEYWORD, .op = &mode_SI_op }, { "__SI__", NS_KEYWORD, .op = &mode_SI_op }, { "DI", NS_KEYWORD, .op = &mode_DI_op }, { "__DI__", NS_KEYWORD, .op = &mode_DI_op }, { "TI", NS_KEYWORD, .op = &mode_TI_op }, { "__TI__", NS_KEYWORD, .op = &mode_TI_op }, { "byte", NS_KEYWORD, .op = &mode_QI_op }, { "__byte__", NS_KEYWORD, .op = &mode_QI_op }, { "pointer", NS_KEYWORD, .op = &mode_pointer_op }, { "__pointer__",NS_KEYWORD, .op = &mode_pointer_op }, { "word", NS_KEYWORD, .op = &mode_word_op }, { "__word__", NS_KEYWORD, .op = &mode_word_op }, }; static const char *ignored_attributes[] = { #define GCC_ATTR(x) \ STRINGIFY(x), \ STRINGIFY(__##x##__), #include "gcc-attr-list.h" #undef GCC_ATTR "bounded", "__bounded__", "__noclone", "__nonnull", "__nothrow", }; void init_parser(int stream) { int i; for (i = 0; i < ARRAY_SIZE(keyword_table); i++) { struct init_keyword *ptr = keyword_table + i; struct symbol *sym = create_symbol(stream, ptr->name, SYM_KEYWORD, ptr->ns); sym->ident->keyword = 1; if (ptr->ns == NS_TYPEDEF) sym->ident->reserved = 1; sym->ctype.modifiers = ptr->modifiers; sym->ctype.base_type = ptr->type; sym->op = ptr->op; } for (i = 0; i < ARRAY_SIZE(ignored_attributes); i++) { const char * name = ignored_attributes[i]; struct symbol *sym = create_symbol(stream, name, SYM_KEYWORD, NS_KEYWORD); if (!sym->op) { sym->ident->keyword = 1; sym->op = &ignore_attr_op; } } } // Add a symbol to the list of function-local symbols static void fn_local_symbol(struct symbol *sym) { if (function_symbol_list) add_symbol(function_symbol_list, sym); } static int SENTINEL_ATTR match_idents(struct token *token, ...) { va_list args; struct ident * next; if (token_type(token) != TOKEN_IDENT) return 0; va_start(args, token); do { next = va_arg(args, struct ident *); } while (next && token->ident != next); va_end(args); return next && token->ident == next; } struct statement *alloc_statement(struct position pos, int type) { struct statement *stmt = __alloc_statement(0); stmt->type = type; stmt->pos = pos; return stmt; } static struct token *struct_declaration_list(struct token *token, struct symbol_list **list); static void apply_ctype(struct position pos, struct ctype *thistype, struct ctype *ctype); static void apply_modifiers(struct position pos, struct decl_state *ctx) { struct symbol *ctype; if (!ctx->mode) return; ctype = ctx->mode->to_mode(ctx->ctype.base_type); if (!ctype) sparse_error(pos, "don't know how to apply mode to %s", show_typename(ctx->ctype.base_type)); else ctx->ctype.base_type = ctype; } static struct symbol * alloc_indirect_symbol(struct position pos, struct ctype *ctype, int type) { struct symbol *sym = alloc_symbol(pos, type); sym->ctype.base_type = ctype->base_type; sym->ctype.modifiers = ctype->modifiers; ctype->base_type = sym; ctype->modifiers = 0; return sym; } /* * NOTE! NS_LABEL is not just a different namespace, * it also ends up using function scope instead of the * regular symbol scope. */ struct symbol *label_symbol(struct token *token) { struct symbol *sym = lookup_symbol(token->ident, NS_LABEL); if (!sym) { sym = alloc_symbol(token->pos, SYM_LABEL); bind_symbol(sym, token->ident, NS_LABEL); fn_local_symbol(sym); } return sym; } static struct token *struct_union_enum_specifier(enum type type, struct token *token, struct decl_state *ctx, struct token *(*parse)(struct token *, struct symbol *)) { struct symbol *sym; struct position *repos; token = handle_attributes(token, ctx, KW_ATTRIBUTE); if (token_type(token) == TOKEN_IDENT) { sym = lookup_symbol(token->ident, NS_STRUCT); if (!sym || (is_outer_scope(sym->scope) && (match_op(token->next,';') || match_op(token->next,'{')))) { // Either a new symbol, or else an out-of-scope // symbol being redefined. sym = alloc_symbol(token->pos, type); bind_symbol(sym, token->ident, NS_STRUCT); } if (sym->type != type) error_die(token->pos, "invalid tag applied to %s", show_typename (sym)); ctx->ctype.base_type = sym; repos = &token->pos; token = token->next; if (match_op(token, '{')) { struct decl_state attr = { .ctype.base_type = sym, }; // The following test is actually wrong for empty // structs, but (1) they are not C99, (2) gcc does // the same thing, and (3) it's easier. if (sym->symbol_list) error_die(token->pos, "redefinition of %s", show_typename (sym)); sym->pos = *repos; token = parse(token->next, sym); token = expect(token, '}', "at end of struct-union-enum-specifier"); token = handle_attributes(token, &attr, KW_ATTRIBUTE); apply_ctype(token->pos, &attr.ctype, &sym->ctype); // Mark the structure as needing re-examination sym->examined = 0; sym->endpos = token->pos; } return token; } // private struct/union/enum type if (!match_op(token, '{')) { sparse_error(token->pos, "expected declaration"); ctx->ctype.base_type = &bad_ctype; return token; } sym = alloc_symbol(token->pos, type); token = parse(token->next, sym); ctx->ctype.base_type = sym; token = expect(token, '}', "at end of specifier"); sym->endpos = token->pos; return token; } static struct token *parse_struct_declaration(struct token *token, struct symbol *sym) { struct symbol *field, *last = NULL; struct token *res; res = struct_declaration_list(token, &sym->symbol_list); FOR_EACH_PTR(sym->symbol_list, field) { if (!field->ident) { struct symbol *base = field->ctype.base_type; if (base && base->type == SYM_BITFIELD) continue; } if (last) last->next_subobject = field; last = field; } END_FOR_EACH_PTR(field); return res; } static struct token *parse_union_declaration(struct token *token, struct symbol *sym) { return struct_declaration_list(token, &sym->symbol_list); } static struct token *struct_specifier(struct token *token, struct decl_state *ctx) { return struct_union_enum_specifier(SYM_STRUCT, token, ctx, parse_struct_declaration); } static struct token *union_specifier(struct token *token, struct decl_state *ctx) { return struct_union_enum_specifier(SYM_UNION, token, ctx, parse_union_declaration); } /// // safe right shift // // This allow to use a shift amount as big (or bigger) // than the width of the value to be shifted, in which case // the result is, of course, 0. static unsigned long long rshift(unsigned long long val, unsigned int n) { if (n >= (sizeof(val) * 8)) return 0; return val >> n; } struct range { long long neg; unsigned long long pos; }; static void update_range(struct range *range, unsigned long long uval, struct symbol *vtype) { long long sval = uval; if (is_signed_type(vtype) && (sval < 0)) { if (sval < range->neg) range->neg = sval; } else { if (uval > range->pos) range->pos = uval; } } static int type_is_ok(struct symbol *type, struct range range) { int shift = type->bit_size; int is_unsigned = type->ctype.modifiers & MOD_UNSIGNED; if (!is_unsigned) shift--; if (rshift(range.pos, shift)) return 0; if (range.neg == 0) return 1; if (is_unsigned) return 0; if (rshift(~range.neg, shift)) return 0; return 1; } static struct range type_range(struct symbol *type) { struct range range; unsigned int size = type->bit_size; unsigned long long max; long long min; if (is_signed_type(type)) { min = sign_bit(size); max = min - 1; } else { min = 0; max = bits_mask(size); } range.pos = max; range.neg = min; return range; } static int val_in_range(struct range *range, long long sval, struct symbol *vtype) { unsigned long long uval = sval; if (is_signed_type(vtype) && (sval < 0)) return range->neg <= sval; else return uval <= range->pos; } static void cast_enum_list(struct symbol_list *list, struct symbol *base_type) { struct range irange = type_range(&int_ctype); struct symbol *sym; FOR_EACH_PTR(list, sym) { struct expression *expr = sym->initializer; struct symbol *ctype; long long val; if (expr->type != EXPR_VALUE) continue; ctype = expr->ctype; val = get_expression_value(expr); if (is_int_type(ctype) && val_in_range(&irange, val, ctype)) { expr->ctype = &int_ctype; continue; } if (ctype->bit_size == base_type->bit_size) { expr->ctype = base_type; continue; } cast_value(expr, base_type, expr, ctype); expr->ctype = base_type; } END_FOR_EACH_PTR(sym); } static struct token *parse_enum_declaration(struct token *token, struct symbol *parent) { unsigned long long lastval = 0; struct symbol *ctype = NULL, *base_type = NULL; struct range range = { }; int mix_bitwise = 0; parent->examined = 1; parent->ctype.base_type = &int_ctype; while (token_type(token) == TOKEN_IDENT) { struct expression *expr = NULL; struct token *next = token->next; struct symbol *sym; if (match_op(next, '=')) { next = constant_expression(next->next, &expr); lastval = get_expression_value(expr); ctype = &void_ctype; if (expr && expr->ctype) ctype = expr->ctype; } else if (!ctype) { ctype = &int_ctype; } else if (is_int_type(ctype)) { lastval++; } else { error_die(token->pos, "can't increment the last enum member"); } if (!expr) { expr = alloc_expression(token->pos, EXPR_VALUE); expr->value = lastval; expr->ctype = ctype; } sym = alloc_symbol(token->pos, SYM_NODE); bind_symbol(sym, token->ident, NS_SYMBOL); sym->ctype.modifiers &= ~MOD_ADDRESSABLE; sym->initializer = expr; sym->enum_member = 1; sym->ctype.base_type = parent; add_ptr_list(&parent->symbol_list, sym); if (base_type != &bad_ctype) { if (ctype->type == SYM_NODE) ctype = ctype->ctype.base_type; if (ctype->type == SYM_ENUM) { if (ctype == parent) ctype = base_type; else ctype = ctype->ctype.base_type; } /* * base_type rules: * - if all enums are of the same type, then * the base_type is that type (two first * cases) * - if enums are of different types, they * all have to be integer types, and the * base type is at least "int_ctype". * - otherwise the base_type is "bad_ctype". */ if (!base_type || ctype == &bad_ctype) { base_type = ctype; } else if (ctype == base_type) { /* nothing */ } else if (is_int_type(base_type) && is_int_type(ctype)) { base_type = &int_ctype; } else if (is_restricted_type(base_type) != is_restricted_type(ctype)) { if (!mix_bitwise++) { warning(expr->pos, "mixed bitwiseness"); } } else if (is_restricted_type(base_type) && base_type != ctype) { sparse_error(expr->pos, "incompatible restricted type"); info(expr->pos, " expected: %s", show_typename(base_type)); info(expr->pos, " got: %s", show_typename(ctype)); base_type = &bad_ctype; } else if (base_type != &bad_ctype) { sparse_error(token->pos, "bad enum definition"); base_type = &bad_ctype; } parent->ctype.base_type = base_type; } if (is_int_type(base_type)) { update_range(&range, lastval, ctype); } token = next; sym->endpos = token->pos; if (!match_op(token, ',')) break; token = token->next; } if (!base_type) { sparse_error(token->pos, "empty enum definition"); base_type = &bad_ctype; } else if (!is_int_type(base_type)) ; else if (type_is_ok(&uint_ctype, range)) base_type = &uint_ctype; else if (type_is_ok(&int_ctype, range)) base_type = &int_ctype; else if (type_is_ok(&ulong_ctype, range)) base_type = &ulong_ctype; else if (type_is_ok(&long_ctype, range)) base_type = &long_ctype; else if (type_is_ok(&ullong_ctype, range)) base_type = &ullong_ctype; else if (type_is_ok(&llong_ctype, range)) base_type = &llong_ctype; else base_type = &bad_ctype; parent->ctype.base_type = base_type; parent->ctype.modifiers |= (base_type->ctype.modifiers & MOD_UNSIGNED); parent->examined = 0; if (mix_bitwise) return token; cast_enum_list(parent->symbol_list, base_type); return token; } static struct token *enum_specifier(struct token *token, struct decl_state *ctx) { struct token *ret = struct_union_enum_specifier(SYM_ENUM, token, ctx, parse_enum_declaration); struct ctype *ctype = &ctx->ctype.base_type->ctype; if (!ctype->base_type) ctype->base_type = &incomplete_ctype; return ret; } static struct token *typeof_specifier(struct token *token, struct decl_state *ctx) { struct symbol *sym; if (!match_op(token, '(')) { sparse_error(token->pos, "expected '(' after typeof"); return token; } if (lookup_type(token->next)) { token = typename(token->next, &sym, NULL); ctx->ctype.base_type = sym->ctype.base_type; apply_ctype(token->pos, &sym->ctype, &ctx->ctype); } else { struct symbol *typeof_sym = alloc_symbol(token->pos, SYM_TYPEOF); token = parse_expression(token->next, &typeof_sym->initializer); typeof_sym->endpos = token->pos; if (!typeof_sym->initializer) { sparse_error(token->pos, "expected expression after the '(' token"); typeof_sym = &bad_ctype; } ctx->ctype.base_type = typeof_sym; } return expect(token, ')', "after typeof"); } static struct token *ignore_attribute(struct token *token, struct symbol *attr, struct decl_state *ctx) { struct expression *expr = NULL; if (match_op(token, '(')) token = parens_expression(token, &expr, "in attribute"); return token; } static struct token *attribute_packed(struct token *token, struct symbol *attr, struct decl_state *ctx) { if (!ctx->ctype.alignment) ctx->ctype.alignment = 1; return token; } static struct token *attribute_aligned(struct token *token, struct symbol *attr, struct decl_state *ctx) { int alignment = max_alignment; struct expression *expr = NULL; if (match_op(token, '(')) { token = parens_expression(token, &expr, "in attribute"); if (expr) alignment = const_expression_value(expr); } if (alignment & (alignment-1)) { warning(token->pos, "I don't like non-power-of-2 alignments"); return token; } else if (alignment > ctx->ctype.alignment) ctx->ctype.alignment = alignment; return token; } static void apply_qualifier(struct position *pos, struct ctype *ctx, unsigned long qual) { if (ctx->modifiers & qual) warning(*pos, "duplicate %s", modifier_string(qual)); ctx->modifiers |= qual; } static struct token *attribute_modifier(struct token *token, struct symbol *attr, struct decl_state *ctx) { apply_qualifier(&token->pos, &ctx->ctype, attr->ctype.modifiers); return token; } static struct token *attribute_ext_visible(struct token *token, struct symbol *attr, struct decl_state *ctx) { ctx->is_ext_visible = 1; return token; } static struct token *attribute_bitwise(struct token *token, struct symbol *attr, struct decl_state *ctx) { if (Wbitwise) attribute_modifier(token, attr, ctx); return token; } static struct ident *numerical_address_space(int asn) { char buff[32]; if (!asn) return NULL; sprintf(buff, "", asn); return built_in_ident(buff); } static struct token *attribute_address_space(struct token *token, struct symbol *attr, struct decl_state *ctx) { struct expression *expr = NULL; struct ident *as = NULL; struct token *next; token = expect(token, '(', "after address_space attribute"); switch (token_type(token)) { case TOKEN_NUMBER: next = primary_expression(token, &expr); if (expr->type != EXPR_VALUE) goto invalid; as = numerical_address_space(expr->value); break; case TOKEN_IDENT: next = token->next; as = token->ident; break; default: next = token->next; invalid: as = NULL; warning(token->pos, "invalid address space name"); } if (Waddress_space && as) { if (ctx->ctype.as) sparse_error(token->pos, "multiple address space given: %s & %s", show_as(ctx->ctype.as), show_as(as)); ctx->ctype.as = as; } token = expect(next, ')', "after address_space attribute"); return token; } static struct symbol *to_QI_mode(struct symbol *ctype) { if (ctype->ctype.base_type != &int_type) return NULL; if (ctype == &char_ctype) return ctype; return ctype->ctype.modifiers & MOD_UNSIGNED ? &uchar_ctype : &schar_ctype; } static struct symbol *to_HI_mode(struct symbol *ctype) { if (ctype->ctype.base_type != &int_type) return NULL; return ctype->ctype.modifiers & MOD_UNSIGNED ? &ushort_ctype : &sshort_ctype; } static struct symbol *to_SI_mode(struct symbol *ctype) { if (ctype->ctype.base_type != &int_type) return NULL; return ctype->ctype.modifiers & MOD_UNSIGNED ? &uint_ctype : &sint_ctype; } static struct symbol *to_DI_mode(struct symbol *ctype) { if (ctype->ctype.base_type != &int_type) return NULL; return ctype->ctype.modifiers & MOD_UNSIGNED ? &ullong_ctype : &sllong_ctype; } static struct symbol *to_TI_mode(struct symbol *ctype) { if (ctype->ctype.base_type != &int_type) return NULL; return ctype->ctype.modifiers & MOD_UNSIGNED ? &ulllong_ctype : &slllong_ctype; } static struct symbol *to_pointer_mode(struct symbol *ctype) { if (ctype->ctype.base_type != &int_type) return NULL; return ctype->ctype.modifiers & MOD_UNSIGNED ? uintptr_ctype : intptr_ctype; } static struct symbol *to_word_mode(struct symbol *ctype) { if (ctype->ctype.base_type != &int_type) return NULL; return ctype->ctype.modifiers & MOD_UNSIGNED ? &ulong_ctype : &slong_ctype; } static struct token *attribute_mode(struct token *token, struct symbol *attr, struct decl_state *ctx) { token = expect(token, '(', "after mode attribute"); if (token_type(token) == TOKEN_IDENT) { struct symbol *mode = lookup_keyword(token->ident, NS_KEYWORD); if (mode && mode->op->type == KW_MODE) ctx->mode = mode->op; else sparse_error(token->pos, "unknown mode attribute %s", show_ident(token->ident)); token = token->next; } else sparse_error(token->pos, "expect attribute mode symbol\n"); token = expect(token, ')', "after mode attribute"); return token; } static struct token *attribute_context(struct token *token, struct symbol *attr, struct decl_state *ctx) { struct context *context = alloc_context(); struct expression *args[3]; int idx = 0; token = expect(token, '(', "after context attribute"); token = conditional_expression(token, &args[0]); token = expect(token, ',', "after context 1st argument"); token = conditional_expression(token, &args[1]); if (match_op(token, ',')) { token = token->next; token = conditional_expression(token, &args[2]); token = expect(token, ')', "after context 3rd argument"); context->context = args[0]; idx++; } else { token = expect(token, ')', "after context 2nd argument"); } context->in = get_expression_value(args[idx++]); context->out = get_expression_value(args[idx++]); add_ptr_list(&ctx->ctype.contexts, context); return token; } static struct token *attribute_designated_init(struct token *token, struct symbol *attr, struct decl_state *ctx) { if (ctx->ctype.base_type && ctx->ctype.base_type->type == SYM_STRUCT) ctx->ctype.base_type->designated_init = 1; else warning(token->pos, "attribute designated_init applied to non-structure type"); return token; } static struct token *attribute_transparent_union(struct token *token, struct symbol *attr, struct decl_state *ctx) { if (Wtransparent_union) warning(token->pos, "attribute __transparent_union__"); if (ctx->ctype.base_type && ctx->ctype.base_type->type == SYM_UNION) ctx->ctype.base_type->transparent_union = 1; else warning(token->pos, "attribute __transparent_union__ applied to non-union type"); return token; } static struct token *recover_unknown_attribute(struct token *token) { struct expression *expr = NULL; if (Wunknown_attribute) warning(token->pos, "unknown attribute '%s'", show_ident(token->ident)); token = token->next; if (match_op(token, '(')) token = parens_expression(token, &expr, "in attribute"); return token; } static struct token *attribute_specifier(struct token *token, struct decl_state *ctx) { token = expect(token, '(', "after attribute"); token = expect(token, '(', "after attribute"); for (;;) { struct ident *attribute_name; struct symbol *attr; if (eof_token(token)) break; if (match_op(token, ';')) break; if (token_type(token) != TOKEN_IDENT) break; attribute_name = token->ident; attr = lookup_keyword(attribute_name, NS_KEYWORD); if (attr && attr->op->attribute) token = attr->op->attribute(token->next, attr, ctx); else token = recover_unknown_attribute(token); if (!match_op(token, ',')) break; token = token->next; } token = expect(token, ')', "after attribute"); token = expect(token, ')', "after attribute"); return token; } static const char *storage_class[] = { [STypedef] = "typedef", [SAuto] = "auto", [SExtern] = "extern", [SStatic] = "static", [SRegister] = "register", [SForced] = "[force]" }; static unsigned long storage_modifiers(struct decl_state *ctx) { static unsigned long mod[SMax] = { [SAuto] = MOD_AUTO, [SExtern] = MOD_EXTERN, [SStatic] = MOD_STATIC, [SRegister] = MOD_REGISTER }; return mod[ctx->storage_class] | (ctx->is_inline ? MOD_INLINE : 0) | (ctx->is_tls ? MOD_TLS : 0) | (ctx->is_ext_visible ? MOD_EXT_VISIBLE : 0); } static void set_storage_class(struct position *pos, struct decl_state *ctx, int class) { /* __thread can be used alone, or with extern or static */ if (ctx->is_tls && (class != SStatic && class != SExtern)) { sparse_error(*pos, "__thread can only be used alone, or with " "extern or static"); return; } if (!ctx->storage_class) { ctx->storage_class = class; return; } if (ctx->storage_class == class) sparse_error(*pos, "duplicate %s", storage_class[class]); else sparse_error(*pos, "multiple storage classes"); } static struct token *typedef_specifier(struct token *next, struct decl_state *ctx) { set_storage_class(&next->pos, ctx, STypedef); return next; } static struct token *auto_specifier(struct token *next, struct decl_state *ctx) { set_storage_class(&next->pos, ctx, SAuto); return next; } static struct token *register_specifier(struct token *next, struct decl_state *ctx) { set_storage_class(&next->pos, ctx, SRegister); return next; } static struct token *static_specifier(struct token *next, struct decl_state *ctx) { set_storage_class(&next->pos, ctx, SStatic); return next; } static struct token *extern_specifier(struct token *next, struct decl_state *ctx) { set_storage_class(&next->pos, ctx, SExtern); return next; } static struct token *thread_specifier(struct token *next, struct decl_state *ctx) { /* This GCC extension can be used alone, or with extern or static */ if (!ctx->storage_class || ctx->storage_class == SStatic || ctx->storage_class == SExtern) { ctx->is_tls = 1; } else { sparse_error(next->pos, "__thread can only be used alone, or " "with extern or static"); } return next; } static struct token *attribute_force(struct token *token, struct symbol *attr, struct decl_state *ctx) { set_storage_class(&token->pos, ctx, SForced); return token; } static struct token *inline_specifier(struct token *next, struct decl_state *ctx) { ctx->is_inline = 1; return next; } static struct token *noreturn_specifier(struct token *next, struct decl_state *ctx) { apply_qualifier(&next->pos, &ctx->ctype, MOD_NORETURN); return next; } static struct token *alignas_specifier(struct token *token, struct decl_state *ctx) { int alignment = 0; if (!match_op(token, '(')) { sparse_error(token->pos, "expected '(' after _Alignas"); return token; } if (lookup_type(token->next)) { struct symbol *sym = NULL; token = typename(token->next, &sym, NULL); sym = examine_symbol_type(sym); alignment = sym->ctype.alignment; token = expect(token, ')', "after _Alignas(..."); } else { struct expression *expr = NULL; token = parens_expression(token, &expr, "after _Alignas"); if (!expr) return token; alignment = const_expression_value(expr); } if (alignment < 0) { warning(token->pos, "non-positive alignment"); return token; } if (alignment & (alignment-1)) { warning(token->pos, "non-power-of-2 alignment"); return token; } if (alignment > ctx->ctype.alignment) ctx->ctype.alignment = alignment; return token; } static struct token *const_qualifier(struct token *next, struct decl_state *ctx) { apply_qualifier(&next->pos, &ctx->ctype, MOD_CONST); return next; } static struct token *volatile_qualifier(struct token *next, struct decl_state *ctx) { apply_qualifier(&next->pos, &ctx->ctype, MOD_VOLATILE); return next; } static struct token *restrict_qualifier(struct token *next, struct decl_state *ctx) { apply_qualifier(&next->pos, &ctx->ctype, MOD_RESTRICT); return next; } static struct token *atomic_qualifier(struct token *next, struct decl_state *ctx) { apply_qualifier(&next->pos, &ctx->ctype, MOD_ATOMIC); return next; } static void apply_ctype(struct position pos, struct ctype *thistype, struct ctype *ctype) { unsigned long mod = thistype->modifiers; if (mod) apply_qualifier(&pos, ctype, mod); /* Context */ concat_ptr_list((struct ptr_list *)thistype->contexts, (struct ptr_list **)&ctype->contexts); /* Alignment */ if (thistype->alignment > ctype->alignment) ctype->alignment = thistype->alignment; /* Address space */ if (thistype->as) ctype->as = thistype->as; } static void specifier_conflict(struct position pos, int what, struct ident *new) { const char *old; if (what & (Set_S | Set_T)) goto Catch_all; if (what & Set_Char) old = "char"; else if (what & Set_Double) old = "double"; else if (what & Set_Float) old = "float"; else if (what & Set_Signed) old = "signed"; else if (what & Set_Unsigned) old = "unsigned"; else if (what & Set_Short) old = "short"; else if (what & Set_Long) old = "long"; else old = "long long"; sparse_error(pos, "impossible combination of type specifiers: %s %s", old, show_ident(new)); return; Catch_all: sparse_error(pos, "two or more data types in declaration specifiers"); } static struct symbol * const int_types[] = {&short_ctype, &int_ctype, &long_ctype, &llong_ctype, &lllong_ctype}; static struct symbol * const signed_types[] = {&sshort_ctype, &sint_ctype, &slong_ctype, &sllong_ctype, &slllong_ctype}; static struct symbol * const unsigned_types[] = {&ushort_ctype, &uint_ctype, &ulong_ctype, &ullong_ctype, &ulllong_ctype}; static struct symbol * const real_types[] = {&float_ctype, &double_ctype, &ldouble_ctype}; static struct symbol * const char_types[] = {&char_ctype, &schar_ctype, &uchar_ctype}; static struct symbol * const * const types[] = { int_types + 1, signed_types + 1, unsigned_types + 1, real_types + 1, char_types, char_types + 1, char_types + 2 }; struct symbol *ctype_integer(int size, int want_unsigned) { return types[want_unsigned ? CUInt : CInt][size]; } static struct token *handle_qualifiers(struct token *t, struct decl_state *ctx) { while (token_type(t) == TOKEN_IDENT) { struct symbol *s = lookup_symbol(t->ident, NS_TYPEDEF); if (!s) break; if (s->type != SYM_KEYWORD) break; if (!(s->op->type & (KW_ATTRIBUTE | KW_QUALIFIER))) break; t = t->next; if (s->op->declarator) t = s->op->declarator(t, ctx); } return t; } static struct token *declaration_specifiers(struct token *token, struct decl_state *ctx) { int seen = 0; int class = CInt; int size = 0; while (token_type(token) == TOKEN_IDENT) { struct symbol *s = lookup_symbol(token->ident, NS_TYPEDEF | NS_SYMBOL); if (!s || !(s->namespace & NS_TYPEDEF)) break; if (s->type != SYM_KEYWORD) { if (seen & Set_Any) break; seen |= Set_S | Set_T; ctx->ctype.base_type = s->ctype.base_type; apply_ctype(token->pos, &s->ctype, &ctx->ctype); token = token->next; continue; } if (s->op->type & KW_SPECIFIER) { if (seen & s->op->test) { specifier_conflict(token->pos, seen & s->op->test, token->ident); break; } seen |= s->op->set; class += s->op->class; if (s->op->set & Set_Int128) size = 2; if (s->op->type & KW_SHORT) { size = -1; } else if (s->op->type & KW_LONG && size++) { if (class == CReal) { specifier_conflict(token->pos, Set_Vlong, &double_ident); break; } seen |= Set_Vlong; } } token = token->next; if (s->op->declarator) token = s->op->declarator(token, ctx); if (s->op->type & KW_EXACT) { ctx->ctype.base_type = s->ctype.base_type; ctx->ctype.modifiers |= s->ctype.modifiers; } } if (!(seen & Set_S)) { /* not set explicitly? */ struct symbol *base = &incomplete_ctype; if (seen & Set_Any) base = types[class][size]; ctx->ctype.base_type = base; } if (ctx->ctype.modifiers & MOD_BITWISE) { struct symbol *type; ctx->ctype.modifiers &= ~MOD_BITWISE; if (!is_int_type(ctx->ctype.base_type)) { sparse_error(token->pos, "invalid modifier"); return token; } type = alloc_symbol(token->pos, SYM_BASETYPE); *type = *ctx->ctype.base_type; type->ctype.modifiers &= ~MOD_SPECIFIER; type->ctype.base_type = ctx->ctype.base_type; type->type = SYM_RESTRICT; ctx->ctype.base_type = type; create_fouled(type); } return token; } static struct token *abstract_array_static_declarator(struct token *token, int *has_static) { while (token->ident == &static_ident) { if (*has_static) sparse_error(token->pos, "duplicate array static declarator"); *has_static = 1; token = token->next; } return token; } static struct token *abstract_array_declarator(struct token *token, struct symbol *sym) { struct expression *expr = NULL; int has_static = 0; token = abstract_array_static_declarator(token, &has_static); if (match_idents(token, &restrict_ident, &__restrict_ident, &__restrict___ident, NULL)) token = abstract_array_static_declarator(token->next, &has_static); token = parse_expression(token, &expr); sym->array_size = expr; return token; } static struct token *parameter_type_list(struct token *, struct symbol *); static struct token *identifier_list(struct token *, struct symbol *); static struct token *declarator(struct token *token, struct decl_state *ctx); static struct token *skip_attribute(struct token *token) { token = token->next; if (match_op(token, '(')) { int depth = 1; token = token->next; while (depth && !eof_token(token)) { if (token_type(token) == TOKEN_SPECIAL) { if (token->special == '(') depth++; else if (token->special == ')') depth--; } token = token->next; } } return token; } static struct token *skip_attributes(struct token *token) { struct symbol *keyword; for (;;) { if (token_type(token) != TOKEN_IDENT) break; keyword = lookup_keyword(token->ident, NS_KEYWORD | NS_TYPEDEF); if (!keyword || keyword->type != SYM_KEYWORD) break; if (!(keyword->op->type & KW_ATTRIBUTE)) break; token = expect(token->next, '(', "after attribute"); token = expect(token, '(', "after attribute"); for (;;) { if (eof_token(token)) break; if (match_op(token, ';')) break; if (token_type(token) != TOKEN_IDENT) break; token = skip_attribute(token); if (!match_op(token, ',')) break; token = token->next; } token = expect(token, ')', "after attribute"); token = expect(token, ')', "after attribute"); } return token; } static struct token *handle_attributes(struct token *token, struct decl_state *ctx, unsigned int keywords) { struct symbol *keyword; for (;;) { if (token_type(token) != TOKEN_IDENT) break; keyword = lookup_keyword(token->ident, NS_KEYWORD | NS_TYPEDEF); if (!keyword || keyword->type != SYM_KEYWORD) break; if (!(keyword->op->type & keywords)) break; token = keyword->op->declarator(token->next, ctx); keywords &= KW_ATTRIBUTE; } return token; } static int is_nested(struct token *token, struct token **p, int prefer_abstract) { /* * This can be either a parameter list or a grouping. * For the direct (non-abstract) case, we know if must be * a parameter list if we already saw the identifier. * For the abstract case, we know if must be a parameter * list if it is empty or starts with a type. */ struct token *next = token->next; *p = next = skip_attributes(next); if (token_type(next) == TOKEN_IDENT) { if (lookup_type(next)) return !prefer_abstract; return 1; } if (match_op(next, ')') || match_op(next, SPECIAL_ELLIPSIS)) return 0; return 1; } enum kind { Empty, K_R, Proto, Bad_Func, }; static enum kind which_func(struct token *token, struct ident **n, int prefer_abstract) { struct token *next = token->next; if (token_type(next) == TOKEN_IDENT) { if (lookup_type(next)) return Proto; /* identifier list not in definition; complain */ if (prefer_abstract) warning(token->pos, "identifier list not in definition"); return K_R; } if (token_type(next) != TOKEN_SPECIAL) return Bad_Func; if (next->special == ')') { /* don't complain about those */ if (!n || match_op(next->next, ';') || match_op(next->next, ',')) return Empty; if (Wstrict_prototypes) warning(next->pos, "non-ANSI function declaration of function '%s'", show_ident(*n)); return Empty; } if (next->special == SPECIAL_ELLIPSIS) { warning(next->pos, "variadic functions must have one named argument"); return Proto; } return Bad_Func; } static struct token *direct_declarator(struct token *token, struct decl_state *ctx) { struct ctype *ctype = &ctx->ctype; struct token *next; struct ident **p = ctx->ident; if (ctx->ident && token_type(token) == TOKEN_IDENT) { *ctx->ident = token->ident; token = token->next; } else if (match_op(token, '(') && is_nested(token, &next, ctx->prefer_abstract)) { struct symbol *base_type = ctype->base_type; if (token->next != next) next = handle_attributes(token->next, ctx, KW_ATTRIBUTE); token = declarator(next, ctx); token = expect(token, ')', "in nested declarator"); while (ctype->base_type != base_type) ctype = &ctype->base_type->ctype; p = NULL; } if (match_op(token, '(')) { enum kind kind = which_func(token, p, ctx->prefer_abstract); struct symbol *fn; fn = alloc_indirect_symbol(token->pos, ctype, SYM_FN); token = token->next; if (kind == K_R) token = identifier_list(token, fn); else if (kind == Proto) token = parameter_type_list(token, fn); token = expect(token, ')', "in function declarator"); fn->endpos = token->pos; return token; } while (match_op(token, '[')) { struct symbol *array; array = alloc_indirect_symbol(token->pos, ctype, SYM_ARRAY); token = abstract_array_declarator(token->next, array); token = expect(token, ']', "in abstract_array_declarator"); array->endpos = token->pos; ctype = &array->ctype; } return token; } static struct token *pointer(struct token *token, struct decl_state *ctx) { while (match_op(token,'*')) { struct symbol *ptr = alloc_symbol(token->pos, SYM_PTR); ptr->ctype.modifiers = ctx->ctype.modifiers; ptr->ctype.base_type = ctx->ctype.base_type; ptr->ctype.as = ctx->ctype.as; ptr->ctype.contexts = ctx->ctype.contexts; ctx->ctype.modifiers = 0; ctx->ctype.base_type = ptr; ctx->ctype.as = NULL; ctx->ctype.contexts = NULL; ctx->ctype.alignment = 0; token = handle_qualifiers(token->next, ctx); ctx->ctype.base_type->endpos = token->pos; } return token; } static struct token *declarator(struct token *token, struct decl_state *ctx) { token = pointer(token, ctx); return direct_declarator(token, ctx); } static struct token *handle_bitfield(struct token *token, struct decl_state *ctx) { struct ctype *ctype = &ctx->ctype; struct expression *expr; struct symbol *bitfield; long long width; if (ctype->base_type != &int_type && !is_int_type(ctype->base_type)) { sparse_error(token->pos, "invalid bitfield specifier for type %s.", show_typename(ctype->base_type)); // Parse this to recover gracefully. return conditional_expression(token->next, &expr); } bitfield = alloc_indirect_symbol(token->pos, ctype, SYM_BITFIELD); token = conditional_expression(token->next, &expr); width = const_expression_value(expr); bitfield->bit_size = width; if (width < 0 || width > INT_MAX) { sparse_error(token->pos, "invalid bitfield width, %lld.", width); width = -1; } else if (*ctx->ident && width == 0) { sparse_error(token->pos, "invalid named zero-width bitfield `%s'", show_ident(*ctx->ident)); width = -1; } else if (*ctx->ident) { struct symbol *base_type = bitfield->ctype.base_type; struct symbol *bitfield_type = base_type == &int_type ? bitfield : base_type; int is_signed = !(bitfield_type->ctype.modifiers & MOD_UNSIGNED); if (Wone_bit_signed_bitfield && width == 1 && is_signed) { // Valid values are either {-1;0} or {0}, depending on integer // representation. The latter makes for very efficient code... sparse_error(token->pos, "dubious one-bit signed bitfield"); } if (Wdefault_bitfield_sign && bitfield_type->type != SYM_ENUM && !(bitfield_type->ctype.modifiers & MOD_EXPLICITLY_SIGNED) && is_signed) { // The sign of bitfields is unspecified by default. warning(token->pos, "dubious bitfield without explicit `signed' or `unsigned'"); } } bitfield->bit_size = width; bitfield->endpos = token->pos; return token; } static struct token *declaration_list(struct token *token, struct symbol_list **list) { struct decl_state ctx = {.prefer_abstract = 0}; struct ctype saved; unsigned long mod; token = declaration_specifiers(token, &ctx); mod = storage_modifiers(&ctx); saved = ctx.ctype; for (;;) { struct symbol *decl = alloc_symbol(token->pos, SYM_NODE); ctx.ident = &decl->ident; token = declarator(token, &ctx); if (match_op(token, ':')) token = handle_bitfield(token, &ctx); token = handle_attributes(token, &ctx, KW_ATTRIBUTE); apply_modifiers(token->pos, &ctx); decl->ctype = ctx.ctype; decl->ctype.modifiers |= mod; decl->endpos = token->pos; add_symbol(list, decl); if (!match_op(token, ',')) break; token = token->next; ctx.ctype = saved; } return token; } static struct token *struct_declaration_list(struct token *token, struct symbol_list **list) { while (!match_op(token, '}')) { if (match_ident(token, &_Static_assert_ident)) { token = parse_static_assert(token, NULL); continue; } if (!match_op(token, ';')) token = declaration_list(token, list); if (!match_op(token, ';')) { sparse_error(token->pos, "expected ; at end of declaration"); break; } token = token->next; } return token; } static struct token *parameter_declaration(struct token *token, struct symbol *sym) { struct decl_state ctx = {.prefer_abstract = 1}; token = declaration_specifiers(token, &ctx); ctx.ident = &sym->ident; token = declarator(token, &ctx); token = handle_attributes(token, &ctx, KW_ATTRIBUTE); apply_modifiers(token->pos, &ctx); sym->ctype = ctx.ctype; sym->ctype.modifiers |= storage_modifiers(&ctx); sym->endpos = token->pos; sym->forced_arg = ctx.storage_class == SForced; return token; } struct token *typename(struct token *token, struct symbol **p, int *forced) { struct decl_state ctx = {.prefer_abstract = 1}; int class; struct symbol *sym = alloc_symbol(token->pos, SYM_NODE); *p = sym; token = declaration_specifiers(token, &ctx); token = declarator(token, &ctx); apply_modifiers(token->pos, &ctx); sym->ctype = ctx.ctype; sym->endpos = token->pos; class = ctx.storage_class; if (forced) { *forced = 0; if (class == SForced) { *forced = 1; class = 0; } } if (class) warning(sym->pos, "storage class in typename (%s %s)", storage_class[class], show_typename(sym)); return token; } static struct token *parse_underscore_Pragma(struct token *token) { struct token *next; next = token->next; if (!match_op(next, '(')) return next; next = next->next; if (next->pos.type != TOKEN_STRING) return next; next = next->next; if (!match_op(next, ')')) return next; return next->next; } static struct token *expression_statement(struct token *token, struct expression **tree) { if (match_ident(token, &_Pragma_ident)) return parse_underscore_Pragma(token); token = parse_expression(token, tree); return expect(token, ';', "at end of statement"); } static struct token *parse_asm_operands(struct token *token, struct statement *stmt, struct expression_list **inout) { /* Allow empty operands */ if (match_op(token->next, ':') || match_op(token->next, ')')) return token->next; do { struct expression *op = alloc_expression(token->pos, EXPR_ASM_OPERAND); if (match_op(token->next, '[') && token_type(token->next->next) == TOKEN_IDENT && match_op(token->next->next->next, ']')) { op->name = token->next->next->ident; token = token->next->next->next; } token = primary_expression(token->next, &op->constraint); token = parens_expression(token, &op->expr, "in asm parameter"); add_expression(inout, op); } while (match_op(token, ',')); return token; } static struct token *parse_asm_clobbers(struct token *token, struct statement *stmt, struct expression_list **clobbers) { struct expression *expr; do { token = primary_expression(token->next, &expr); if (expr) add_expression(clobbers, expr); } while (match_op(token, ',')); return token; } static struct token *parse_asm_labels(struct token *token, struct statement *stmt, struct symbol_list **labels) { struct symbol *label; do { token = token->next; /* skip ':' and ',' */ if (token_type(token) != TOKEN_IDENT) return token; label = label_symbol(token); add_symbol(labels, label); token = token->next; } while (match_op(token, ',')); return token; } static struct token *parse_asm_statement(struct token *token, struct statement *stmt) { unsigned long mods = 0; token = token->next; stmt->type = STMT_ASM; while (token_type(token) == TOKEN_IDENT) { struct symbol *s = lookup_keyword(token->ident, NS_TYPEDEF); if (s && s->op && s->op->asm_modifier) s->op->asm_modifier(token, &mods); else if (token->ident == &goto_ident) asm_modifier(token, &mods, MOD_ASM_GOTO); token = token->next; } token = expect(token, '(', "after asm"); token = parse_expression(token, &stmt->asm_string); if (match_op(token, ':')) token = parse_asm_operands(token, stmt, &stmt->asm_outputs); if (match_op(token, ':')) token = parse_asm_operands(token, stmt, &stmt->asm_inputs); if (match_op(token, ':')) token = parse_asm_clobbers(token, stmt, &stmt->asm_clobbers); if (match_op(token, ':') && (mods & MOD_ASM_GOTO)) token = parse_asm_labels(token, stmt, &stmt->asm_labels); token = expect(token, ')', "after asm"); return expect(token, ';', "at end of asm-statement"); } static struct token *parse_asm_declarator(struct token *token, struct decl_state *ctx) { struct expression *expr; token = expect(token, '(', "after asm"); token = parse_expression(token->next, &expr); token = expect(token, ')', "after asm"); return token; } static struct token *parse_static_assert(struct token *token, struct symbol_list **unused) { struct expression *cond = NULL, *message = NULL; token = expect(token->next, '(', "after _Static_assert"); token = constant_expression(token, &cond); if (!cond) sparse_error(token->pos, "Expected constant expression"); token = expect(token, ',', "after conditional expression in _Static_assert"); token = parse_expression(token, &message); if (!message || message->type != EXPR_STRING) { struct position pos; pos = message ? message->pos : token->pos; sparse_error(pos, "bad or missing string literal"); cond = NULL; } token = expect(token, ')', "after diagnostic message in _Static_assert"); token = expect(token, ';', "after _Static_assert()"); if (cond && !const_expression_value(cond) && cond->type == EXPR_VALUE) sparse_error(cond->pos, "static assertion failed: %s", show_string(message->string)); return token; } /* Make a statement out of an expression */ static struct statement *make_statement(struct expression *expr) { struct statement *stmt; if (!expr) return NULL; stmt = alloc_statement(expr->pos, STMT_EXPRESSION); stmt->expression = expr; return stmt; } /* * All iterators have two symbols associated with them: * the "continue" and "break" symbols, which are targets * for continue and break statements respectively. * * They are in a special name-space, but they follow * all the normal visibility rules, so nested iterators * automatically work right. */ static void start_iterator(struct statement *stmt) { struct symbol *cont, *brk; start_symbol_scope(stmt->pos); cont = alloc_symbol(stmt->pos, SYM_NODE); bind_symbol(cont, &continue_ident, NS_ITERATOR); brk = alloc_symbol(stmt->pos, SYM_NODE); bind_symbol(brk, &break_ident, NS_ITERATOR); stmt->type = STMT_ITERATOR; stmt->iterator_break = brk; stmt->iterator_continue = cont; fn_local_symbol(brk); fn_local_symbol(cont); } static void end_iterator(struct statement *stmt) { end_symbol_scope(); } static struct statement *start_function(struct symbol *sym) { struct symbol *ret; struct statement *stmt = alloc_statement(sym->pos, STMT_COMPOUND); start_function_scope(sym->pos); ret = alloc_symbol(sym->pos, SYM_NODE); ret->ctype = sym->ctype.base_type->ctype; ret->ctype.modifiers &= ~(MOD_STORAGE | MOD_QUALIFIER | MOD_TLS | MOD_ACCESS | MOD_NOCAST | MOD_NODEREF); ret->ctype.modifiers |= (MOD_AUTO | MOD_REGISTER); bind_symbol(ret, &return_ident, NS_ITERATOR); stmt->ret = ret; fn_local_symbol(ret); // Currently parsed symbol for __func__/__FUNCTION__/__PRETTY_FUNCTION__ current_fn = sym; return stmt; } static void end_function(struct symbol *sym) { current_fn = NULL; end_function_scope(); } /* * A "switch()" statement, like an iterator, has a * the "break" symbol associated with it. It works * exactly like the iterator break - it's the target * for any break-statements in scope, and means that * "break" handling doesn't even need to know whether * it's breaking out of an iterator or a switch. * * In addition, the "case" symbol is a marker for the * case/default statements to find the switch statement * that they are associated with. */ static void start_switch(struct statement *stmt) { struct symbol *brk, *switch_case; start_symbol_scope(stmt->pos); brk = alloc_symbol(stmt->pos, SYM_NODE); bind_symbol(brk, &break_ident, NS_ITERATOR); switch_case = alloc_symbol(stmt->pos, SYM_NODE); bind_symbol(switch_case, &case_ident, NS_ITERATOR); switch_case->stmt = stmt; stmt->type = STMT_SWITCH; stmt->switch_break = brk; stmt->switch_case = switch_case; fn_local_symbol(brk); fn_local_symbol(switch_case); } static void end_switch(struct statement *stmt) { if (!stmt->switch_case->symbol_list) warning(stmt->pos, "switch with no cases"); end_symbol_scope(); } static void add_case_statement(struct statement *stmt) { struct symbol *target = lookup_symbol(&case_ident, NS_ITERATOR); struct symbol *sym; if (!target) { sparse_error(stmt->pos, "not in switch scope"); stmt->type = STMT_NONE; return; } sym = alloc_symbol(stmt->pos, SYM_NODE); add_symbol(&target->symbol_list, sym); sym->stmt = stmt; stmt->case_label = sym; fn_local_symbol(sym); } static struct token *parse_return_statement(struct token *token, struct statement *stmt) { struct symbol *target = lookup_symbol(&return_ident, NS_ITERATOR); if (!target) error_die(token->pos, "internal error: return without a function target"); stmt->type = STMT_RETURN; stmt->ret_target = target; return expression_statement(token->next, &stmt->ret_value); } static void validate_for_loop_decl(struct symbol *sym) { unsigned long storage = sym->ctype.modifiers & MOD_STORAGE; if (storage & ~(MOD_AUTO | MOD_REGISTER)) { const char *name = show_ident(sym->ident); sparse_error(sym->pos, "non-local var '%s' in for-loop initializer", name); sym->ctype.modifiers &= ~MOD_STORAGE; } } static struct token *parse_for_statement(struct token *token, struct statement *stmt) { struct symbol_list *syms; struct expression *e1, *e2, *e3; struct statement *iterator; start_iterator(stmt); token = expect(token->next, '(', "after 'for'"); syms = NULL; e1 = NULL; /* C99 variable declaration? */ if (lookup_type(token)) { token = external_declaration(token, &syms, validate_for_loop_decl); } else { token = parse_expression(token, &e1); token = expect(token, ';', "in 'for'"); } token = parse_expression(token, &e2); token = expect(token, ';', "in 'for'"); token = parse_expression(token, &e3); token = expect(token, ')', "in 'for'"); token = statement(token, &iterator); stmt->iterator_syms = syms; stmt->iterator_pre_statement = make_statement(e1); stmt->iterator_pre_condition = e2; stmt->iterator_post_statement = make_statement(e3); stmt->iterator_post_condition = NULL; stmt->iterator_statement = iterator; end_iterator(stmt); return token; } static struct token *parse_while_statement(struct token *token, struct statement *stmt) { struct expression *expr; struct statement *iterator; start_iterator(stmt); token = parens_expression(token->next, &expr, "after 'while'"); token = statement(token, &iterator); stmt->iterator_pre_condition = expr; stmt->iterator_post_condition = NULL; stmt->iterator_statement = iterator; end_iterator(stmt); return token; } static struct token *parse_do_statement(struct token *token, struct statement *stmt) { struct expression *expr; struct statement *iterator; start_iterator(stmt); token = statement(token->next, &iterator); if (token_type(token) == TOKEN_IDENT && token->ident == &while_ident) token = token->next; else sparse_error(token->pos, "expected 'while' after 'do'"); token = parens_expression(token, &expr, "after 'do-while'"); stmt->iterator_post_condition = expr; stmt->iterator_statement = iterator; end_iterator(stmt); if (iterator && iterator->type != STMT_COMPOUND && Wdo_while) warning(iterator->pos, "do-while statement is not a compound statement"); return expect(token, ';', "after statement"); } static struct token *parse_if_statement(struct token *token, struct statement *stmt) { stmt->type = STMT_IF; token = parens_expression(token->next, &stmt->if_conditional, "after if"); token = statement(token, &stmt->if_true); if (token_type(token) != TOKEN_IDENT) return token; if (token->ident != &else_ident) return token; return statement(token->next, &stmt->if_false); } static inline struct token *case_statement(struct token *token, struct statement *stmt) { stmt->type = STMT_CASE; token = expect(token, ':', "after default/case"); add_case_statement(stmt); return statement(token, &stmt->case_statement); } static struct token *parse_case_statement(struct token *token, struct statement *stmt) { token = parse_expression(token->next, &stmt->case_expression); if (match_op(token, SPECIAL_ELLIPSIS)) token = parse_expression(token->next, &stmt->case_to); return case_statement(token, stmt); } static struct token *parse_default_statement(struct token *token, struct statement *stmt) { return case_statement(token->next, stmt); } static struct token *parse_loop_iterator(struct token *token, struct statement *stmt) { struct symbol *target = lookup_symbol(token->ident, NS_ITERATOR); stmt->type = STMT_GOTO; stmt->goto_label = target; if (!target) sparse_error(stmt->pos, "break/continue not in iterator scope"); return expect(token->next, ';', "at end of statement"); } static struct token *parse_switch_statement(struct token *token, struct statement *stmt) { stmt->type = STMT_SWITCH; start_switch(stmt); token = parens_expression(token->next, &stmt->switch_expression, "after 'switch'"); token = statement(token, &stmt->switch_statement); end_switch(stmt); return token; } static struct token *parse_goto_statement(struct token *token, struct statement *stmt) { stmt->type = STMT_GOTO; token = token->next; if (match_op(token, '*')) { token = parse_expression(token->next, &stmt->goto_expression); add_statement(&function_computed_goto_list, stmt); } else if (token_type(token) == TOKEN_IDENT) { stmt->goto_label = label_symbol(token); token = token->next; } else { sparse_error(token->pos, "Expected identifier or goto expression"); } return expect(token, ';', "at end of statement"); } static struct token *parse_context_statement(struct token *token, struct statement *stmt) { stmt->type = STMT_CONTEXT; token = token->next; token = expect(token, '(', "after __context__ statement"); token = assignment_expression(token, &stmt->expression); if (!stmt->expression) unexpected(token, "expression expected after '('"); if (match_op(token, ',')) { token = token->next; stmt->context = stmt->expression; token = assignment_expression(token, &stmt->expression); if (!stmt->expression) unexpected(token, "expression expected after ','"); } token = expect(token, ')', "at end of __context__ statement"); return expect(token, ';', "at end of statement"); } static struct token *parse_range_statement(struct token *token, struct statement *stmt) { stmt->type = STMT_RANGE; token = token->next; token = expect(token, '(', "after __range__ statement"); token = assignment_expression(token, &stmt->range_expression); token = expect(token, ',', "after range expression"); token = assignment_expression(token, &stmt->range_low); token = expect(token, ',', "after low range"); token = assignment_expression(token, &stmt->range_high); token = expect(token, ')', "after range statement"); return expect(token, ';', "after range statement"); } static struct token *statement(struct token *token, struct statement **tree) { struct statement *stmt = alloc_statement(token->pos, STMT_NONE); *tree = stmt; if (token_type(token) == TOKEN_IDENT) { struct symbol *s = lookup_keyword(token->ident, NS_KEYWORD); if (s && s->op->statement) return s->op->statement(token, stmt); if (match_op(token->next, ':')) { struct symbol *s = label_symbol(token); token = skip_attributes(token->next->next); if (s->stmt) { sparse_error(stmt->pos, "label '%s' redefined", show_ident(s->ident)); // skip the label to avoid multiple definitions return statement(token, tree); } stmt->type = STMT_LABEL; stmt->label_identifier = s; s->stmt = stmt; return statement(token, &stmt->label_statement); } } if (match_op(token, '{')) { stmt->type = STMT_COMPOUND; start_symbol_scope(stmt->pos); token = compound_statement(token->next, stmt); end_symbol_scope(); return expect(token, '}', "at end of compound statement"); } stmt->type = STMT_EXPRESSION; return expression_statement(token, &stmt->expression); } /* gcc extension - __label__ ident-list; in the beginning of compound stmt */ static struct token *label_statement(struct token *token) { while (token_type(token) == TOKEN_IDENT) { struct symbol *sym = alloc_symbol(token->pos, SYM_LABEL); /* it's block-scope, but we want label namespace */ bind_symbol(sym, token->ident, NS_SYMBOL); sym->namespace = NS_LABEL; fn_local_symbol(sym); token = token->next; if (!match_op(token, ',')) break; token = token->next; } return expect(token, ';', "at end of label declaration"); } static struct token * statement_list(struct token *token, struct statement_list **list) { int seen_statement = 0; while (token_type(token) == TOKEN_IDENT && token->ident == &__label___ident) token = label_statement(token->next); for (;;) { struct statement * stmt; if (eof_token(token)) break; if (match_op(token, '}')) break; if (match_ident(token, &_Static_assert_ident)) { token = parse_static_assert(token, NULL); continue; } if (lookup_type(token)) { if (seen_statement) { warning(token->pos, "mixing declarations and code"); seen_statement = 0; } stmt = alloc_statement(token->pos, STMT_DECLARATION); token = external_declaration(token, &stmt->declaration, NULL); } else { seen_statement = Wdeclarationafterstatement; token = statement(token, &stmt); } add_statement(list, stmt); } return token; } static struct token *identifier_list(struct token *token, struct symbol *fn) { struct symbol_list **list = &fn->arguments; for (;;) { struct symbol *sym = alloc_symbol(token->pos, SYM_NODE); sym->ident = token->ident; token = token->next; sym->endpos = token->pos; sym->ctype.base_type = &incomplete_ctype; add_symbol(list, sym); if (!match_op(token, ',') || token_type(token->next) != TOKEN_IDENT || lookup_type(token->next)) break; token = token->next; } return token; } static struct token *parameter_type_list(struct token *token, struct symbol *fn) { struct symbol_list **list = &fn->arguments; for (;;) { struct symbol *sym; if (match_op(token, SPECIAL_ELLIPSIS)) { fn->variadic = 1; token = token->next; break; } sym = alloc_symbol(token->pos, SYM_NODE); token = parameter_declaration(token, sym); if (sym->ctype.base_type == &void_ctype) { /* Special case: (void) */ if (!*list && !sym->ident) break; warning(token->pos, "void parameter"); } add_symbol(list, sym); if (!match_op(token, ',')) break; token = token->next; } return token; } struct token *compound_statement(struct token *token, struct statement *stmt) { token = statement_list(token, &stmt->stmts); return token; } static struct expression *identifier_expression(struct token *token) { struct expression *expr = alloc_expression(token->pos, EXPR_IDENTIFIER); expr->expr_ident = token->ident; return expr; } static struct expression *index_expression(struct expression *from, struct expression *to) { int idx_from, idx_to; struct expression *expr = alloc_expression(from->pos, EXPR_INDEX); idx_from = const_expression_value(from); idx_to = idx_from; if (to) { idx_to = const_expression_value(to); if (idx_to < idx_from || idx_from < 0) warning(from->pos, "nonsense array initializer index range"); } expr->idx_from = idx_from; expr->idx_to = idx_to; return expr; } static struct token *single_initializer(struct expression **ep, struct token *token) { int expect_equal = 0; struct token *next = token->next; struct expression **tail = ep; int nested; *ep = NULL; if ((token_type(token) == TOKEN_IDENT) && match_op(next, ':')) { struct expression *expr = identifier_expression(token); if (Wold_initializer) warning(token->pos, "obsolete struct initializer, use C99 syntax"); token = initializer(&expr->ident_expression, next->next); if (expr->ident_expression) *ep = expr; return token; } for (tail = ep, nested = 0; ; nested++, next = token->next) { if (match_op(token, '.') && (token_type(next) == TOKEN_IDENT)) { struct expression *expr = identifier_expression(next); *tail = expr; tail = &expr->ident_expression; expect_equal = 1; token = next->next; } else if (match_op(token, '[')) { struct expression *from = NULL, *to = NULL, *expr; token = constant_expression(token->next, &from); if (!from) { sparse_error(token->pos, "Expected constant expression"); break; } if (match_op(token, SPECIAL_ELLIPSIS)) token = constant_expression(token->next, &to); expr = index_expression(from, to); *tail = expr; tail = &expr->idx_expression; token = expect(token, ']', "at end of initializer index"); if (nested) expect_equal = 1; } else { break; } } if (nested && !expect_equal) { if (!match_op(token, '=')) warning(token->pos, "obsolete array initializer, use C99 syntax"); else expect_equal = 1; } if (expect_equal) token = expect(token, '=', "at end of initializer index"); token = initializer(tail, token); if (!*tail) *ep = NULL; return token; } static struct token *initializer_list(struct expression_list **list, struct token *token) { struct expression *expr; for (;;) { token = single_initializer(&expr, token); if (!expr) break; add_expression(list, expr); if (!match_op(token, ',')) break; token = token->next; } return token; } struct token *initializer(struct expression **tree, struct token *token) { if (match_op(token, '{')) { struct expression *expr = alloc_expression(token->pos, EXPR_INITIALIZER); *tree = expr; token = initializer_list(&expr->expr_list, token->next); return expect(token, '}', "at end of initializer"); } return assignment_expression(token, tree); } static void declare_argument(struct symbol *sym, struct symbol *fn) { if (!sym->ident) { sparse_error(sym->pos, "no identifier for function argument"); return; } bind_symbol(sym, sym->ident, NS_SYMBOL); } static int is_syscall(struct symbol *sym) { char *macro; char *name; int is_syscall = 0; macro = get_macro_name(sym->pos); if (macro && (strncmp("SYSCALL_DEFINE", macro, strlen("SYSCALL_DEFINE")) == 0 || strncmp("COMPAT_SYSCALL_DEFINE", macro, strlen("COMPAT_SYSCALL_DEFINE")) == 0)) is_syscall = 1; name = sym->ident->name; if (name && strncmp(name, "sys_", 4) ==0) is_syscall = 1; if (name && strncmp(name, "compat_sys_", 11) == 0) is_syscall = 1; return is_syscall; } static struct token *parse_function_body(struct token *token, struct symbol *decl, struct symbol_list **list) { struct symbol_list **old_symbol_list; struct symbol *base_type = decl->ctype.base_type; struct statement *stmt, **p; struct symbol *prev; struct symbol *arg; old_symbol_list = function_symbol_list; if (decl->ctype.modifiers & MOD_INLINE) { function_symbol_list = &decl->inline_symbol_list; p = &base_type->inline_stmt; } else { function_symbol_list = &decl->symbol_list; p = &base_type->stmt; } function_computed_target_list = NULL; function_computed_goto_list = NULL; if ((decl->ctype.modifiers & (MOD_EXTERN|MOD_INLINE)) == MOD_EXTERN) { if (Wexternal_function_has_definition) warning(decl->pos, "function '%s' with external linkage has definition", show_ident(decl->ident)); } if (!(decl->ctype.modifiers & MOD_STATIC)) decl->ctype.modifiers |= MOD_EXTERN; stmt = start_function(decl); *p = stmt; FOR_EACH_PTR (base_type->arguments, arg) { declare_argument(arg, base_type); } END_FOR_EACH_PTR(arg); token = compound_statement(token->next, stmt); end_function(decl); if (!(decl->ctype.modifiers & MOD_INLINE)) add_symbol(list, decl); else if (is_syscall(decl)) { add_symbol(list, decl); /* printf("parse.c decl: %s\n", decl->ident->name); char *macro = get_macro_name(decl->pos); printf("decl macro: %s\n", macro); */ } check_declaration(decl); decl->definition = decl; prev = decl->same_symbol; if (prev && prev->definition) { warning(decl->pos, "multiple definitions for function '%s'", show_ident(decl->ident)); info(prev->definition->pos, " the previous one is here"); } else { while (prev) { rebind_scope(prev, decl->scope); prev->definition = decl; prev = prev->same_symbol; } } function_symbol_list = old_symbol_list; if (function_computed_goto_list) { if (!function_computed_target_list) warning(decl->pos, "function '%s' has computed goto but no targets?", show_ident(decl->ident)); else { FOR_EACH_PTR(function_computed_goto_list, stmt) { stmt->target_list = function_computed_target_list; } END_FOR_EACH_PTR(stmt); } } return expect(token, '}', "at end of function"); } static void promote_k_r_types(struct symbol *arg) { struct symbol *base = arg->ctype.base_type; if (base && base->ctype.base_type == &int_type && (base->ctype.modifiers & (MOD_CHAR | MOD_SHORT))) { arg->ctype.base_type = &int_ctype; } } static void apply_k_r_types(struct symbol_list *argtypes, struct symbol *fn) { struct symbol_list *real_args = fn->ctype.base_type->arguments; struct symbol *arg; FOR_EACH_PTR(real_args, arg) { struct symbol *type; /* This is quadratic in the number of arguments. We _really_ don't care */ FOR_EACH_PTR(argtypes, type) { if (type->ident == arg->ident) goto match; } END_FOR_EACH_PTR(type); if (Wimplicit_int) { sparse_error(arg->pos, "missing type declaration for parameter '%s'", show_ident(arg->ident)); } type = alloc_symbol(arg->pos, SYM_NODE); type->ident = arg->ident; type->ctype.base_type = &int_ctype; match: type->used = 1; /* "char" and "short" promote to "int" */ promote_k_r_types(type); arg->ctype = type->ctype; } END_FOR_EACH_PTR(arg); FOR_EACH_PTR(argtypes, arg) { if (!arg->used) warning(arg->pos, "nonsensical parameter declaration '%s'", show_ident(arg->ident)); } END_FOR_EACH_PTR(arg); } static struct token *parse_k_r_arguments(struct token *token, struct symbol *decl, struct symbol_list **list) { struct symbol_list *args = NULL; if (Wold_style_definition) warning(token->pos, "non-ANSI definition of function '%s'", show_ident(decl->ident)); do { token = declaration_list(token, &args); if (!match_op(token, ';')) { sparse_error(token->pos, "expected ';' at end of parameter declaration"); break; } token = token->next; } while (lookup_type(token)); apply_k_r_types(args, decl); if (!match_op(token, '{')) { sparse_error(token->pos, "expected function body"); return token; } return parse_function_body(token, decl, list); } static struct token *toplevel_asm_declaration(struct token *token, struct symbol_list **list) { struct symbol *anon = alloc_symbol(token->pos, SYM_NODE); struct symbol *fn = alloc_symbol(token->pos, SYM_FN); struct statement *stmt; anon->ctype.base_type = fn; stmt = alloc_statement(token->pos, STMT_NONE); fn->stmt = stmt; token = parse_asm_statement(token, stmt); add_symbol(list, anon); return token; } struct token *external_declaration(struct token *token, struct symbol_list **list, validate_decl_t validate_decl) { struct ident *ident = NULL; struct symbol *decl; struct decl_state ctx = { .ident = &ident }; struct ctype saved; struct symbol *base_type; unsigned long mod; int is_typedef; if (match_ident(token, &_Pragma_ident)) return parse_underscore_Pragma(token); /* Top-level inline asm or static assertion? */ if (token_type(token) == TOKEN_IDENT) { struct symbol *s = lookup_keyword(token->ident, NS_KEYWORD); if (s && s->op->toplevel) return s->op->toplevel(token, list); } /* Parse declaration-specifiers, if any */ token = declaration_specifiers(token, &ctx); mod = storage_modifiers(&ctx); mod |= ctx.ctype.modifiers & MOD_NORETURN; decl = alloc_symbol(token->pos, SYM_NODE); /* Just a type declaration? */ if (match_op(token, ';')) { apply_modifiers(token->pos, &ctx); return token->next; } saved = ctx.ctype; token = declarator(token, &ctx); token = handle_attributes(token, &ctx, KW_ATTRIBUTE | KW_ASM); apply_modifiers(token->pos, &ctx); decl->ctype = ctx.ctype; decl->ctype.modifiers |= mod; decl->endpos = token->pos; /* Just a type declaration? */ if (!ident) { warning(token->pos, "missing identifier in declaration"); return expect(token, ';', "at the end of type declaration"); } /* type define declaration? */ is_typedef = ctx.storage_class == STypedef; /* Typedefs don't have meaningful storage */ if (is_typedef) decl->ctype.modifiers |= MOD_USERTYPE; bind_symbol(decl, ident, is_typedef ? NS_TYPEDEF: NS_SYMBOL); base_type = decl->ctype.base_type; if (is_typedef) { if (base_type && !base_type->ident) { switch (base_type->type) { case SYM_STRUCT: case SYM_UNION: case SYM_ENUM: case SYM_RESTRICT: base_type->ident = ident; break; default: break; } } } else if (base_type && base_type->type == SYM_FN) { if (base_type->ctype.base_type == &incomplete_ctype) { warning(decl->pos, "'%s()' has implicit return type", show_ident(decl->ident)); base_type->ctype.base_type = &int_ctype; } /* K&R argument declaration? */ if (lookup_type(token)) return parse_k_r_arguments(token, decl, list); if (match_op(token, '{')) return parse_function_body(token, decl, list); if (!(decl->ctype.modifiers & MOD_STATIC)) decl->ctype.modifiers |= MOD_EXTERN; } else if (base_type == &void_ctype && !(decl->ctype.modifiers & MOD_EXTERN)) { sparse_error(token->pos, "void declaration"); } if (base_type == &incomplete_ctype) { warning(decl->pos, "'%s' has implicit type", show_ident(decl->ident)); decl->ctype.base_type = &int_ctype;; } for (;;) { if (!is_typedef && match_op(token, '=')) { token = initializer(&decl->initializer, token->next); } if (!is_typedef) { if (validate_decl) validate_decl(decl); if (decl->initializer && decl->ctype.modifiers & MOD_EXTERN) { warning(decl->pos, "symbol with external linkage has initializer"); decl->ctype.modifiers &= ~MOD_EXTERN; } if (!(decl->ctype.modifiers & (MOD_EXTERN | MOD_INLINE))) { add_symbol(list, decl); fn_local_symbol(decl); } } check_declaration(decl); if (decl->same_symbol) { decl->definition = decl->same_symbol->definition; decl->op = decl->same_symbol->op; if (is_typedef) { // TODO: handle -std=c89 --pedantic check_duplicates(decl); } } if (!match_op(token, ',')) break; token = token->next; ident = NULL; decl = alloc_symbol(token->pos, SYM_NODE); ctx.ctype = saved; token = handle_attributes(token, &ctx, KW_ATTRIBUTE); token = declarator(token, &ctx); token = handle_attributes(token, &ctx, KW_ATTRIBUTE | KW_ASM); apply_modifiers(token->pos, &ctx); decl->ctype = ctx.ctype; decl->ctype.modifiers |= mod; decl->endpos = token->pos; if (!ident) { sparse_error(token->pos, "expected identifier name in type definition"); return token; } if (is_typedef) decl->ctype.modifiers |= MOD_USERTYPE; bind_symbol(decl, ident, is_typedef ? NS_TYPEDEF: NS_SYMBOL); /* Function declarations are automatically extern unless specifically static */ base_type = decl->ctype.base_type; if (!is_typedef && base_type && base_type->type == SYM_FN) { if (!(decl->ctype.modifiers & MOD_STATIC)) decl->ctype.modifiers |= MOD_EXTERN; } } return expect(token, ';', "at end of declaration"); }