/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2017 Nexenta Systems, Inc. * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright 2015 RackTop Systems. * Copyright (c) 2016, Intel Corporation. * Copyright 2020 Joyent, Inc. * Copyright 2023 Oxide Computer Company */ /* * Pool import support functions. * * Used by zpool, ztest, zdb, and zhack to locate importable configs. Since * these commands are expected to run in the global zone, we can assume * that the devices are all readable when called. * * To import a pool, we rely on reading the configuration information from the * ZFS label of each device. If we successfully read the label, then we * organize the configuration information in the following hierarchy: * * pool guid -> toplevel vdev guid -> label txg * * Duplicate entries matching this same tuple will be discarded. Once we have * examined every device, we pick the best label txg config for each toplevel * vdev. We then arrange these toplevel vdevs into a complete pool config, and * update any paths that have changed. Finally, we attempt to import the pool * using our derived config, and record the results. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zutil_import.h" #ifdef NDEBUG #define verify(EX) ((void)(EX)) #else #define verify(EX) assert(EX) #endif /*PRINTFLIKE2*/ static void zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...) { va_list ap; va_start(ap, fmt); (void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap); hdl->lpc_desc_active = B_TRUE; va_end(ap); } static void zutil_verror(libpc_handle_t *hdl, const char *error, const char *fmt, va_list ap) { char action[1024]; (void) vsnprintf(action, sizeof (action), fmt, ap); if (hdl->lpc_desc_active) hdl->lpc_desc_active = B_FALSE; else hdl->lpc_desc[0] = '\0'; if (hdl->lpc_printerr) { if (hdl->lpc_desc[0] != '\0') error = hdl->lpc_desc; (void) fprintf(stderr, "%s: %s\n", action, error); } } /*PRINTFLIKE3*/ static int zutil_error_fmt(libpc_handle_t *hdl, const char *error, const char *fmt, ...) { va_list ap; va_start(ap, fmt); zutil_verror(hdl, error, fmt, ap); va_end(ap); return (-1); } static int zutil_error(libpc_handle_t *hdl, const char *error, const char *msg) { return (zutil_error_fmt(hdl, error, "%s", msg)); } static int zutil_no_memory(libpc_handle_t *hdl) { (void) zutil_error(hdl, EZFS_NOMEM, "internal error"); exit(1); } void * zutil_alloc(libpc_handle_t *hdl, size_t size) { void *data; if ((data = calloc(1, size)) == NULL) (void) zutil_no_memory(hdl); return (data); } char * zutil_strdup(libpc_handle_t *hdl, const char *str) { char *ret; if ((ret = strdup(str)) == NULL) (void) zutil_no_memory(hdl); return (ret); } /* * Intermediate structures used to gather configuration information. */ typedef struct config_entry { uint64_t ce_txg; nvlist_t *ce_config; struct config_entry *ce_next; } config_entry_t; typedef struct vdev_entry { uint64_t ve_guid; config_entry_t *ve_configs; struct vdev_entry *ve_next; } vdev_entry_t; typedef struct pool_entry { uint64_t pe_guid; vdev_entry_t *pe_vdevs; struct pool_entry *pe_next; } pool_entry_t; typedef struct name_entry { char *ne_name; uint64_t ne_guid; struct name_entry *ne_next; } name_entry_t; typedef struct pool_list { pool_entry_t *pools; name_entry_t *names; } pool_list_t; /* * Go through and fix up any path and/or devid information for the given vdev * configuration. */ static int fix_paths(nvlist_t *nv, name_entry_t *names) { nvlist_t **child; uint_t c, children; uint64_t guid; name_entry_t *ne, *best; char *path, *devid; int matched; if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) if (fix_paths(child[c], names) != 0) return (-1); return (0); } /* * This is a leaf (file or disk) vdev. In either case, go through * the name list and see if we find a matching guid. If so, replace * the path and see if we can calculate a new devid. * * There may be multiple names associated with a particular guid, in * which case we have overlapping slices or multiple paths to the same * disk. If this is the case, then we want to pick the path that is * the most similar to the original, where "most similar" is the number * of matching characters starting from the end of the path. This will * preserve slice numbers even if the disks have been reorganized, and * will also catch preferred disk names if multiple paths exist. */ verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) path = NULL; matched = 0; best = NULL; for (ne = names; ne != NULL; ne = ne->ne_next) { if (ne->ne_guid == guid) { const char *src, *dst; int count; if (path == NULL) { best = ne; break; } src = ne->ne_name + strlen(ne->ne_name) - 1; dst = path + strlen(path) - 1; for (count = 0; src >= ne->ne_name && dst >= path; src--, dst--, count++) if (*src != *dst) break; /* * At this point, 'count' is the number of characters * matched from the end. */ if (count > matched || best == NULL) { best = ne; matched = count; } } } if (best == NULL) return (0); if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) return (-1); if ((devid = devid_str_from_path(best->ne_name)) == NULL) { (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); } else { if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) { devid_str_free(devid); return (-1); } devid_str_free(devid); } return (0); } /* * Add the given configuration to the list of known devices. */ static int add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path, int order, int num_labels, nvlist_t *config) { uint64_t pool_guid, vdev_guid, top_guid, txg, state; pool_entry_t *pe; vdev_entry_t *ve; config_entry_t *ce; name_entry_t *ne; /* * If this is a hot spare not currently in use or level 2 cache * device, add it to the list of names to translate, but don't do * anything else. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state) == 0 && (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) return (-1); if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { free(ne); return (-1); } ne->ne_guid = vdev_guid; ne->ne_next = pl->names; pl->names = ne; return (0); } /* * If we have a valid config but cannot read any of these fields, then * it means we have a half-initialized label. In vdev_label_init() * we write a label with txg == 0 so that we can identify the device * in case the user refers to the same disk later on. If we fail to * create the pool, we'll be left with a label in this state * which should not be considered part of a valid pool. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid) != 0 || nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) != 0 || nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, &top_guid) != 0 || nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) != 0 || txg == 0) { return (0); } /* * First, see if we know about this pool. If not, then add it to the * list of known pools. */ for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { if (pe->pe_guid == pool_guid) break; } if (pe == NULL) { if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) { return (-1); } pe->pe_guid = pool_guid; pe->pe_next = pl->pools; pl->pools = pe; } /* * Second, see if we know about this toplevel vdev. Add it if its * missing. */ for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { if (ve->ve_guid == top_guid) break; } if (ve == NULL) { if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { return (-1); } ve->ve_guid = top_guid; ve->ve_next = pe->pe_vdevs; pe->pe_vdevs = ve; } /* * Third, see if we have a config with a matching transaction group. If * so, then we do nothing. Otherwise, add it to the list of known * configs. */ for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { if (ce->ce_txg == txg) break; } if (ce == NULL) { if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) { return (-1); } ce->ce_txg = txg; ce->ce_config = fnvlist_dup(config); ce->ce_next = ve->ve_configs; ve->ve_configs = ce; } /* * At this point we've successfully added our config to the list of * known configs. The last thing to do is add the vdev guid -> path * mappings so that we can fix up the configuration as necessary before * doing the import. */ if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) return (-1); if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { free(ne); return (-1); } ne->ne_guid = vdev_guid; ne->ne_next = pl->names; pl->names = ne; return (0); } /* * Returns true if the named pool matches the given GUID. */ static int zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid, boolean_t *isactive) { ASSERT(hdl->lpc_ops->pco_pool_active != NULL); int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name, guid, isactive); return (error); } static nvlist_t * zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig) { ASSERT(hdl->lpc_ops->pco_refresh_config != NULL); return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle, tryconfig)); } /* * Determine if the vdev id is a hole in the namespace. */ static boolean_t vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) { for (int c = 0; c < holes; c++) { /* Top-level is a hole */ if (hole_array[c] == id) return (B_TRUE); } return (B_FALSE); } /* * Convert our list of pools into the definitive set of configurations. We * start by picking the best config for each toplevel vdev. Once that's done, * we assemble the toplevel vdevs into a full config for the pool. We make a * pass to fix up any incorrect paths, and then add it to the main list to * return to the user. */ static nvlist_t * get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok, nvlist_t *policy) { pool_entry_t *pe; vdev_entry_t *ve; config_entry_t *ce; nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; nvlist_t **spares, **l2cache; uint_t i, nspares, nl2cache; boolean_t config_seen; uint64_t best_txg; char *name, *hostname = NULL; uint64_t guid; uint_t children = 0; nvlist_t **child = NULL; uint_t holes; uint64_t *hole_array, max_id; uint_t c; boolean_t isactive; uint64_t hostid; nvlist_t *nvl; boolean_t found_one = B_FALSE; boolean_t valid_top_config = B_FALSE; if (nvlist_alloc(&ret, 0, 0) != 0) goto nomem; for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { uint64_t id, max_txg = 0; if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) goto nomem; config_seen = B_FALSE; /* * Iterate over all toplevel vdevs. Grab the pool configuration * from the first one we find, and then go through the rest and * add them as necessary to the 'vdevs' member of the config. */ for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { /* * Determine the best configuration for this vdev by * selecting the config with the latest transaction * group. */ best_txg = 0; for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { if (ce->ce_txg > best_txg) { tmp = ce->ce_config; best_txg = ce->ce_txg; } } /* * We rely on the fact that the max txg for the * pool will contain the most up-to-date information * about the valid top-levels in the vdev namespace. */ if (best_txg > max_txg) { (void) nvlist_remove(config, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64); (void) nvlist_remove(config, ZPOOL_CONFIG_HOLE_ARRAY, DATA_TYPE_UINT64_ARRAY); max_txg = best_txg; hole_array = NULL; holes = 0; max_id = 0; valid_top_config = B_FALSE; if (nvlist_lookup_uint64(tmp, ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { verify(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, max_id) == 0); valid_top_config = B_TRUE; } if (nvlist_lookup_uint64_array(tmp, ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, &holes) == 0) { verify(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, hole_array, holes) == 0); } } if (!config_seen) { /* * Copy the relevant pieces of data to the pool * configuration: * * version * pool guid * name * comment (if available) * pool state * hostid (if available) * hostname (if available) */ uint64_t state, version; char *comment = NULL; version = fnvlist_lookup_uint64(tmp, ZPOOL_CONFIG_VERSION); fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, version); guid = fnvlist_lookup_uint64(tmp, ZPOOL_CONFIG_POOL_GUID); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, guid); name = fnvlist_lookup_string(tmp, ZPOOL_CONFIG_POOL_NAME); fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, name); if (nvlist_lookup_string(tmp, ZPOOL_CONFIG_COMMENT, &comment) == 0) fnvlist_add_string(config, ZPOOL_CONFIG_COMMENT, comment); state = fnvlist_lookup_uint64(tmp, ZPOOL_CONFIG_POOL_STATE); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); hostid = 0; if (nvlist_lookup_uint64(tmp, ZPOOL_CONFIG_HOSTID, &hostid) == 0) { fnvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid); hostname = fnvlist_lookup_string(tmp, ZPOOL_CONFIG_HOSTNAME); fnvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, hostname); } config_seen = B_TRUE; } /* * Add this top-level vdev to the child array. */ verify(nvlist_lookup_nvlist(tmp, ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, &id) == 0); if (id >= children) { nvlist_t **newchild; newchild = zutil_alloc(hdl, (id + 1) * sizeof (nvlist_t *)); if (newchild == NULL) goto nomem; for (c = 0; c < children; c++) newchild[c] = child[c]; free(child); child = newchild; children = id + 1; } if (nvlist_dup(nvtop, &child[id], 0) != 0) goto nomem; } /* * If we have information about all the top-levels then * clean up the nvlist which we've constructed. This * means removing any extraneous devices that are * beyond the valid range or adding devices to the end * of our array which appear to be missing. */ if (valid_top_config) { if (max_id < children) { for (c = max_id; c < children; c++) nvlist_free(child[c]); children = max_id; } else if (max_id > children) { nvlist_t **newchild; newchild = zutil_alloc(hdl, (max_id) * sizeof (nvlist_t *)); if (newchild == NULL) goto nomem; for (c = 0; c < children; c++) newchild[c] = child[c]; free(child); child = newchild; children = max_id; } } verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); /* * The vdev namespace may contain holes as a result of * device removal. We must add them back into the vdev * tree before we process any missing devices. */ if (holes > 0) { ASSERT(valid_top_config); for (c = 0; c < children; c++) { nvlist_t *holey; if (child[c] != NULL || !vdev_is_hole(hole_array, holes, c)) continue; if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 0) != 0) goto nomem; /* * Holes in the namespace are treated as * "hole" top-level vdevs and have a * special flag set on them. */ if (nvlist_add_string(holey, ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) != 0 || nvlist_add_uint64(holey, ZPOOL_CONFIG_ID, c) != 0 || nvlist_add_uint64(holey, ZPOOL_CONFIG_GUID, 0ULL) != 0) { nvlist_free(holey); goto nomem; } child[c] = holey; } } /* * Look for any missing top-level vdevs. If this is the case, * create a faked up 'missing' vdev as a placeholder. We cannot * simply compress the child array, because the kernel performs * certain checks to make sure the vdev IDs match their location * in the configuration. */ for (c = 0; c < children; c++) { if (child[c] == NULL) { nvlist_t *missing; if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 0) != 0) goto nomem; if (nvlist_add_string(missing, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MISSING) != 0 || nvlist_add_uint64(missing, ZPOOL_CONFIG_ID, c) != 0 || nvlist_add_uint64(missing, ZPOOL_CONFIG_GUID, 0ULL) != 0) { nvlist_free(missing); goto nomem; } child[c] = missing; } } /* * Put all of this pool's top-level vdevs into a root vdev. */ if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) goto nomem; if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, child, children) != 0) { nvlist_free(nvroot); goto nomem; } for (c = 0; c < children; c++) nvlist_free(child[c]); free(child); children = 0; child = NULL; /* * Go through and fix up any paths and/or devids based on our * known list of vdev GUID -> path mappings. */ if (fix_paths(nvroot, pl->names) != 0) { nvlist_free(nvroot); goto nomem; } /* * Add the root vdev to this pool's configuration. */ if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) != 0) { nvlist_free(nvroot); goto nomem; } nvlist_free(nvroot); /* * zdb uses this path to report on active pools that were * imported or created using -R. */ if (active_ok) goto add_pool; /* * Determine if this pool is currently active, in which case we * can't actually import it. */ verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); if (zutil_pool_active(hdl, name, guid, &isactive) != 0) goto error; if (isactive) { nvlist_free(config); config = NULL; continue; } if (policy != NULL) { if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY, policy) != 0) goto nomem; } if ((nvl = zutil_refresh_config(hdl, config)) == NULL) { nvlist_free(config); config = NULL; continue; } nvlist_free(config); config = nvl; /* * Go through and update the paths for spares, now that we have * them. */ verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { for (i = 0; i < nspares; i++) { if (fix_paths(spares[i], pl->names) != 0) goto nomem; } } /* * Update the paths for l2cache devices. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { for (i = 0; i < nl2cache; i++) { if (fix_paths(l2cache[i], pl->names) != 0) goto nomem; } } /* * Restore the original information read from the actual label. */ (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, DATA_TYPE_UINT64); (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, DATA_TYPE_STRING); if (hostid != 0) { verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid) == 0); verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, hostname) == 0); } add_pool: /* * Add this pool to the list of configs. */ verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); if (nvlist_add_nvlist(ret, name, config) != 0) goto nomem; found_one = B_TRUE; nvlist_free(config); config = NULL; } if (!found_one) { nvlist_free(ret); ret = NULL; } return (ret); nomem: (void) zutil_no_memory(hdl); error: nvlist_free(config); nvlist_free(ret); for (c = 0; c < children; c++) nvlist_free(child[c]); free(child); return (NULL); } /* * Return the offset of the given label. */ static uint64_t label_offset(uint64_t size, int l) { ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); } /* * Given a file descriptor, read the label information and return an nvlist * describing the configuration, if there is one. The number of valid * labels found will be returned in num_labels when non-NULL. */ int zpool_read_label(int fd, nvlist_t **config, int *num_labels) { struct stat64 statbuf; int l, count = 0; vdev_label_t *label; nvlist_t *expected_config = NULL; uint64_t expected_guid = 0, size; *config = NULL; if (num_labels != NULL) *num_labels = 0; if (fstat64(fd, &statbuf) == -1) return (0); size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); if ((label = malloc(sizeof (vdev_label_t))) == NULL) return (-1); for (l = 0; l < VDEV_LABELS; l++) { uint64_t state, guid, txg; if (pread64(fd, label, sizeof (vdev_label_t), label_offset(size, l)) != sizeof (vdev_label_t)) continue; if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) continue; if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, &guid) != 0 || guid == 0) { nvlist_free(*config); continue; } if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, &state) != 0 || state > POOL_STATE_L2CACHE) { nvlist_free(*config); continue; } if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, &txg) != 0 || txg == 0)) { nvlist_free(*config); continue; } if (expected_guid) { if (expected_guid == guid) count++; nvlist_free(*config); } else { expected_config = *config; expected_guid = guid; count++; } } if (num_labels != NULL) *num_labels = count; free(label); *config = expected_config; return (0); } static int slice_cache_compare(const void *arg1, const void *arg2) { const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; char *nm1slice, *nm2slice; int rv; /* * slices zero and two are the most likely to provide results, * so put those first */ nm1slice = strstr(nm1, "s0"); nm2slice = strstr(nm2, "s0"); if (nm1slice && !nm2slice) { return (-1); } if (!nm1slice && nm2slice) { return (1); } nm1slice = strstr(nm1, "s2"); nm2slice = strstr(nm2, "s2"); if (nm1slice && !nm2slice) { return (-1); } if (!nm1slice && nm2slice) { return (1); } rv = strcmp(nm1, nm2); if (rv == 0) return (0); return (rv > 0 ? 1 : -1); } static void check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, diskaddr_t size, uint_t blksz) { rdsk_node_t tmpnode; rdsk_node_t *node; char sname[MAXNAMELEN]; tmpnode.rn_name = &sname[0]; (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", diskname, partno); /* * protect against division by zero for disk labels that * contain a bogus sector size */ if (blksz == 0) blksz = DEV_BSIZE; /* too small to contain a zpool? */ if ((size < (SPA_MINDEVSIZE / blksz)) && (node = avl_find(r, &tmpnode, NULL))) node->rn_nozpool = B_TRUE; } static void nozpool_all_slices(avl_tree_t *r, const char *sname) { char diskname[MAXNAMELEN]; char *ptr; int i; (void) strncpy(diskname, sname, MAXNAMELEN); if (((ptr = strrchr(diskname, 's')) == NULL) && ((ptr = strrchr(diskname, 'p')) == NULL)) return; ptr[0] = 's'; ptr[1] = '\0'; for (i = 0; i < NDKMAP; i++) check_one_slice(r, diskname, i, 0, 1); ptr[0] = 'p'; for (i = 0; i <= FD_NUMPART; i++) check_one_slice(r, diskname, i, 0, 1); } static void check_slices(avl_tree_t *r, int fd, const char *sname) { struct extvtoc vtoc; struct dk_gpt *gpt; char diskname[MAXNAMELEN]; char *ptr; int i; (void) strncpy(diskname, sname, MAXNAMELEN); if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) return; ptr[1] = '\0'; if (read_extvtoc(fd, &vtoc) >= 0) { for (i = 0; i < NDKMAP; i++) check_one_slice(r, diskname, i, vtoc.v_part[i].p_size, vtoc.v_sectorsz); } else if (efi_alloc_and_read(fd, &gpt) >= 0) { /* * on x86 we'll still have leftover links that point * to slices s[9-15], so use NDKMAP instead */ for (i = 0; i < NDKMAP; i++) check_one_slice(r, diskname, i, gpt->efi_parts[i].p_size, gpt->efi_lbasize); /* nodes p[1-4] are never used with EFI labels */ ptr[0] = 'p'; for (i = 1; i <= FD_NUMPART; i++) check_one_slice(r, diskname, i, 0, 1); efi_free(gpt); } } void zpool_open_func(void *arg) { rdsk_node_t *rn = arg; struct stat64 statbuf; nvlist_t *config; int error; int num_labels = 0; int fd; if (rn->rn_nozpool) return; if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { /* symlink to a device that's no longer there */ if (errno == ENOENT) nozpool_all_slices(rn->rn_avl, rn->rn_name); return; } /* * Ignore failed stats. We only want regular * files, character devs and block devs. */ if (fstat64(fd, &statbuf) != 0 || (!S_ISREG(statbuf.st_mode) && !S_ISCHR(statbuf.st_mode) && !S_ISBLK(statbuf.st_mode))) { (void) close(fd); return; } /* this file is too small to hold a zpool */ if (S_ISREG(statbuf.st_mode) && statbuf.st_size < SPA_MINDEVSIZE) { (void) close(fd); return; } else if (!S_ISREG(statbuf.st_mode)) { /* * Try to read the disk label first so we don't have to * open a bunch of minor nodes that can't have a zpool. */ check_slices(rn->rn_avl, fd, rn->rn_name); } error = zpool_read_label(fd, &config, &num_labels); if (error != 0) { (void) close(fd); return; } if (num_labels == 0) { (void) close(fd); nvlist_free(config); return; } (void) close(fd); rn->rn_config = config; rn->rn_num_labels = num_labels; } /* * Given a list of directories to search, find all pools stored on disk. This * includes partial pools which are not available to import. If no args are * given (argc is 0), then the default directory (/dev/dsk) is searched. * poolname or guid (but not both) are provided by the caller when trying * to import a specific pool. */ static nvlist_t * zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg) { int i, dirs = iarg->paths; struct dirent64 *dp; char path[MAXPATHLEN]; char *end, **dir = iarg->path; size_t pathleft; nvlist_t *ret = NULL; static char *default_dir = ZFS_DISK_ROOT; pool_list_t pools = { 0 }; pool_entry_t *pe, *penext; vdev_entry_t *ve, *venext; config_entry_t *ce, *cenext; name_entry_t *ne, *nenext; avl_tree_t slice_cache; rdsk_node_t *slice; void *cookie; if (dirs == 0) { dirs = 1; dir = &default_dir; } /* * Go through and read the label configuration information from every * possible device, organizing the information according to pool GUID * and toplevel GUID. */ for (i = 0; i < dirs; i++) { tpool_t *t; char rdsk[MAXPATHLEN]; int dfd; boolean_t config_failed = B_FALSE; DIR *dirp; /* use realpath to normalize the path */ if (realpath(dir[i], path) == 0) { (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); goto error; } end = &path[strlen(path)]; *end++ = '/'; *end = 0; pathleft = &path[sizeof (path)] - end; /* * Using raw devices instead of block devices when we're * reading the labels skips a bunch of slow operations during * close(2) processing, so we replace /dev/dsk with /dev/rdsk. */ if (strcmp(path, ZFS_DISK_ROOTD) == 0) (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk)); else (void) strlcpy(rdsk, path, sizeof (rdsk)); if ((dfd = open64(rdsk, O_RDONLY)) < 0 || (dirp = fdopendir(dfd)) == NULL) { if (dfd >= 0) (void) close(dfd); zutil_error_aux(hdl, strerror(errno)); (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext(TEXT_DOMAIN, "cannot open '%s'"), rdsk); goto error; } avl_create(&slice_cache, slice_cache_compare, sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); /* * This is not MT-safe, but we have no MT consumers of libzutil */ while ((dp = readdir64(dirp)) != NULL) { char *name = dp->d_name; avl_index_t where; if (name[0] == '.' && (name[1] == 0 || (name[1] == '.' && name[2] == 0))) continue; slice = zutil_alloc(hdl, sizeof (rdsk_node_t)); slice->rn_name = name; slice->rn_avl = &slice_cache; slice->rn_dfd = dfd; slice->rn_hdl = hdl; slice->rn_nozpool = B_FALSE; /* * readdir(3C) buffers several directory entries per * actual read operation. It is possible that if * directory entries appear between reading one chunk * and the next, that the same entry name can end up * being returned more than once. We need to check that * this entry doesn't already exist before adding it to * the tree. */ if (avl_find(&slice_cache, slice, &where) == NULL) { slice->rn_name = zutil_strdup(hdl, name); avl_insert(&slice_cache, slice, where); } else { free(slice); } } /* * create a thread pool to do all of this in parallel; * rn_nozpool is not protected, so this is racy in that * multiple tasks could decide that the same slice can * not hold a zpool, which is benign. Also choose * double the number of processors; we hold a lot of * locks in the kernel, so going beyond this doesn't * buy us much. */ t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 0, NULL); for (slice = avl_first(&slice_cache); slice; (slice = avl_walk(&slice_cache, slice, AVL_AFTER))) (void) tpool_dispatch(t, zpool_open_func, slice); tpool_wait(t); tpool_destroy(t); cookie = NULL; while ((slice = avl_destroy_nodes(&slice_cache, &cookie)) != NULL) { if (slice->rn_config != NULL && !config_failed) { nvlist_t *config = slice->rn_config; boolean_t matched = B_TRUE; if (iarg->poolname != NULL) { char *pname; matched = nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &pname) == 0 && strcmp(iarg->poolname, pname) == 0; } else if (iarg->guid != 0) { uint64_t this_guid; matched = nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 && iarg->guid == this_guid; } if (matched) { /* * use the non-raw path for the config */ (void) strlcpy(end, slice->rn_name, pathleft); (void) add_config(hdl, &pools, path, slice->rn_order, slice->rn_num_labels, config); } nvlist_free(config); } free(slice->rn_name); free(slice); } avl_destroy(&slice_cache); (void) closedir(dirp); if (config_failed) goto error; } ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy); error: for (pe = pools.pools; pe != NULL; pe = penext) { penext = pe->pe_next; for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { venext = ve->ve_next; for (ce = ve->ve_configs; ce != NULL; ce = cenext) { cenext = ce->ce_next; nvlist_free(ce->ce_config); free(ce); } free(ve); } free(pe); } for (ne = pools.names; ne != NULL; ne = nenext) { nenext = ne->ne_next; free(ne->ne_name); free(ne); } return (ret); } /* * Given a cache file, return the contents as a list of importable pools. * poolname or guid (but not both) are provided by the caller when trying * to import a specific pool. */ static nvlist_t * zpool_find_import_cached(libpc_handle_t *hdl, const char *cachefile, const char *poolname, uint64_t guid) { char *buf; int fd; struct stat64 statbuf; nvlist_t *raw, *src, *dst; nvlist_t *pools; nvpair_t *elem; char *name; uint64_t this_guid; boolean_t active; verify(poolname == NULL || guid == 0); if ((fd = open(cachefile, O_RDONLY)) < 0) { zutil_error_aux(hdl, "%s", strerror(errno)); (void) zutil_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "failed to open cache file")); return (NULL); } if (fstat64(fd, &statbuf) != 0) { zutil_error_aux(hdl, "%s", strerror(errno)); (void) close(fd); (void) zutil_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "failed to get size of cache file")); return (NULL); } if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) { (void) close(fd); return (NULL); } if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { (void) close(fd); free(buf); (void) zutil_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "failed to read cache file contents")); return (NULL); } (void) close(fd); if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { free(buf); (void) zutil_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "invalid or corrupt cache file contents")); return (NULL); } free(buf); /* * Go through and get the current state of the pools and refresh their * state. */ if (nvlist_alloc(&pools, 0, 0) != 0) { (void) zutil_no_memory(hdl); nvlist_free(raw); return (NULL); } elem = NULL; while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { src = fnvpair_value_nvlist(elem); name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); if (poolname != NULL && strcmp(poolname, name) != 0) continue; this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); if (guid != 0 && guid != this_guid) continue; if (zutil_pool_active(hdl, name, this_guid, &active) != 0) { nvlist_free(raw); nvlist_free(pools); return (NULL); } if (active) continue; if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE, cachefile) != 0) { (void) zutil_no_memory(hdl); nvlist_free(raw); nvlist_free(pools); return (NULL); } if ((dst = zutil_refresh_config(hdl, src)) == NULL) { nvlist_free(raw); nvlist_free(pools); return (NULL); } if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { (void) zutil_no_memory(hdl); nvlist_free(dst); nvlist_free(raw); nvlist_free(pools); return (NULL); } nvlist_free(dst); } nvlist_free(raw); return (pools); } nvlist_t * zpool_search_import(void *hdl, importargs_t *import, const pool_config_ops_t *pco) { libpc_handle_t handle = { 0 }; nvlist_t *pools = NULL; handle.lpc_lib_handle = hdl; handle.lpc_ops = pco; handle.lpc_printerr = B_TRUE; verify(import->poolname == NULL || import->guid == 0); if (import->cachefile != NULL) pools = zpool_find_import_cached(&handle, import->cachefile, import->poolname, import->guid); else pools = zpool_find_import_impl(&handle, import); if ((pools == NULL || nvlist_empty(pools)) && handle.lpc_open_access_error && geteuid() != 0) { (void) zutil_error(&handle, EZFS_EACESS, dgettext(TEXT_DOMAIN, "no pools found")); } return (pools); } static boolean_t pool_match(nvlist_t *cfg, char *tgt) { uint64_t v, guid = strtoull(tgt, NULL, 0); char *s; if (guid != 0) { if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) return (v == guid); } else { if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) return (strcmp(s, tgt) == 0); } return (B_FALSE); } int zpool_find_config(void *hdl, const char *target, nvlist_t **configp, importargs_t *args, const pool_config_ops_t *pco) { nvlist_t *pools; nvlist_t *match = NULL; nvlist_t *config = NULL; char *sepp = NULL; int count = 0; char *targetdup = strdup(target); *configp = NULL; if ((sepp = strpbrk(targetdup, "/@")) != NULL) { *sepp = '\0'; } pools = zpool_search_import(hdl, args, pco); if (pools != NULL) { nvpair_t *elem = NULL; while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { VERIFY0(nvpair_value_nvlist(elem, &config)); if (pool_match(config, targetdup)) { count++; if (match != NULL) { /* multiple matches found */ continue; } else { match = config; } } } } if (count == 0) { free(targetdup); return (ENOENT); } if (count > 1) { free(targetdup); return (EINVAL); } *configp = match; free(targetdup); return (0); }