/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2015 by Delphix. All rights reserved. * Copyright 2019 Joyent, Inc. * Copyright (c) 2012 Pawel Jakub Dawidek. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Igor Kozhukhov * Copyright (c) 2017, loli10K . All rights reserved. * Copyright (c) 2018 Datto Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "zfs_fletcher.h" #include "libzfs_impl.h" #include #include #include #include #include /* in libzfs_dataset.c */ extern void zfs_setprop_error(libzfs_handle_t *, zfs_prop_t, int, char *); static int zfs_receive_impl(libzfs_handle_t *, const char *, const char *, recvflags_t *, int, const char *, nvlist_t *, avl_tree_t *, char **, int, uint64_t *, const char *, nvlist_t *); static int guid_to_name(libzfs_handle_t *, const char *, uint64_t, boolean_t, char *); static const zio_cksum_t zero_cksum = { 0 }; typedef struct dedup_arg { int inputfd; int outputfd; libzfs_handle_t *dedup_hdl; } dedup_arg_t; typedef struct progress_arg { zfs_handle_t *pa_zhp; int pa_fd; boolean_t pa_parsable; } progress_arg_t; typedef struct dataref { uint64_t ref_guid; uint64_t ref_object; uint64_t ref_offset; } dataref_t; typedef struct dedup_entry { struct dedup_entry *dde_next; zio_cksum_t dde_chksum; uint64_t dde_prop; dataref_t dde_ref; } dedup_entry_t; #define MAX_DDT_PHYSMEM_PERCENT 20 #define SMALLEST_POSSIBLE_MAX_DDT_MB 128 typedef struct dedup_table { dedup_entry_t **dedup_hash_array; umem_cache_t *ddecache; uint64_t max_ddt_size; /* max dedup table size in bytes */ uint64_t cur_ddt_size; /* current dedup table size in bytes */ uint64_t ddt_count; int numhashbits; boolean_t ddt_full; } dedup_table_t; static int high_order_bit(uint64_t n) { int count; for (count = 0; n != 0; count++) n >>= 1; return (count); } static size_t ssread(void *buf, size_t len, FILE *stream) { size_t outlen; if ((outlen = fread(buf, len, 1, stream)) == 0) return (0); return (outlen); } static void ddt_hash_append(libzfs_handle_t *hdl, dedup_table_t *ddt, dedup_entry_t **ddepp, zio_cksum_t *cs, uint64_t prop, dataref_t *dr) { dedup_entry_t *dde; if (ddt->cur_ddt_size >= ddt->max_ddt_size) { if (ddt->ddt_full == B_FALSE) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Dedup table full. Deduplication will continue " "with existing table entries")); ddt->ddt_full = B_TRUE; } return; } if ((dde = umem_cache_alloc(ddt->ddecache, UMEM_DEFAULT)) != NULL) { assert(*ddepp == NULL); dde->dde_next = NULL; dde->dde_chksum = *cs; dde->dde_prop = prop; dde->dde_ref = *dr; *ddepp = dde; ddt->cur_ddt_size += sizeof (dedup_entry_t); ddt->ddt_count++; } } /* * Using the specified dedup table, do a lookup for an entry with * the checksum cs. If found, return the block's reference info * in *dr. Otherwise, insert a new entry in the dedup table, using * the reference information specified by *dr. * * return value: true - entry was found * false - entry was not found */ static boolean_t ddt_update(libzfs_handle_t *hdl, dedup_table_t *ddt, zio_cksum_t *cs, uint64_t prop, dataref_t *dr) { uint32_t hashcode; dedup_entry_t **ddepp; hashcode = BF64_GET(cs->zc_word[0], 0, ddt->numhashbits); for (ddepp = &(ddt->dedup_hash_array[hashcode]); *ddepp != NULL; ddepp = &((*ddepp)->dde_next)) { if (ZIO_CHECKSUM_EQUAL(((*ddepp)->dde_chksum), *cs) && (*ddepp)->dde_prop == prop) { *dr = (*ddepp)->dde_ref; return (B_TRUE); } } ddt_hash_append(hdl, ddt, ddepp, cs, prop, dr); return (B_FALSE); } static int dump_record(dmu_replay_record_t *drr, void *payload, int payload_len, zio_cksum_t *zc, int outfd) { ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); (void) fletcher_4_incremental_native(drr, offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), zc); if (drr->drr_type != DRR_BEGIN) { ASSERT(ZIO_CHECKSUM_IS_ZERO(&drr->drr_u. drr_checksum.drr_checksum)); drr->drr_u.drr_checksum.drr_checksum = *zc; } (void) fletcher_4_incremental_native( &drr->drr_u.drr_checksum.drr_checksum, sizeof (zio_cksum_t), zc); if (write(outfd, drr, sizeof (*drr)) == -1) return (errno); if (payload_len != 0) { (void) fletcher_4_incremental_native(payload, payload_len, zc); if (write(outfd, payload, payload_len) == -1) return (errno); } return (0); } /* * This function is started in a separate thread when the dedup option * has been requested. The main send thread determines the list of * snapshots to be included in the send stream and makes the ioctl calls * for each one. But instead of having the ioctl send the output to the * the output fd specified by the caller of zfs_send()), the * ioctl is told to direct the output to a pipe, which is read by the * alternate thread running THIS function. This function does the * dedup'ing by: * 1. building a dedup table (the DDT) * 2. doing checksums on each data block and inserting a record in the DDT * 3. looking for matching checksums, and * 4. sending a DRR_WRITE_BYREF record instead of a write record whenever * a duplicate block is found. * The output of this function then goes to the output fd requested * by the caller of zfs_send(). */ static void * cksummer(void *arg) { dedup_arg_t *dda = arg; char *buf = zfs_alloc(dda->dedup_hdl, SPA_MAXBLOCKSIZE); dmu_replay_record_t thedrr; dmu_replay_record_t *drr = &thedrr; FILE *ofp; int outfd; dedup_table_t ddt; zio_cksum_t stream_cksum; uint64_t physmem = sysconf(_SC_PHYS_PAGES) * sysconf(_SC_PAGESIZE); uint64_t numbuckets; ddt.max_ddt_size = MAX((physmem * MAX_DDT_PHYSMEM_PERCENT) / 100, SMALLEST_POSSIBLE_MAX_DDT_MB << 20); numbuckets = ddt.max_ddt_size / (sizeof (dedup_entry_t)); /* * numbuckets must be a power of 2. Increase number to * a power of 2 if necessary. */ if (!ISP2(numbuckets)) numbuckets = 1 << high_order_bit(numbuckets); ddt.dedup_hash_array = calloc(numbuckets, sizeof (dedup_entry_t *)); ddt.ddecache = umem_cache_create("dde", sizeof (dedup_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0); ddt.cur_ddt_size = numbuckets * sizeof (dedup_entry_t *); ddt.numhashbits = high_order_bit(numbuckets) - 1; ddt.ddt_full = B_FALSE; outfd = dda->outputfd; ofp = fdopen(dda->inputfd, "r"); while (ssread(drr, sizeof (*drr), ofp) != 0) { /* * kernel filled in checksum, we are going to write same * record, but need to regenerate checksum. */ if (drr->drr_type != DRR_BEGIN) { bzero(&drr->drr_u.drr_checksum.drr_checksum, sizeof (drr->drr_u.drr_checksum.drr_checksum)); } switch (drr->drr_type) { case DRR_BEGIN: { struct drr_begin *drrb = &drr->drr_u.drr_begin; int fflags; int sz = 0; ZIO_SET_CHECKSUM(&stream_cksum, 0, 0, 0, 0); ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); /* set the DEDUP feature flag for this stream */ fflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); fflags |= (DMU_BACKUP_FEATURE_DEDUP | DMU_BACKUP_FEATURE_DEDUPPROPS); DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, fflags); if (drr->drr_payloadlen != 0) { sz = drr->drr_payloadlen; if (sz > SPA_MAXBLOCKSIZE) { buf = zfs_realloc(dda->dedup_hdl, buf, SPA_MAXBLOCKSIZE, sz); } (void) ssread(buf, sz, ofp); if (ferror(stdin)) perror("fread"); } if (dump_record(drr, buf, sz, &stream_cksum, outfd) != 0) goto out; break; } case DRR_END: { struct drr_end *drre = &drr->drr_u.drr_end; /* use the recalculated checksum */ drre->drr_checksum = stream_cksum; if (dump_record(drr, NULL, 0, &stream_cksum, outfd) != 0) goto out; break; } case DRR_OBJECT: { struct drr_object *drro = &drr->drr_u.drr_object; if (drro->drr_bonuslen > 0) { (void) ssread(buf, DRR_OBJECT_PAYLOAD_SIZE(drro), ofp); } if (dump_record(drr, buf, DRR_OBJECT_PAYLOAD_SIZE(drro), &stream_cksum, outfd) != 0) goto out; break; } case DRR_SPILL: { struct drr_spill *drrs = &drr->drr_u.drr_spill; (void) ssread(buf, DRR_SPILL_PAYLOAD_SIZE(drrs), ofp); if (dump_record(drr, buf, DRR_SPILL_PAYLOAD_SIZE(drrs), &stream_cksum, outfd) != 0) goto out; break; } case DRR_FREEOBJECTS: { if (dump_record(drr, NULL, 0, &stream_cksum, outfd) != 0) goto out; break; } case DRR_WRITE: { struct drr_write *drrw = &drr->drr_u.drr_write; dataref_t dataref; uint64_t payload_size; payload_size = DRR_WRITE_PAYLOAD_SIZE(drrw); (void) ssread(buf, payload_size, ofp); /* * Use the existing checksum if it's dedup-capable, * else calculate a SHA256 checksum for it. */ if (ZIO_CHECKSUM_EQUAL(drrw->drr_key.ddk_cksum, zero_cksum) || !DRR_IS_DEDUP_CAPABLE(drrw->drr_flags)) { SHA256_CTX ctx; zio_cksum_t tmpsha256; SHA256Init(&ctx); SHA256Update(&ctx, buf, payload_size); SHA256Final(&tmpsha256, &ctx); drrw->drr_key.ddk_cksum.zc_word[0] = BE_64(tmpsha256.zc_word[0]); drrw->drr_key.ddk_cksum.zc_word[1] = BE_64(tmpsha256.zc_word[1]); drrw->drr_key.ddk_cksum.zc_word[2] = BE_64(tmpsha256.zc_word[2]); drrw->drr_key.ddk_cksum.zc_word[3] = BE_64(tmpsha256.zc_word[3]); drrw->drr_checksumtype = ZIO_CHECKSUM_SHA256; drrw->drr_flags |= DRR_CHECKSUM_DEDUP; } dataref.ref_guid = drrw->drr_toguid; dataref.ref_object = drrw->drr_object; dataref.ref_offset = drrw->drr_offset; if (ddt_update(dda->dedup_hdl, &ddt, &drrw->drr_key.ddk_cksum, drrw->drr_key.ddk_prop, &dataref)) { dmu_replay_record_t wbr_drr = {0}; struct drr_write_byref *wbr_drrr = &wbr_drr.drr_u.drr_write_byref; /* block already present in stream */ wbr_drr.drr_type = DRR_WRITE_BYREF; wbr_drrr->drr_object = drrw->drr_object; wbr_drrr->drr_offset = drrw->drr_offset; wbr_drrr->drr_length = drrw->drr_logical_size; wbr_drrr->drr_toguid = drrw->drr_toguid; wbr_drrr->drr_refguid = dataref.ref_guid; wbr_drrr->drr_refobject = dataref.ref_object; wbr_drrr->drr_refoffset = dataref.ref_offset; wbr_drrr->drr_checksumtype = drrw->drr_checksumtype; wbr_drrr->drr_flags = drrw->drr_flags; wbr_drrr->drr_key.ddk_cksum = drrw->drr_key.ddk_cksum; wbr_drrr->drr_key.ddk_prop = drrw->drr_key.ddk_prop; if (dump_record(&wbr_drr, NULL, 0, &stream_cksum, outfd) != 0) goto out; } else { /* block not previously seen */ if (dump_record(drr, buf, payload_size, &stream_cksum, outfd) != 0) goto out; } break; } case DRR_WRITE_EMBEDDED: { struct drr_write_embedded *drrwe = &drr->drr_u.drr_write_embedded; (void) ssread(buf, P2ROUNDUP((uint64_t)drrwe->drr_psize, 8), ofp); if (dump_record(drr, buf, P2ROUNDUP((uint64_t)drrwe->drr_psize, 8), &stream_cksum, outfd) != 0) goto out; break; } case DRR_FREE: { if (dump_record(drr, NULL, 0, &stream_cksum, outfd) != 0) goto out; break; } case DRR_OBJECT_RANGE: { if (dump_record(drr, NULL, 0, &stream_cksum, outfd) != 0) goto out; break; } default: (void) fprintf(stderr, "INVALID record type 0x%x\n", drr->drr_type); /* should never happen, so assert */ assert(B_FALSE); } } out: umem_cache_destroy(ddt.ddecache); free(ddt.dedup_hash_array); free(buf); (void) fclose(ofp); return (NULL); } /* * Routines for dealing with the AVL tree of fs-nvlists */ typedef struct fsavl_node { avl_node_t fn_node; nvlist_t *fn_nvfs; char *fn_snapname; uint64_t fn_guid; } fsavl_node_t; static int fsavl_compare(const void *arg1, const void *arg2) { const fsavl_node_t *fn1 = (const fsavl_node_t *)arg1; const fsavl_node_t *fn2 = (const fsavl_node_t *)arg2; if (fn1->fn_guid > fn2->fn_guid) return (+1); if (fn1->fn_guid < fn2->fn_guid) return (-1); return (0); } /* * Given the GUID of a snapshot, find its containing filesystem and * (optionally) name. */ static nvlist_t * fsavl_find(avl_tree_t *avl, uint64_t snapguid, char **snapname) { fsavl_node_t fn_find; fsavl_node_t *fn; fn_find.fn_guid = snapguid; fn = avl_find(avl, &fn_find, NULL); if (fn) { if (snapname) *snapname = fn->fn_snapname; return (fn->fn_nvfs); } return (NULL); } static void fsavl_destroy(avl_tree_t *avl) { fsavl_node_t *fn; void *cookie; if (avl == NULL) return; cookie = NULL; while ((fn = avl_destroy_nodes(avl, &cookie)) != NULL) free(fn); avl_destroy(avl); free(avl); } /* * Given an nvlist, produce an avl tree of snapshots, ordered by guid */ static avl_tree_t * fsavl_create(nvlist_t *fss) { avl_tree_t *fsavl; nvpair_t *fselem = NULL; if ((fsavl = malloc(sizeof (avl_tree_t))) == NULL) return (NULL); avl_create(fsavl, fsavl_compare, sizeof (fsavl_node_t), offsetof(fsavl_node_t, fn_node)); while ((fselem = nvlist_next_nvpair(fss, fselem)) != NULL) { nvlist_t *nvfs, *snaps; nvpair_t *snapelem = NULL; VERIFY(0 == nvpair_value_nvlist(fselem, &nvfs)); VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snaps", &snaps)); while ((snapelem = nvlist_next_nvpair(snaps, snapelem)) != NULL) { fsavl_node_t *fn; uint64_t guid; VERIFY(0 == nvpair_value_uint64(snapelem, &guid)); if ((fn = malloc(sizeof (fsavl_node_t))) == NULL) { fsavl_destroy(fsavl); return (NULL); } fn->fn_nvfs = nvfs; fn->fn_snapname = nvpair_name(snapelem); fn->fn_guid = guid; /* * Note: if there are multiple snaps with the * same GUID, we ignore all but one. */ if (avl_find(fsavl, fn, NULL) == NULL) avl_add(fsavl, fn); else free(fn); } } return (fsavl); } /* * Routines for dealing with the giant nvlist of fs-nvlists, etc. */ typedef struct send_data { /* * assigned inside every recursive call, * restored from *_save on return: * * guid of fromsnap snapshot in parent dataset * txg of fromsnap snapshot in current dataset * txg of tosnap snapshot in current dataset */ uint64_t parent_fromsnap_guid; uint64_t fromsnap_txg; uint64_t tosnap_txg; /* the nvlists get accumulated during depth-first traversal */ nvlist_t *parent_snaps; nvlist_t *fss; nvlist_t *snapprops; nvlist_t *snapholds; /* user holds */ /* send-receive configuration, does not change during traversal */ const char *fsname; const char *fromsnap; const char *tosnap; boolean_t recursive; boolean_t raw; boolean_t verbose; boolean_t backup; boolean_t holds; /* were holds requested with send -h */ boolean_t props; /* * The header nvlist is of the following format: * { * "tosnap" -> string * "fromsnap" -> string (if incremental) * "fss" -> { * id -> { * * "name" -> string (full name; for debugging) * "parentfromsnap" -> number (guid of fromsnap in parent) * * "props" -> { name -> value (only if set here) } * "snaps" -> { name (lastname) -> number (guid) } * "snapprops" -> { name (lastname) -> { name -> value } } * "snapholds" -> { name (lastname) -> { holdname -> crtime } } * * "origin" -> number (guid) (if clone) * "is_encroot" -> boolean * "sent" -> boolean (not on-disk) * } * } * } * */ } send_data_t; static void send_iterate_prop(zfs_handle_t *zhp, boolean_t received_only, nvlist_t *nv); static int send_iterate_snap(zfs_handle_t *zhp, void *arg) { send_data_t *sd = arg; uint64_t guid = zhp->zfs_dmustats.dds_guid; uint64_t txg = zhp->zfs_dmustats.dds_creation_txg; char *snapname; nvlist_t *nv; snapname = strrchr(zhp->zfs_name, '@')+1; if (sd->tosnap_txg != 0 && txg > sd->tosnap_txg) { if (sd->verbose) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "skipping snapshot %s because it was created " "after the destination snapshot (%s)\n"), zhp->zfs_name, sd->tosnap); } zfs_close(zhp); return (0); } VERIFY(0 == nvlist_add_uint64(sd->parent_snaps, snapname, guid)); /* * NB: if there is no fromsnap here (it's a newly created fs in * an incremental replication), we will substitute the tosnap. */ if ((sd->fromsnap && strcmp(snapname, sd->fromsnap) == 0) || (sd->parent_fromsnap_guid == 0 && sd->tosnap && strcmp(snapname, sd->tosnap) == 0)) { sd->parent_fromsnap_guid = guid; } VERIFY(0 == nvlist_alloc(&nv, NV_UNIQUE_NAME, 0)); send_iterate_prop(zhp, sd->backup, nv); VERIFY(0 == nvlist_add_nvlist(sd->snapprops, snapname, nv)); nvlist_free(nv); if (sd->holds) { nvlist_t *holds = fnvlist_alloc(); int err = lzc_get_holds(zhp->zfs_name, &holds); if (err == 0) { VERIFY(0 == nvlist_add_nvlist(sd->snapholds, snapname, holds)); } fnvlist_free(holds); } zfs_close(zhp); return (0); } static void send_iterate_prop(zfs_handle_t *zhp, boolean_t received_only, nvlist_t *nv) { nvlist_t *props = NULL; nvpair_t *elem = NULL; if (received_only) props = zfs_get_recvd_props(zhp); else props = zhp->zfs_props; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { char *propname = nvpair_name(elem); zfs_prop_t prop = zfs_name_to_prop(propname); nvlist_t *propnv; if (!zfs_prop_user(propname)) { /* * Realistically, this should never happen. However, * we want the ability to add DSL properties without * needing to make incompatible version changes. We * need to ignore unknown properties to allow older * software to still send datasets containing these * properties, with the unknown properties elided. */ if (prop == ZPROP_INVAL) continue; if (zfs_prop_readonly(prop)) continue; } verify(nvpair_value_nvlist(elem, &propnv) == 0); if (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_RESERVATION || prop == ZFS_PROP_REFQUOTA || prop == ZFS_PROP_REFRESERVATION) { char *source; uint64_t value; verify(nvlist_lookup_uint64(propnv, ZPROP_VALUE, &value) == 0); if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) continue; /* * May have no source before SPA_VERSION_RECVD_PROPS, * but is still modifiable. */ if (nvlist_lookup_string(propnv, ZPROP_SOURCE, &source) == 0) { if ((strcmp(source, zhp->zfs_name) != 0) && (strcmp(source, ZPROP_SOURCE_VAL_RECVD) != 0)) continue; } } else { char *source; if (nvlist_lookup_string(propnv, ZPROP_SOURCE, &source) != 0) continue; if ((strcmp(source, zhp->zfs_name) != 0) && (strcmp(source, ZPROP_SOURCE_VAL_RECVD) != 0)) continue; } if (zfs_prop_user(propname) || zfs_prop_get_type(prop) == PROP_TYPE_STRING) { char *value; verify(nvlist_lookup_string(propnv, ZPROP_VALUE, &value) == 0); VERIFY(0 == nvlist_add_string(nv, propname, value)); } else { uint64_t value; verify(nvlist_lookup_uint64(propnv, ZPROP_VALUE, &value) == 0); VERIFY(0 == nvlist_add_uint64(nv, propname, value)); } } } /* * returns snapshot creation txg * and returns 0 if the snapshot does not exist */ static uint64_t get_snap_txg(libzfs_handle_t *hdl, const char *fs, const char *snap) { char name[ZFS_MAX_DATASET_NAME_LEN]; uint64_t txg = 0; if (fs == NULL || fs[0] == '\0' || snap == NULL || snap[0] == '\0') return (txg); (void) snprintf(name, sizeof (name), "%s@%s", fs, snap); if (zfs_dataset_exists(hdl, name, ZFS_TYPE_SNAPSHOT)) { zfs_handle_t *zhp = zfs_open(hdl, name, ZFS_TYPE_SNAPSHOT); if (zhp != NULL) { txg = zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG); zfs_close(zhp); } } return (txg); } /* * recursively generate nvlists describing datasets. See comment * for the data structure send_data_t above for description of contents * of the nvlist. */ static int send_iterate_fs(zfs_handle_t *zhp, void *arg) { send_data_t *sd = arg; nvlist_t *nvfs = NULL, *nv = NULL; int rv = 0; uint64_t parent_fromsnap_guid_save = sd->parent_fromsnap_guid; uint64_t fromsnap_txg_save = sd->fromsnap_txg; uint64_t tosnap_txg_save = sd->tosnap_txg; uint64_t txg = zhp->zfs_dmustats.dds_creation_txg; uint64_t guid = zhp->zfs_dmustats.dds_guid; uint64_t fromsnap_txg, tosnap_txg; char guidstring[64]; fromsnap_txg = get_snap_txg(zhp->zfs_hdl, zhp->zfs_name, sd->fromsnap); if (fromsnap_txg != 0) sd->fromsnap_txg = fromsnap_txg; tosnap_txg = get_snap_txg(zhp->zfs_hdl, zhp->zfs_name, sd->tosnap); if (tosnap_txg != 0) sd->tosnap_txg = tosnap_txg; /* * on the send side, if the current dataset does not have tosnap, * perform two additional checks: * * - skip sending the current dataset if it was created later than * the parent tosnap * - return error if the current dataset was created earlier than * the parent tosnap */ if (sd->tosnap != NULL && tosnap_txg == 0) { if (sd->tosnap_txg != 0 && txg > sd->tosnap_txg) { if (sd->verbose) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "skipping dataset %s: snapshot %s does " "not exist\n"), zhp->zfs_name, sd->tosnap); } } else { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "cannot send %s@%s%s: snapshot %s@%s does not " "exist\n"), sd->fsname, sd->tosnap, sd->recursive ? dgettext(TEXT_DOMAIN, " recursively") : "", zhp->zfs_name, sd->tosnap); rv = -1; } goto out; } VERIFY(0 == nvlist_alloc(&nvfs, NV_UNIQUE_NAME, 0)); VERIFY(0 == nvlist_add_string(nvfs, "name", zhp->zfs_name)); VERIFY(0 == nvlist_add_uint64(nvfs, "parentfromsnap", sd->parent_fromsnap_guid)); if (zhp->zfs_dmustats.dds_origin[0]) { zfs_handle_t *origin = zfs_open(zhp->zfs_hdl, zhp->zfs_dmustats.dds_origin, ZFS_TYPE_SNAPSHOT); if (origin == NULL) { rv = -1; goto out; } VERIFY(0 == nvlist_add_uint64(nvfs, "origin", origin->zfs_dmustats.dds_guid)); } /* iterate over props */ if (sd->props || sd->backup || sd->recursive) { VERIFY(0 == nvlist_alloc(&nv, NV_UNIQUE_NAME, 0)); send_iterate_prop(zhp, sd->backup, nv); } if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) { boolean_t encroot; /* determine if this dataset is an encryption root */ if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0) { rv = -1; goto out; } if (encroot) VERIFY(0 == nvlist_add_boolean(nvfs, "is_encroot")); /* * Encrypted datasets can only be sent with properties if * the raw flag is specified because the receive side doesn't * currently have a mechanism for recursively asking the user * for new encryption parameters. */ if (!sd->raw) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "cannot send %s@%s: encrypted dataset %s may not " "be sent with properties without the raw flag\n"), sd->fsname, sd->tosnap, zhp->zfs_name); rv = -1; goto out; } } if (nv != NULL) VERIFY(0 == nvlist_add_nvlist(nvfs, "props", nv)); /* iterate over snaps, and set sd->parent_fromsnap_guid */ sd->parent_fromsnap_guid = 0; VERIFY(0 == nvlist_alloc(&sd->parent_snaps, NV_UNIQUE_NAME, 0)); VERIFY(0 == nvlist_alloc(&sd->snapprops, NV_UNIQUE_NAME, 0)); if (sd->holds) VERIFY(0 == nvlist_alloc(&sd->snapholds, NV_UNIQUE_NAME, 0)); (void) zfs_iter_snapshots(zhp, B_FALSE, send_iterate_snap, sd); VERIFY(0 == nvlist_add_nvlist(nvfs, "snaps", sd->parent_snaps)); VERIFY(0 == nvlist_add_nvlist(nvfs, "snapprops", sd->snapprops)); if (sd->holds) VERIFY(0 == nvlist_add_nvlist(nvfs, "snapholds", sd->snapholds)); nvlist_free(sd->parent_snaps); nvlist_free(sd->snapprops); nvlist_free(sd->snapholds); /* Do not allow the size of the properties list to exceed the limit */ if ((fnvlist_size(nvfs) + fnvlist_size(sd->fss)) > zhp->zfs_hdl->libzfs_max_nvlist) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "warning: cannot send %s@%s: the size of the list of " "snapshots and properties is too large to be received " "successfully.\n" "Select a smaller number of snapshots to send.\n"), zhp->zfs_name, sd->tosnap); rv = EZFS_NOSPC; goto out; } /* add this fs to nvlist */ (void) snprintf(guidstring, sizeof (guidstring), "0x%llx", (longlong_t)guid); VERIFY(0 == nvlist_add_nvlist(sd->fss, guidstring, nvfs)); /* iterate over children */ if (sd->recursive) rv = zfs_iter_filesystems(zhp, send_iterate_fs, sd); out: sd->parent_fromsnap_guid = parent_fromsnap_guid_save; sd->fromsnap_txg = fromsnap_txg_save; sd->tosnap_txg = tosnap_txg_save; nvlist_free(nv); nvlist_free(nvfs); zfs_close(zhp); return (rv); } static int gather_nvlist(libzfs_handle_t *hdl, const char *fsname, const char *fromsnap, const char *tosnap, boolean_t recursive, boolean_t raw, boolean_t verbose, boolean_t backup, boolean_t holds, boolean_t props, nvlist_t **nvlp, avl_tree_t **avlp) { zfs_handle_t *zhp; send_data_t sd = { 0 }; int error; zhp = zfs_open(hdl, fsname, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) return (EZFS_BADTYPE); VERIFY(0 == nvlist_alloc(&sd.fss, NV_UNIQUE_NAME, 0)); sd.fsname = fsname; sd.fromsnap = fromsnap; sd.tosnap = tosnap; sd.recursive = recursive; sd.raw = raw; sd.verbose = verbose; sd.backup = backup; sd.holds = holds; sd.props = props; if ((error = send_iterate_fs(zhp, &sd)) != 0) { nvlist_free(sd.fss); if (avlp != NULL) *avlp = NULL; *nvlp = NULL; return (error); } if (avlp != NULL && (*avlp = fsavl_create(sd.fss)) == NULL) { nvlist_free(sd.fss); *nvlp = NULL; return (EZFS_NOMEM); } *nvlp = sd.fss; return (0); } /* * Routines specific to "zfs send" */ typedef struct send_dump_data { /* these are all just the short snapname (the part after the @) */ const char *fromsnap; const char *tosnap; char prevsnap[ZFS_MAX_DATASET_NAME_LEN]; uint64_t prevsnap_obj; boolean_t seenfrom, seento, replicate, doall, fromorigin; boolean_t verbose, dryrun, parsable, progress, embed_data, std_out; boolean_t large_block, compress, raw, holds; int outfd; boolean_t err; nvlist_t *fss; nvlist_t *snapholds; avl_tree_t *fsavl; snapfilter_cb_t *filter_cb; void *filter_cb_arg; nvlist_t *debugnv; char holdtag[ZFS_MAX_DATASET_NAME_LEN]; int cleanup_fd; uint64_t size; } send_dump_data_t; static int estimate_ioctl(zfs_handle_t *zhp, uint64_t fromsnap_obj, boolean_t fromorigin, enum lzc_send_flags flags, uint64_t *sizep) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zfs_hdl; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); assert(fromsnap_obj == 0 || !fromorigin); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); zc.zc_obj = fromorigin; zc.zc_sendobj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zc.zc_fromobj = fromsnap_obj; zc.zc_guid = 1; /* estimate flag */ zc.zc_flags = flags; if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SEND, &zc) != 0) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "warning: cannot estimate space for '%s'"), zhp->zfs_name); switch (errno) { case EXDEV: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not an earlier snapshot from the same fs")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); case EACCES: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "source key must be loaded")); return (zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf)); case ENOENT: if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_SNAPSHOT)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incremental source (@%s) does not exist"), zc.zc_value); } return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EDQUOT: case EFBIG: case EIO: case ENOLINK: case ENOSPC: case ENOSTR: case ENXIO: case EPIPE: case ERANGE: case EFAULT: case EROFS: zfs_error_aux(hdl, strerror(errno)); return (zfs_error(hdl, EZFS_BADBACKUP, errbuf)); default: return (zfs_standard_error(hdl, errno, errbuf)); } } *sizep = zc.zc_objset_type; return (0); } /* * Dumps a backup of the given snapshot (incremental from fromsnap if it's not * NULL) to the file descriptor specified by outfd. */ static int dump_ioctl(zfs_handle_t *zhp, const char *fromsnap, uint64_t fromsnap_obj, boolean_t fromorigin, int outfd, enum lzc_send_flags flags, nvlist_t *debugnv) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zfs_hdl; nvlist_t *thisdbg; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); assert(fromsnap_obj == 0 || !fromorigin); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); zc.zc_cookie = outfd; zc.zc_obj = fromorigin; zc.zc_sendobj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zc.zc_fromobj = fromsnap_obj; zc.zc_flags = flags; VERIFY(0 == nvlist_alloc(&thisdbg, NV_UNIQUE_NAME, 0)); if (fromsnap && fromsnap[0] != '\0') { VERIFY(0 == nvlist_add_string(thisdbg, "fromsnap", fromsnap)); } if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SEND, &zc) != 0) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "warning: cannot send '%s'"), zhp->zfs_name); VERIFY(0 == nvlist_add_uint64(thisdbg, "error", errno)); if (debugnv) { VERIFY(0 == nvlist_add_nvlist(debugnv, zhp->zfs_name, thisdbg)); } nvlist_free(thisdbg); switch (errno) { case EXDEV: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not an earlier snapshot from the same fs")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); case EACCES: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "source key must be loaded")); return (zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf)); case ENOENT: if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_SNAPSHOT)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incremental source (@%s) does not exist"), zc.zc_value); } return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EDQUOT: case EFBIG: case EIO: case ENOLINK: case ENOSPC: case ENOSTR: case ENXIO: case EPIPE: case ERANGE: case EFAULT: case EROFS: zfs_error_aux(hdl, strerror(errno)); return (zfs_error(hdl, EZFS_BADBACKUP, errbuf)); default: return (zfs_standard_error(hdl, errno, errbuf)); } } if (debugnv) VERIFY(0 == nvlist_add_nvlist(debugnv, zhp->zfs_name, thisdbg)); nvlist_free(thisdbg); return (0); } static void gather_holds(zfs_handle_t *zhp, send_dump_data_t *sdd) { assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); /* * zfs_send() only sets snapholds for sends that need them, * e.g. replication and doall. */ if (sdd->snapholds == NULL) return; fnvlist_add_string(sdd->snapholds, zhp->zfs_name, sdd->holdtag); } static void * send_progress_thread(void *arg) { progress_arg_t *pa = arg; zfs_cmd_t zc = { 0 }; zfs_handle_t *zhp = pa->pa_zhp; libzfs_handle_t *hdl = zhp->zfs_hdl; unsigned long long bytes; char buf[16]; time_t t; struct tm *tm; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (!pa->pa_parsable) (void) fprintf(stderr, "TIME SENT SNAPSHOT\n"); /* * Print the progress from ZFS_IOC_SEND_PROGRESS every second. */ for (;;) { (void) sleep(1); zc.zc_cookie = pa->pa_fd; if (zfs_ioctl(hdl, ZFS_IOC_SEND_PROGRESS, &zc) != 0) return ((void *)-1); (void) time(&t); tm = localtime(&t); bytes = zc.zc_cookie; if (pa->pa_parsable) { (void) fprintf(stderr, "%02d:%02d:%02d\t%llu\t%s\n", tm->tm_hour, tm->tm_min, tm->tm_sec, bytes, zhp->zfs_name); } else { zfs_nicenum(bytes, buf, sizeof (buf)); (void) fprintf(stderr, "%02d:%02d:%02d %5s %s\n", tm->tm_hour, tm->tm_min, tm->tm_sec, buf, zhp->zfs_name); } } } static void send_print_verbose(FILE *fout, const char *tosnap, const char *fromsnap, uint64_t size, boolean_t parsable) { if (parsable) { if (fromsnap != NULL) { (void) fprintf(fout, "incremental\t%s\t%s", fromsnap, tosnap); } else { (void) fprintf(fout, "full\t%s", tosnap); } } else { if (fromsnap != NULL) { if (strchr(fromsnap, '@') == NULL && strchr(fromsnap, '#') == NULL) { (void) fprintf(fout, dgettext(TEXT_DOMAIN, "send from @%s to %s"), fromsnap, tosnap); } else { (void) fprintf(fout, dgettext(TEXT_DOMAIN, "send from %s to %s"), fromsnap, tosnap); } } else { (void) fprintf(fout, dgettext(TEXT_DOMAIN, "full send of %s"), tosnap); } } if (size != 0) { if (parsable) { (void) fprintf(fout, "\t%llu", (longlong_t)size); } else { char buf[16]; zfs_nicenum(size, buf, sizeof (buf)); (void) fprintf(fout, dgettext(TEXT_DOMAIN, " estimated size is %s"), buf); } } (void) fprintf(fout, "\n"); } static int dump_snapshot(zfs_handle_t *zhp, void *arg) { send_dump_data_t *sdd = arg; progress_arg_t pa = { 0 }; pthread_t tid; char *thissnap; enum lzc_send_flags flags = 0; int err; boolean_t isfromsnap, istosnap, fromorigin; boolean_t exclude = B_FALSE; FILE *fout = sdd->std_out ? stdout : stderr; err = 0; thissnap = strchr(zhp->zfs_name, '@') + 1; isfromsnap = (sdd->fromsnap != NULL && strcmp(sdd->fromsnap, thissnap) == 0); if (!sdd->seenfrom && isfromsnap) { gather_holds(zhp, sdd); sdd->seenfrom = B_TRUE; (void) strcpy(sdd->prevsnap, thissnap); sdd->prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zfs_close(zhp); return (0); } if (sdd->seento || !sdd->seenfrom) { zfs_close(zhp); return (0); } istosnap = (strcmp(sdd->tosnap, thissnap) == 0); if (istosnap) sdd->seento = B_TRUE; if (sdd->large_block) flags |= LZC_SEND_FLAG_LARGE_BLOCK; if (sdd->embed_data) flags |= LZC_SEND_FLAG_EMBED_DATA; if (sdd->compress) flags |= LZC_SEND_FLAG_COMPRESS; if (sdd->raw) flags |= LZC_SEND_FLAG_RAW; if (!sdd->doall && !isfromsnap && !istosnap) { if (sdd->replicate) { char *snapname; nvlist_t *snapprops; /* * Filter out all intermediate snapshots except origin * snapshots needed to replicate clones. */ nvlist_t *nvfs = fsavl_find(sdd->fsavl, zhp->zfs_dmustats.dds_guid, &snapname); VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snapprops", &snapprops)); VERIFY(0 == nvlist_lookup_nvlist(snapprops, thissnap, &snapprops)); exclude = !nvlist_exists(snapprops, "is_clone_origin"); } else { exclude = B_TRUE; } } /* * If a filter function exists, call it to determine whether * this snapshot will be sent. */ if (exclude || (sdd->filter_cb != NULL && sdd->filter_cb(zhp, sdd->filter_cb_arg) == B_FALSE)) { /* * This snapshot is filtered out. Don't send it, and don't * set prevsnap_obj, so it will be as if this snapshot didn't * exist, and the next accepted snapshot will be sent as * an incremental from the last accepted one, or as the * first (and full) snapshot in the case of a replication, * non-incremental send. */ zfs_close(zhp); return (0); } gather_holds(zhp, sdd); fromorigin = sdd->prevsnap[0] == '\0' && (sdd->fromorigin || sdd->replicate); if (sdd->verbose) { uint64_t size = 0; (void) estimate_ioctl(zhp, sdd->prevsnap_obj, fromorigin, flags, &size); send_print_verbose(fout, zhp->zfs_name, sdd->prevsnap[0] ? sdd->prevsnap : NULL, size, sdd->parsable); sdd->size += size; } if (!sdd->dryrun) { /* * If progress reporting is requested, spawn a new thread to * poll ZFS_IOC_SEND_PROGRESS at a regular interval. */ if (sdd->progress) { pa.pa_zhp = zhp; pa.pa_fd = sdd->outfd; pa.pa_parsable = sdd->parsable; if ((err = pthread_create(&tid, NULL, send_progress_thread, &pa)) != 0) { zfs_close(zhp); return (err); } } err = dump_ioctl(zhp, sdd->prevsnap, sdd->prevsnap_obj, fromorigin, sdd->outfd, flags, sdd->debugnv); if (sdd->progress) { (void) pthread_cancel(tid); (void) pthread_join(tid, NULL); } } (void) strcpy(sdd->prevsnap, thissnap); sdd->prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zfs_close(zhp); return (err); } static int dump_filesystem(zfs_handle_t *zhp, void *arg) { int rv = 0; send_dump_data_t *sdd = arg; boolean_t missingfrom = B_FALSE; zfs_cmd_t zc = { 0 }; (void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s", zhp->zfs_name, sdd->tosnap); if (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "WARNING: could not send %s@%s: does not exist\n"), zhp->zfs_name, sdd->tosnap); sdd->err = B_TRUE; return (0); } if (sdd->replicate && sdd->fromsnap) { /* * If this fs does not have fromsnap, and we're doing * recursive, we need to send a full stream from the * beginning (or an incremental from the origin if this * is a clone). If we're doing non-recursive, then let * them get the error. */ (void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s", zhp->zfs_name, sdd->fromsnap); if (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0) { missingfrom = B_TRUE; } } sdd->seenfrom = sdd->seento = sdd->prevsnap[0] = 0; sdd->prevsnap_obj = 0; if (sdd->fromsnap == NULL || missingfrom) sdd->seenfrom = B_TRUE; rv = zfs_iter_snapshots_sorted(zhp, dump_snapshot, arg); if (!sdd->seenfrom) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "WARNING: could not send %s@%s:\n" "incremental source (%s@%s) does not exist\n"), zhp->zfs_name, sdd->tosnap, zhp->zfs_name, sdd->fromsnap); sdd->err = B_TRUE; } else if (!sdd->seento) { if (sdd->fromsnap) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "WARNING: could not send %s@%s:\n" "incremental source (%s@%s) " "is not earlier than it\n"), zhp->zfs_name, sdd->tosnap, zhp->zfs_name, sdd->fromsnap); } else { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "WARNING: " "could not send %s@%s: does not exist\n"), zhp->zfs_name, sdd->tosnap); } sdd->err = B_TRUE; } return (rv); } static int dump_filesystems(zfs_handle_t *rzhp, void *arg) { send_dump_data_t *sdd = arg; nvpair_t *fspair; boolean_t needagain, progress; if (!sdd->replicate) return (dump_filesystem(rzhp, sdd)); /* Mark the clone origin snapshots. */ for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair; fspair = nvlist_next_nvpair(sdd->fss, fspair)) { nvlist_t *nvfs; uint64_t origin_guid = 0; VERIFY(0 == nvpair_value_nvlist(fspair, &nvfs)); (void) nvlist_lookup_uint64(nvfs, "origin", &origin_guid); if (origin_guid != 0) { char *snapname; nvlist_t *origin_nv = fsavl_find(sdd->fsavl, origin_guid, &snapname); if (origin_nv != NULL) { nvlist_t *snapprops; VERIFY(0 == nvlist_lookup_nvlist(origin_nv, "snapprops", &snapprops)); VERIFY(0 == nvlist_lookup_nvlist(snapprops, snapname, &snapprops)); VERIFY(0 == nvlist_add_boolean( snapprops, "is_clone_origin")); } } } again: needagain = progress = B_FALSE; for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair; fspair = nvlist_next_nvpair(sdd->fss, fspair)) { nvlist_t *fslist, *parent_nv; char *fsname; zfs_handle_t *zhp; int err; uint64_t origin_guid = 0; uint64_t parent_guid = 0; VERIFY(nvpair_value_nvlist(fspair, &fslist) == 0); if (nvlist_lookup_boolean(fslist, "sent") == 0) continue; VERIFY(nvlist_lookup_string(fslist, "name", &fsname) == 0); (void) nvlist_lookup_uint64(fslist, "origin", &origin_guid); (void) nvlist_lookup_uint64(fslist, "parentfromsnap", &parent_guid); if (parent_guid != 0) { parent_nv = fsavl_find(sdd->fsavl, parent_guid, NULL); if (!nvlist_exists(parent_nv, "sent")) { /* parent has not been sent; skip this one */ needagain = B_TRUE; continue; } } if (origin_guid != 0) { nvlist_t *origin_nv = fsavl_find(sdd->fsavl, origin_guid, NULL); if (origin_nv != NULL && !nvlist_exists(origin_nv, "sent")) { /* * origin has not been sent yet; * skip this clone. */ needagain = B_TRUE; continue; } } zhp = zfs_open(rzhp->zfs_hdl, fsname, ZFS_TYPE_DATASET); if (zhp == NULL) return (-1); err = dump_filesystem(zhp, sdd); VERIFY(nvlist_add_boolean(fslist, "sent") == 0); progress = B_TRUE; zfs_close(zhp); if (err) return (err); } if (needagain) { assert(progress); goto again; } /* clean out the sent flags in case we reuse this fss */ for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair; fspair = nvlist_next_nvpair(sdd->fss, fspair)) { nvlist_t *fslist; VERIFY(nvpair_value_nvlist(fspair, &fslist) == 0); (void) nvlist_remove_all(fslist, "sent"); } return (0); } nvlist_t * zfs_send_resume_token_to_nvlist(libzfs_handle_t *hdl, const char *token) { unsigned int version; int nread; unsigned long long checksum, packed_len; /* * Decode token header, which is: * -- * Note that the only supported token version is 1. */ nread = sscanf(token, "%u-%llx-%llx-", &version, &checksum, &packed_len); if (nread != 3) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "resume token is corrupt (invalid format)")); return (NULL); } if (version != ZFS_SEND_RESUME_TOKEN_VERSION) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "resume token is corrupt (invalid version %u)"), version); return (NULL); } /* convert hexadecimal representation to binary */ token = strrchr(token, '-') + 1; int len = strlen(token) / 2; unsigned char *compressed = zfs_alloc(hdl, len); for (int i = 0; i < len; i++) { nread = sscanf(token + i * 2, "%2hhx", compressed + i); if (nread != 1) { free(compressed); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "resume token is corrupt " "(payload is not hex-encoded)")); return (NULL); } } /* verify checksum */ zio_cksum_t cksum; fletcher_4_native(compressed, len, NULL, &cksum); if (cksum.zc_word[0] != checksum) { free(compressed); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "resume token is corrupt (incorrect checksum)")); return (NULL); } /* uncompress */ void *packed = zfs_alloc(hdl, packed_len); uLongf packed_len_long = packed_len; if (uncompress(packed, &packed_len_long, compressed, len) != Z_OK || packed_len_long != packed_len) { free(packed); free(compressed); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "resume token is corrupt (decompression failed)")); return (NULL); } /* unpack nvlist */ nvlist_t *nv; int error = nvlist_unpack(packed, packed_len, &nv, KM_SLEEP); free(packed); free(compressed); if (error != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "resume token is corrupt (nvlist_unpack failed)")); return (NULL); } return (nv); } int zfs_send_resume(libzfs_handle_t *hdl, sendflags_t *flags, int outfd, const char *resume_token) { char errbuf[1024]; char *toname; char *fromname = NULL; uint64_t resumeobj, resumeoff, toguid, fromguid, bytes; zfs_handle_t *zhp; int error = 0; char name[ZFS_MAX_DATASET_NAME_LEN]; enum lzc_send_flags lzc_flags = 0; FILE *fout = (flags->verbose && flags->dryrun) ? stdout : stderr; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot resume send")); nvlist_t *resume_nvl = zfs_send_resume_token_to_nvlist(hdl, resume_token); if (resume_nvl == NULL) { /* * zfs_error_aux has already been set by * zfs_send_resume_token_to_nvlist */ return (zfs_error(hdl, EZFS_FAULT, errbuf)); } if (flags->verbose) { (void) fprintf(fout, dgettext(TEXT_DOMAIN, "resume token contents:\n")); nvlist_print(fout, resume_nvl); } if (nvlist_lookup_string(resume_nvl, "toname", &toname) != 0 || nvlist_lookup_uint64(resume_nvl, "object", &resumeobj) != 0 || nvlist_lookup_uint64(resume_nvl, "offset", &resumeoff) != 0 || nvlist_lookup_uint64(resume_nvl, "bytes", &bytes) != 0 || nvlist_lookup_uint64(resume_nvl, "toguid", &toguid) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "resume token is corrupt")); return (zfs_error(hdl, EZFS_FAULT, errbuf)); } fromguid = 0; (void) nvlist_lookup_uint64(resume_nvl, "fromguid", &fromguid); if (flags->largeblock || nvlist_exists(resume_nvl, "largeblockok")) lzc_flags |= LZC_SEND_FLAG_LARGE_BLOCK; if (flags->embed_data || nvlist_exists(resume_nvl, "embedok")) lzc_flags |= LZC_SEND_FLAG_EMBED_DATA; if (flags->compress || nvlist_exists(resume_nvl, "compressok")) lzc_flags |= LZC_SEND_FLAG_COMPRESS; if (flags->raw || nvlist_exists(resume_nvl, "rawok")) lzc_flags |= LZC_SEND_FLAG_RAW; if (guid_to_name(hdl, toname, toguid, B_FALSE, name) != 0) { if (zfs_dataset_exists(hdl, toname, ZFS_TYPE_DATASET)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is no longer the same snapshot used in " "the initial send"), toname); } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' used in the initial send no longer exists"), toname); } return (zfs_error(hdl, EZFS_BADPATH, errbuf)); } zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET); if (zhp == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "unable to access '%s'"), name); return (zfs_error(hdl, EZFS_BADPATH, errbuf)); } if (fromguid != 0) { if (guid_to_name(hdl, toname, fromguid, B_TRUE, name) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incremental source %#llx no longer exists"), (longlong_t)fromguid); return (zfs_error(hdl, EZFS_BADPATH, errbuf)); } fromname = name; } if (flags->verbose) { uint64_t size = 0; error = lzc_send_space(zhp->zfs_name, fromname, lzc_flags, &size); if (error == 0) size = MAX(0, (int64_t)(size - bytes)); send_print_verbose(fout, zhp->zfs_name, fromname, size, flags->parsable); } if (!flags->dryrun) { progress_arg_t pa = { 0 }; pthread_t tid; /* * If progress reporting is requested, spawn a new thread to * poll ZFS_IOC_SEND_PROGRESS at a regular interval. */ if (flags->progress) { pa.pa_zhp = zhp; pa.pa_fd = outfd; pa.pa_parsable = flags->parsable; error = pthread_create(&tid, NULL, send_progress_thread, &pa); if (error != 0) { zfs_close(zhp); return (error); } } error = lzc_send_resume(zhp->zfs_name, fromname, outfd, lzc_flags, resumeobj, resumeoff); if (flags->progress) { (void) pthread_cancel(tid); (void) pthread_join(tid, NULL); } char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "warning: cannot send '%s'"), zhp->zfs_name); zfs_close(zhp); switch (error) { case 0: return (0); case EACCES: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "source key must be loaded")); return (zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf)); case EXDEV: case ENOENT: case EDQUOT: case EFBIG: case EIO: case ENOLINK: case ENOSPC: case ENOSTR: case ENXIO: case EPIPE: case ERANGE: case EFAULT: case EROFS: zfs_error_aux(hdl, strerror(errno)); return (zfs_error(hdl, EZFS_BADBACKUP, errbuf)); default: return (zfs_standard_error(hdl, errno, errbuf)); } } zfs_close(zhp); return (error); } /* * Generate a send stream for the dataset identified by the argument zhp. * * The content of the send stream is the snapshot identified by * 'tosnap'. Incremental streams are requested in two ways: * - from the snapshot identified by "fromsnap" (if non-null) or * - from the origin of the dataset identified by zhp, which must * be a clone. In this case, "fromsnap" is null and "fromorigin" * is TRUE. * * The send stream is recursive (i.e. dumps a hierarchy of snapshots) and * uses a special header (with a hdrtype field of DMU_COMPOUNDSTREAM) * if "replicate" is set. If "doall" is set, dump all the intermediate * snapshots. The DMU_COMPOUNDSTREAM header is used in the "doall" * case too. If "props" is set, send properties. */ int zfs_send(zfs_handle_t *zhp, const char *fromsnap, const char *tosnap, sendflags_t *flags, int outfd, snapfilter_cb_t filter_func, void *cb_arg, nvlist_t **debugnvp) { char errbuf[1024]; send_dump_data_t sdd = { 0 }; int err = 0; nvlist_t *fss = NULL; avl_tree_t *fsavl = NULL; static uint64_t holdseq; int spa_version; pthread_t tid = 0; int pipefd[2]; dedup_arg_t dda = { 0 }; int featureflags = 0; FILE *fout; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot send '%s'"), zhp->zfs_name); if (fromsnap && fromsnap[0] == '\0') { zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "zero-length incremental source")); return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf)); } if (zhp->zfs_type == ZFS_TYPE_FILESYSTEM) { uint64_t version; version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); if (version >= ZPL_VERSION_SA) { featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; } } if (flags->holds) featureflags |= DMU_BACKUP_FEATURE_HOLDS; /* * Start the dedup thread if this is a dedup stream. We do not bother * doing this if this a raw send of an encrypted dataset with dedup off * because normal encrypted blocks won't dedup. */ if (flags->dedup && !flags->dryrun && !(flags->raw && zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF && zfs_prop_get_int(zhp, ZFS_PROP_DEDUP) == ZIO_CHECKSUM_OFF)) { featureflags |= (DMU_BACKUP_FEATURE_DEDUP | DMU_BACKUP_FEATURE_DEDUPPROPS); if ((err = pipe(pipefd)) != 0) { zfs_error_aux(zhp->zfs_hdl, strerror(errno)); return (zfs_error(zhp->zfs_hdl, EZFS_PIPEFAILED, errbuf)); } dda.outputfd = outfd; dda.inputfd = pipefd[1]; dda.dedup_hdl = zhp->zfs_hdl; if ((err = pthread_create(&tid, NULL, cksummer, &dda)) != 0) { (void) close(pipefd[0]); (void) close(pipefd[1]); zfs_error_aux(zhp->zfs_hdl, strerror(errno)); return (zfs_error(zhp->zfs_hdl, EZFS_THREADCREATEFAILED, errbuf)); } } if (flags->replicate || flags->doall || flags->props || flags->holds || flags->backup) { dmu_replay_record_t drr = { 0 }; char *packbuf = NULL; size_t buflen = 0; zio_cksum_t zc; ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0); if (flags->replicate || flags->props || flags->backup || flags->holds) { nvlist_t *hdrnv; VERIFY(0 == nvlist_alloc(&hdrnv, NV_UNIQUE_NAME, 0)); if (fromsnap) { VERIFY(0 == nvlist_add_string(hdrnv, "fromsnap", fromsnap)); } VERIFY(0 == nvlist_add_string(hdrnv, "tosnap", tosnap)); if (!flags->replicate) { VERIFY(0 == nvlist_add_boolean(hdrnv, "not_recursive")); } if (flags->raw) { VERIFY(0 == nvlist_add_boolean(hdrnv, "raw")); } err = gather_nvlist(zhp->zfs_hdl, zhp->zfs_name, fromsnap, tosnap, flags->replicate, flags->raw, flags->verbose, flags->backup, flags->holds, flags->props, &fss, &fsavl); if (err) { nvlist_free(hdrnv); goto err_out; } /* * Do not allow the size of the properties list to * exceed the limit */ if ((fnvlist_size(fss) + fnvlist_size(hdrnv)) > zhp->zfs_hdl->libzfs_max_nvlist) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "warning: cannot send '%s': " "the size of the list of snapshots and " "properties is too large to be received " "successfully.\n" "Select a smaller number of snapshots to " "send.\n"), zhp->zfs_name); nvlist_free(hdrnv); err = zfs_error(zhp->zfs_hdl, EZFS_NOSPC, errbuf); goto err_out; } VERIFY(0 == nvlist_add_nvlist(hdrnv, "fss", fss)); err = nvlist_pack(hdrnv, &packbuf, &buflen, NV_ENCODE_XDR, 0); if (debugnvp) *debugnvp = hdrnv; else nvlist_free(hdrnv); if (err) goto stderr_out; } if (!flags->dryrun) { /* write first begin record */ drr.drr_type = DRR_BEGIN; drr.drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; DMU_SET_STREAM_HDRTYPE(drr.drr_u.drr_begin. drr_versioninfo, DMU_COMPOUNDSTREAM); DMU_SET_FEATUREFLAGS(drr.drr_u.drr_begin. drr_versioninfo, featureflags); (void) snprintf(drr.drr_u.drr_begin.drr_toname, sizeof (drr.drr_u.drr_begin.drr_toname), "%s@%s", zhp->zfs_name, tosnap); drr.drr_payloadlen = buflen; err = dump_record(&drr, packbuf, buflen, &zc, outfd); free(packbuf); if (err != 0) goto stderr_out; /* write end record */ bzero(&drr, sizeof (drr)); drr.drr_type = DRR_END; drr.drr_u.drr_end.drr_checksum = zc; err = write(outfd, &drr, sizeof (drr)); if (err == -1) { err = errno; goto stderr_out; } err = 0; } } /* dump each stream */ sdd.fromsnap = fromsnap; sdd.tosnap = tosnap; if (tid != 0) sdd.outfd = pipefd[0]; else sdd.outfd = outfd; sdd.replicate = flags->replicate; sdd.doall = flags->doall; sdd.fromorigin = flags->fromorigin; sdd.fss = fss; sdd.fsavl = fsavl; sdd.verbose = flags->verbose; sdd.parsable = flags->parsable; sdd.progress = flags->progress; sdd.dryrun = flags->dryrun; sdd.large_block = flags->largeblock; sdd.embed_data = flags->embed_data; sdd.compress = flags->compress; sdd.raw = flags->raw; sdd.holds = flags->holds; sdd.filter_cb = filter_func; sdd.filter_cb_arg = cb_arg; if (debugnvp) sdd.debugnv = *debugnvp; if (sdd.verbose && sdd.dryrun) sdd.std_out = B_TRUE; fout = sdd.std_out ? stdout : stderr; /* * Some flags require that we place user holds on the datasets that are * being sent so they don't get destroyed during the send. We can skip * this step if the pool is imported read-only since the datasets cannot * be destroyed. */ if (!flags->dryrun && !zpool_get_prop_int(zfs_get_pool_handle(zhp), ZPOOL_PROP_READONLY, NULL) && zfs_spa_version(zhp, &spa_version) == 0 && spa_version >= SPA_VERSION_USERREFS && (flags->doall || flags->replicate)) { ++holdseq; (void) snprintf(sdd.holdtag, sizeof (sdd.holdtag), ".send-%d-%llu", getpid(), (u_longlong_t)holdseq); sdd.cleanup_fd = open(ZFS_DEV, O_RDWR|O_EXCL); if (sdd.cleanup_fd < 0) { err = errno; goto stderr_out; } sdd.snapholds = fnvlist_alloc(); } else { sdd.cleanup_fd = -1; sdd.snapholds = NULL; } if (flags->verbose || sdd.snapholds != NULL) { /* * Do a verbose no-op dry run to get all the verbose output * or to gather snapshot hold's before generating any data, * then do a non-verbose real run to generate the streams. */ sdd.dryrun = B_TRUE; err = dump_filesystems(zhp, &sdd); if (err != 0) goto stderr_out; if (flags->verbose) { if (flags->parsable) { (void) fprintf(fout, "size\t%llu\n", (longlong_t)sdd.size); } else { char buf[16]; zfs_nicenum(sdd.size, buf, sizeof (buf)); (void) fprintf(fout, dgettext(TEXT_DOMAIN, "total estimated size is %s\n"), buf); } } /* Ensure no snaps found is treated as an error. */ if (!sdd.seento) { err = ENOENT; goto err_out; } /* Skip the second run if dryrun was requested. */ if (flags->dryrun) goto err_out; if (sdd.snapholds != NULL) { err = zfs_hold_nvl(zhp, sdd.cleanup_fd, sdd.snapholds); if (err != 0) goto stderr_out; fnvlist_free(sdd.snapholds); sdd.snapholds = NULL; } sdd.dryrun = B_FALSE; sdd.verbose = B_FALSE; } err = dump_filesystems(zhp, &sdd); fsavl_destroy(fsavl); nvlist_free(fss); /* Ensure no snaps found is treated as an error. */ if (err == 0 && !sdd.seento) err = ENOENT; if (tid != 0) { if (err != 0) (void) pthread_cancel(tid); (void) close(pipefd[0]); (void) pthread_join(tid, NULL); } if (sdd.cleanup_fd != -1) { VERIFY(0 == close(sdd.cleanup_fd)); sdd.cleanup_fd = -1; } if (!flags->dryrun && (flags->replicate || flags->doall || flags->props || flags->backup || flags->holds)) { /* * write final end record. NB: want to do this even if * there was some error, because it might not be totally * failed. */ dmu_replay_record_t drr = { 0 }; drr.drr_type = DRR_END; if (write(outfd, &drr, sizeof (drr)) == -1) { return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } } return (err || sdd.err); stderr_out: err = zfs_standard_error(zhp->zfs_hdl, err, errbuf); err_out: fsavl_destroy(fsavl); nvlist_free(fss); fnvlist_free(sdd.snapholds); if (sdd.cleanup_fd != -1) VERIFY(0 == close(sdd.cleanup_fd)); if (tid != 0) { (void) pthread_cancel(tid); (void) close(pipefd[0]); (void) pthread_join(tid, NULL); } return (err); } int zfs_send_one(zfs_handle_t *zhp, const char *from, int fd, enum lzc_send_flags flags) { int err; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "warning: cannot send '%s'"), zhp->zfs_name); err = lzc_send(zhp->zfs_name, from, fd, flags); if (err != 0) { switch (errno) { case EXDEV: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not an earlier snapshot from the same fs")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); case ENOENT: case ESRCH: if (lzc_exists(zhp->zfs_name)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incremental source (%s) does not exist"), from); } return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EACCES: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset key must be loaded")); return (zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf)); case EBUSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "target is busy; if a filesystem, " "it must not be mounted")); return (zfs_error(hdl, EZFS_BUSY, errbuf)); case EDQUOT: case EFBIG: case EIO: case ENOLINK: case ENOSPC: case ENOSTR: case ENXIO: case EPIPE: case ERANGE: case EFAULT: case EROFS: zfs_error_aux(hdl, strerror(errno)); return (zfs_error(hdl, EZFS_BADBACKUP, errbuf)); default: return (zfs_standard_error(hdl, errno, errbuf)); } } return (err != 0); } /* * Routines specific to "zfs recv" */ static int recv_read(libzfs_handle_t *hdl, int fd, void *buf, int ilen, boolean_t byteswap, zio_cksum_t *zc) { char *cp = buf; int rv; int len = ilen; do { rv = read(fd, cp, len); cp += rv; len -= rv; } while (rv > 0); if (rv < 0 || len != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "failed to read from stream")); return (zfs_error(hdl, EZFS_BADSTREAM, dgettext(TEXT_DOMAIN, "cannot receive"))); } if (zc) { if (byteswap) (void) fletcher_4_incremental_byteswap(buf, ilen, zc); else (void) fletcher_4_incremental_native(buf, ilen, zc); } return (0); } static int recv_read_nvlist(libzfs_handle_t *hdl, int fd, int len, nvlist_t **nvp, boolean_t byteswap, zio_cksum_t *zc) { char *buf; int err; buf = zfs_alloc(hdl, len); if (buf == NULL) return (ENOMEM); if (len > hdl->libzfs_max_nvlist) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "nvlist too large")); free(buf); return (ENOMEM); } err = recv_read(hdl, fd, buf, len, byteswap, zc); if (err != 0) { free(buf); return (err); } err = nvlist_unpack(buf, len, nvp, 0); free(buf); if (err != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (malformed nvlist)")); return (EINVAL); } return (0); } /* * Returns the grand origin (origin of origin of origin...) of a given handle. * If this dataset is not a clone, it simply returns a copy of the original * handle. */ static zfs_handle_t * recv_open_grand_origin(zfs_handle_t *zhp) { char origin[ZFS_MAX_DATASET_NAME_LEN]; zprop_source_t src; zfs_handle_t *ozhp = zfs_handle_dup(zhp); while (ozhp != NULL) { if (zfs_prop_get(ozhp, ZFS_PROP_ORIGIN, origin, sizeof (origin), &src, NULL, 0, B_FALSE) != 0) break; (void) zfs_close(ozhp); ozhp = zfs_open(zhp->zfs_hdl, origin, ZFS_TYPE_FILESYSTEM); } return (ozhp); } static int recv_rename_impl(zfs_handle_t *zhp, const char *source, const char *target) { int err; zfs_handle_t *ozhp = NULL; /* * Attempt to rename the dataset. If it fails with EACCES we have * attempted to rename the dataset outside of its encryption root. * Force the dataset to become an encryption root and try again. */ err = lzc_rename(source, target); if (err == EACCES) { ozhp = recv_open_grand_origin(zhp); if (ozhp == NULL) { err = ENOENT; goto out; } err = lzc_change_key(ozhp->zfs_name, DCP_CMD_FORCE_NEW_KEY, NULL, NULL, 0); if (err != 0) goto out; err = lzc_rename(source, target); } out: if (ozhp != NULL) zfs_close(ozhp); return (err); } static int recv_rename(libzfs_handle_t *hdl, const char *name, const char *tryname, int baselen, char *newname, recvflags_t *flags) { static int seq; int err; prop_changelist_t *clp = NULL; zfs_handle_t *zhp = NULL; zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET); if (zhp == NULL) { err = -1; goto out; } clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, flags->force ? MS_FORCE : 0); if (clp == NULL) { err = -1; goto out; } err = changelist_prefix(clp); if (err) goto out; if (tryname) { (void) strcpy(newname, tryname); if (flags->verbose) { (void) printf("attempting rename %s to %s\n", name, newname); } err = recv_rename_impl(zhp, name, newname); if (err == 0) changelist_rename(clp, name, tryname); } else { err = ENOENT; } if (err != 0 && strncmp(name + baselen, "recv-", 5) != 0) { seq++; (void) snprintf(newname, ZFS_MAX_DATASET_NAME_LEN, "%.*srecv-%u-%u", baselen, name, getpid(), seq); if (flags->verbose) { (void) printf("failed - trying rename %s to %s\n", name, newname); } err = recv_rename_impl(zhp, name, newname); if (err == 0) changelist_rename(clp, name, newname); if (err && flags->verbose) { (void) printf("failed (%u) - " "will try again on next pass\n", errno); } err = EAGAIN; } else if (flags->verbose) { if (err == 0) (void) printf("success\n"); else (void) printf("failed (%u)\n", errno); } (void) changelist_postfix(clp); out: if (clp != NULL) changelist_free(clp); if (zhp != NULL) zfs_close(zhp); return (err); } static int recv_promote(libzfs_handle_t *hdl, const char *fsname, const char *origin_fsname, recvflags_t *flags) { int err; zfs_cmd_t zc = {"\0"}; zfs_handle_t *zhp = NULL, *ozhp = NULL; if (flags->verbose) (void) printf("promoting %s\n", fsname); (void) strlcpy(zc.zc_value, origin_fsname, sizeof (zc.zc_value)); (void) strlcpy(zc.zc_name, fsname, sizeof (zc.zc_name)); /* * Attempt to promote the dataset. If it fails with EACCES the * promotion would cause this dataset to leave its encryption root. * Force the origin to become an encryption root and try again. */ err = zfs_ioctl(hdl, ZFS_IOC_PROMOTE, &zc); if (err == EACCES) { zhp = zfs_open(hdl, fsname, ZFS_TYPE_DATASET); if (zhp == NULL) { err = -1; goto out; } ozhp = recv_open_grand_origin(zhp); if (ozhp == NULL) { err = -1; goto out; } err = lzc_change_key(ozhp->zfs_name, DCP_CMD_FORCE_NEW_KEY, NULL, NULL, 0); if (err != 0) goto out; err = zfs_ioctl(hdl, ZFS_IOC_PROMOTE, &zc); } out: if (zhp != NULL) zfs_close(zhp); if (ozhp != NULL) zfs_close(ozhp); return (err); } static int recv_destroy(libzfs_handle_t *hdl, const char *name, int baselen, char *newname, recvflags_t *flags) { int err = 0; prop_changelist_t *clp; zfs_handle_t *zhp; boolean_t defer = B_FALSE; int spa_version; zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET); if (zhp == NULL) return (-1); clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, flags->force ? MS_FORCE : 0); if (zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT && zfs_spa_version(zhp, &spa_version) == 0 && spa_version >= SPA_VERSION_USERREFS) defer = B_TRUE; zfs_close(zhp); if (clp == NULL) return (-1); err = changelist_prefix(clp); if (err) return (err); if (flags->verbose) (void) printf("attempting destroy %s\n", name); if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) { nvlist_t *nv = fnvlist_alloc(); fnvlist_add_boolean(nv, name); err = lzc_destroy_snaps(nv, defer, NULL); fnvlist_free(nv); } else { err = lzc_destroy(name); } if (err == 0) { if (flags->verbose) (void) printf("success\n"); changelist_remove(clp, name); } (void) changelist_postfix(clp); changelist_free(clp); /* * Deferred destroy might destroy the snapshot or only mark it to be * destroyed later, and it returns success in either case. */ if (err != 0 || (defer && zfs_dataset_exists(hdl, name, ZFS_TYPE_SNAPSHOT))) { err = recv_rename(hdl, name, NULL, baselen, newname, flags); } return (err); } typedef struct guid_to_name_data { uint64_t guid; boolean_t bookmark_ok; char *name; char *skip; } guid_to_name_data_t; static int guid_to_name_cb(zfs_handle_t *zhp, void *arg) { guid_to_name_data_t *gtnd = arg; const char *slash; int err; if (gtnd->skip != NULL && (slash = strrchr(zhp->zfs_name, '/')) != NULL && strcmp(slash + 1, gtnd->skip) == 0) { zfs_close(zhp); return (0); } if (zfs_prop_get_int(zhp, ZFS_PROP_GUID) == gtnd->guid) { (void) strcpy(gtnd->name, zhp->zfs_name); zfs_close(zhp); return (EEXIST); } err = zfs_iter_children(zhp, guid_to_name_cb, gtnd); if (err != EEXIST && gtnd->bookmark_ok) err = zfs_iter_bookmarks(zhp, guid_to_name_cb, gtnd); zfs_close(zhp); return (err); } /* * Attempt to find the local dataset associated with this guid. In the case of * multiple matches, we attempt to find the "best" match by searching * progressively larger portions of the hierarchy. This allows one to send a * tree of datasets individually and guarantee that we will find the source * guid within that hierarchy, even if there are multiple matches elsewhere. */ static int guid_to_name(libzfs_handle_t *hdl, const char *parent, uint64_t guid, boolean_t bookmark_ok, char *name) { char pname[ZFS_MAX_DATASET_NAME_LEN]; guid_to_name_data_t gtnd; gtnd.guid = guid; gtnd.bookmark_ok = bookmark_ok; gtnd.name = name; gtnd.skip = NULL; /* * Search progressively larger portions of the hierarchy, starting * with the filesystem specified by 'parent'. This will * select the "most local" version of the origin snapshot in the case * that there are multiple matching snapshots in the system. */ (void) strlcpy(pname, parent, sizeof (pname)); char *cp = strrchr(pname, '@'); if (cp == NULL) cp = strchr(pname, '\0'); for (; cp != NULL; cp = strrchr(pname, '/')) { /* Chop off the last component and open the parent */ *cp = '\0'; zfs_handle_t *zhp = make_dataset_handle(hdl, pname); if (zhp == NULL) continue; int err = guid_to_name_cb(zfs_handle_dup(zhp), >nd); if (err != EEXIST) err = zfs_iter_children(zhp, guid_to_name_cb, >nd); if (err != EEXIST && bookmark_ok) err = zfs_iter_bookmarks(zhp, guid_to_name_cb, >nd); zfs_close(zhp); if (err == EEXIST) return (0); /* * Remember the last portion of the dataset so we skip it next * time through (as we've already searched that portion of the * hierarchy). */ gtnd.skip = strrchr(pname, '/') + 1; } return (ENOENT); } /* * Return +1 if guid1 is before guid2, 0 if they are the same, and -1 if * guid1 is after guid2. */ static int created_before(libzfs_handle_t *hdl, avl_tree_t *avl, uint64_t guid1, uint64_t guid2) { nvlist_t *nvfs; char *fsname, *snapname; char buf[ZFS_MAX_DATASET_NAME_LEN]; int rv; zfs_handle_t *guid1hdl, *guid2hdl; uint64_t create1, create2; if (guid2 == 0) return (0); if (guid1 == 0) return (1); nvfs = fsavl_find(avl, guid1, &snapname); VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname)); (void) snprintf(buf, sizeof (buf), "%s@%s", fsname, snapname); guid1hdl = zfs_open(hdl, buf, ZFS_TYPE_SNAPSHOT); if (guid1hdl == NULL) return (-1); nvfs = fsavl_find(avl, guid2, &snapname); VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname)); (void) snprintf(buf, sizeof (buf), "%s@%s", fsname, snapname); guid2hdl = zfs_open(hdl, buf, ZFS_TYPE_SNAPSHOT); if (guid2hdl == NULL) { zfs_close(guid1hdl); return (-1); } create1 = zfs_prop_get_int(guid1hdl, ZFS_PROP_CREATETXG); create2 = zfs_prop_get_int(guid2hdl, ZFS_PROP_CREATETXG); if (create1 < create2) rv = -1; else if (create1 > create2) rv = +1; else rv = 0; zfs_close(guid1hdl); zfs_close(guid2hdl); return (rv); } /* * This function reestablishes the heirarchy of encryption roots after a * recursive incremental receive has completed. This must be done after the * second call to recv_incremental_replication() has renamed and promoted all * sent datasets to their final locations in the dataset heriarchy. */ /* ARGSUSED */ static int recv_fix_encryption_hierarchy(libzfs_handle_t *hdl, const char *destname, nvlist_t *stream_nv, avl_tree_t *stream_avl) { int err; nvpair_t *fselem = NULL; nvlist_t *stream_fss; char *cp; char top_zfs[ZFS_MAX_DATASET_NAME_LEN]; (void) strcpy(top_zfs, destname); cp = strrchr(top_zfs, '@'); if (cp != NULL) *cp = '\0'; VERIFY(0 == nvlist_lookup_nvlist(stream_nv, "fss", &stream_fss)); while ((fselem = nvlist_next_nvpair(stream_fss, fselem)) != NULL) { zfs_handle_t *zhp = NULL; uint64_t crypt; nvlist_t *snaps, *props, *stream_nvfs = NULL; nvpair_t *snapel = NULL; boolean_t is_encroot, is_clone, stream_encroot; char *cp; char *stream_keylocation = NULL; char keylocation[MAXNAMELEN]; char fsname[ZFS_MAX_DATASET_NAME_LEN]; keylocation[0] = '\0'; VERIFY(0 == nvpair_value_nvlist(fselem, &stream_nvfs)); VERIFY(0 == nvlist_lookup_nvlist(stream_nvfs, "snaps", &snaps)); VERIFY(0 == nvlist_lookup_nvlist(stream_nvfs, "props", &props)); stream_encroot = nvlist_exists(stream_nvfs, "is_encroot"); /* find a snapshot from the stream that exists locally */ err = ENOENT; while ((snapel = nvlist_next_nvpair(snaps, snapel)) != NULL) { uint64_t guid; VERIFY(0 == nvpair_value_uint64(snapel, &guid)); err = guid_to_name(hdl, destname, guid, B_FALSE, fsname); if (err == 0) break; } if (err != 0) continue; cp = strchr(fsname, '@'); if (cp != NULL) *cp = '\0'; zhp = zfs_open(hdl, fsname, ZFS_TYPE_DATASET); if (zhp == NULL) { err = ENOENT; goto error; } crypt = zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION); is_clone = zhp->zfs_dmustats.dds_origin[0] != '\0'; (void) zfs_crypto_get_encryption_root(zhp, &is_encroot, NULL); /* we don't need to do anything for unencrypted datasets */ if (crypt == ZIO_CRYPT_OFF) { zfs_close(zhp); continue; } /* * If the dataset is flagged as an encryption root, was not * received as a clone and is not currently an encryption root, * force it to become one. Fixup the keylocation if necessary. */ if (stream_encroot) { if (!is_clone && !is_encroot) { err = lzc_change_key(fsname, DCP_CMD_FORCE_NEW_KEY, NULL, NULL, 0); if (err != 0) { zfs_close(zhp); goto error; } } VERIFY(0 == nvlist_lookup_string(props, zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &stream_keylocation)); /* * Refresh the properties in case the call to * lzc_change_key() changed the value. */ zfs_refresh_properties(zhp); err = zfs_prop_get(zhp, ZFS_PROP_KEYLOCATION, keylocation, sizeof (keylocation), NULL, NULL, 0, B_TRUE); if (err != 0) { zfs_close(zhp); goto error; } if (strcmp(keylocation, stream_keylocation) != 0) { err = zfs_prop_set(zhp, zfs_prop_to_name(ZFS_PROP_KEYLOCATION), stream_keylocation); if (err != 0) { zfs_close(zhp); goto error; } } } /* * If the dataset is not flagged as an encryption root and is * currently an encryption root, force it to inherit from its * parent. The root of a raw send should never be * force-inherited. */ if (!stream_encroot && is_encroot && strcmp(top_zfs, fsname) != 0) { err = lzc_change_key(fsname, DCP_CMD_FORCE_INHERIT, NULL, NULL, 0); if (err != 0) { zfs_close(zhp); goto error; } } zfs_close(zhp); } return (0); error: return (err); } static int recv_incremental_replication(libzfs_handle_t *hdl, const char *tofs, recvflags_t *flags, nvlist_t *stream_nv, avl_tree_t *stream_avl, nvlist_t *renamed) { nvlist_t *local_nv; avl_tree_t *local_avl; nvpair_t *fselem, *nextfselem; char *fromsnap; char newname[ZFS_MAX_DATASET_NAME_LEN]; int error; boolean_t needagain, progress, recursive; char *s1, *s2; VERIFY(0 == nvlist_lookup_string(stream_nv, "fromsnap", &fromsnap)); recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") == ENOENT); if (flags->dryrun) return (0); again: needagain = progress = B_FALSE; if ((error = gather_nvlist(hdl, tofs, fromsnap, NULL, recursive, B_TRUE, B_FALSE, B_FALSE, B_FALSE, B_TRUE, &local_nv, &local_avl)) != 0) return (error); /* * Process deletes and renames */ for (fselem = nvlist_next_nvpair(local_nv, NULL); fselem; fselem = nextfselem) { nvlist_t *nvfs, *snaps; nvlist_t *stream_nvfs = NULL; nvpair_t *snapelem, *nextsnapelem; uint64_t fromguid = 0; uint64_t originguid = 0; uint64_t stream_originguid = 0; uint64_t parent_fromsnap_guid, stream_parent_fromsnap_guid; char *fsname, *stream_fsname; nextfselem = nvlist_next_nvpair(local_nv, fselem); VERIFY(0 == nvpair_value_nvlist(fselem, &nvfs)); VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snaps", &snaps)); VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname)); VERIFY(0 == nvlist_lookup_uint64(nvfs, "parentfromsnap", &parent_fromsnap_guid)); (void) nvlist_lookup_uint64(nvfs, "origin", &originguid); /* * First find the stream's fs, so we can check for * a different origin (due to "zfs promote") */ for (snapelem = nvlist_next_nvpair(snaps, NULL); snapelem; snapelem = nvlist_next_nvpair(snaps, snapelem)) { uint64_t thisguid; VERIFY(0 == nvpair_value_uint64(snapelem, &thisguid)); stream_nvfs = fsavl_find(stream_avl, thisguid, NULL); if (stream_nvfs != NULL) break; } /* check for promote */ (void) nvlist_lookup_uint64(stream_nvfs, "origin", &stream_originguid); if (stream_nvfs && originguid != stream_originguid) { switch (created_before(hdl, local_avl, stream_originguid, originguid)) { case 1: { /* promote it! */ nvlist_t *origin_nvfs; char *origin_fsname; origin_nvfs = fsavl_find(local_avl, originguid, NULL); VERIFY(0 == nvlist_lookup_string(origin_nvfs, "name", &origin_fsname)); error = recv_promote(hdl, fsname, origin_fsname, flags); if (error == 0) progress = B_TRUE; break; } default: break; case -1: fsavl_destroy(local_avl); nvlist_free(local_nv); return (-1); } /* * We had/have the wrong origin, therefore our * list of snapshots is wrong. Need to handle * them on the next pass. */ needagain = B_TRUE; continue; } for (snapelem = nvlist_next_nvpair(snaps, NULL); snapelem; snapelem = nextsnapelem) { uint64_t thisguid; char *stream_snapname; nvlist_t *found, *props; nextsnapelem = nvlist_next_nvpair(snaps, snapelem); VERIFY(0 == nvpair_value_uint64(snapelem, &thisguid)); found = fsavl_find(stream_avl, thisguid, &stream_snapname); /* check for delete */ if (found == NULL) { char name[ZFS_MAX_DATASET_NAME_LEN]; if (!flags->force) continue; (void) snprintf(name, sizeof (name), "%s@%s", fsname, nvpair_name(snapelem)); error = recv_destroy(hdl, name, strlen(fsname)+1, newname, flags); if (error) needagain = B_TRUE; else progress = B_TRUE; continue; } stream_nvfs = found; if (0 == nvlist_lookup_nvlist(stream_nvfs, "snapprops", &props) && 0 == nvlist_lookup_nvlist(props, stream_snapname, &props)) { zfs_cmd_t zc = { 0 }; zc.zc_cookie = B_TRUE; /* received */ (void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s", fsname, nvpair_name(snapelem)); if (zcmd_write_src_nvlist(hdl, &zc, props) == 0) { (void) zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc); zcmd_free_nvlists(&zc); } } /* check for different snapname */ if (strcmp(nvpair_name(snapelem), stream_snapname) != 0) { char name[ZFS_MAX_DATASET_NAME_LEN]; char tryname[ZFS_MAX_DATASET_NAME_LEN]; (void) snprintf(name, sizeof (name), "%s@%s", fsname, nvpair_name(snapelem)); (void) snprintf(tryname, sizeof (name), "%s@%s", fsname, stream_snapname); error = recv_rename(hdl, name, tryname, strlen(fsname)+1, newname, flags); if (error) needagain = B_TRUE; else progress = B_TRUE; } if (strcmp(stream_snapname, fromsnap) == 0) fromguid = thisguid; } /* check for delete */ if (stream_nvfs == NULL) { if (!flags->force) continue; error = recv_destroy(hdl, fsname, strlen(tofs)+1, newname, flags); if (error) needagain = B_TRUE; else progress = B_TRUE; continue; } if (fromguid == 0) { if (flags->verbose) { (void) printf("local fs %s does not have " "fromsnap (%s in stream); must have " "been deleted locally; ignoring\n", fsname, fromsnap); } continue; } VERIFY(0 == nvlist_lookup_string(stream_nvfs, "name", &stream_fsname)); VERIFY(0 == nvlist_lookup_uint64(stream_nvfs, "parentfromsnap", &stream_parent_fromsnap_guid)); s1 = strrchr(fsname, '/'); s2 = strrchr(stream_fsname, '/'); /* * Check for rename. If the exact receive path is specified, it * does not count as a rename, but we still need to check the * datasets beneath it. */ if ((stream_parent_fromsnap_guid != 0 && parent_fromsnap_guid != 0 && stream_parent_fromsnap_guid != parent_fromsnap_guid) || ((flags->isprefix || strcmp(tofs, fsname) != 0) && (s1 != NULL) && (s2 != NULL) && strcmp(s1, s2) != 0)) { nvlist_t *parent; char tryname[ZFS_MAX_DATASET_NAME_LEN]; parent = fsavl_find(local_avl, stream_parent_fromsnap_guid, NULL); /* * NB: parent might not be found if we used the * tosnap for stream_parent_fromsnap_guid, * because the parent is a newly-created fs; * we'll be able to rename it after we recv the * new fs. */ if (parent != NULL) { char *pname; VERIFY(0 == nvlist_lookup_string(parent, "name", &pname)); (void) snprintf(tryname, sizeof (tryname), "%s%s", pname, strrchr(stream_fsname, '/')); } else { tryname[0] = '\0'; if (flags->verbose) { (void) printf("local fs %s new parent " "not found\n", fsname); } } newname[0] = '\0'; error = recv_rename(hdl, fsname, tryname, strlen(tofs)+1, newname, flags); if (renamed != NULL && newname[0] != '\0') { VERIFY(0 == nvlist_add_boolean(renamed, newname)); } if (error) needagain = B_TRUE; else progress = B_TRUE; } } fsavl_destroy(local_avl); nvlist_free(local_nv); if (needagain && progress) { /* do another pass to fix up temporary names */ if (flags->verbose) (void) printf("another pass:\n"); goto again; } return (needagain || error != 0); } static int zfs_receive_package(libzfs_handle_t *hdl, int fd, const char *destname, recvflags_t *flags, dmu_replay_record_t *drr, zio_cksum_t *zc, char **top_zfs, int cleanup_fd, uint64_t *action_handlep, nvlist_t *cmdprops) { nvlist_t *stream_nv = NULL; avl_tree_t *stream_avl = NULL; char *fromsnap = NULL; char *sendsnap = NULL; char *cp; char tofs[ZFS_MAX_DATASET_NAME_LEN]; char sendfs[ZFS_MAX_DATASET_NAME_LEN]; char errbuf[1024]; dmu_replay_record_t drre; int error; boolean_t anyerr = B_FALSE; boolean_t softerr = B_FALSE; boolean_t recursive, raw; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive")); assert(drr->drr_type == DRR_BEGIN); assert(drr->drr_u.drr_begin.drr_magic == DMU_BACKUP_MAGIC); assert(DMU_GET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo) == DMU_COMPOUNDSTREAM); /* * Read in the nvlist from the stream. */ if (drr->drr_payloadlen != 0) { error = recv_read_nvlist(hdl, fd, drr->drr_payloadlen, &stream_nv, flags->byteswap, zc); if (error) { error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } } recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") == ENOENT); raw = (nvlist_lookup_boolean(stream_nv, "raw") == 0); if (recursive && strchr(destname, '@')) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot specify snapshot name for multi-snapshot stream")); error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } /* * Read in the end record and verify checksum. */ if (0 != (error = recv_read(hdl, fd, &drre, sizeof (drre), flags->byteswap, NULL))) goto out; if (flags->byteswap) { drre.drr_type = BSWAP_32(drre.drr_type); drre.drr_u.drr_end.drr_checksum.zc_word[0] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[0]); drre.drr_u.drr_end.drr_checksum.zc_word[1] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[1]); drre.drr_u.drr_end.drr_checksum.zc_word[2] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[2]); drre.drr_u.drr_end.drr_checksum.zc_word[3] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[3]); } if (drre.drr_type != DRR_END) { error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } if (!ZIO_CHECKSUM_EQUAL(drre.drr_u.drr_end.drr_checksum, *zc)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incorrect header checksum")); error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } (void) nvlist_lookup_string(stream_nv, "fromsnap", &fromsnap); if (drr->drr_payloadlen != 0) { nvlist_t *stream_fss; VERIFY(0 == nvlist_lookup_nvlist(stream_nv, "fss", &stream_fss)); if ((stream_avl = fsavl_create(stream_fss)) == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "couldn't allocate avl tree")); error = zfs_error(hdl, EZFS_NOMEM, errbuf); goto out; } if (fromsnap != NULL && recursive) { nvlist_t *renamed = NULL; nvpair_t *pair = NULL; (void) strlcpy(tofs, destname, sizeof (tofs)); if (flags->isprefix) { struct drr_begin *drrb = &drr->drr_u.drr_begin; int i; if (flags->istail) { cp = strrchr(drrb->drr_toname, '/'); if (cp == NULL) { (void) strlcat(tofs, "/", sizeof (tofs)); i = 0; } else { i = (cp - drrb->drr_toname); } } else { i = strcspn(drrb->drr_toname, "/@"); } /* zfs_receive_one() will create_parents() */ (void) strlcat(tofs, &drrb->drr_toname[i], sizeof (tofs)); *strchr(tofs, '@') = '\0'; } if (!flags->dryrun && !flags->nomount) { VERIFY(0 == nvlist_alloc(&renamed, NV_UNIQUE_NAME, 0)); } softerr = recv_incremental_replication(hdl, tofs, flags, stream_nv, stream_avl, renamed); /* Unmount renamed filesystems before receiving. */ while ((pair = nvlist_next_nvpair(renamed, pair)) != NULL) { zfs_handle_t *zhp; prop_changelist_t *clp = NULL; zhp = zfs_open(hdl, nvpair_name(pair), ZFS_TYPE_FILESYSTEM); if (zhp != NULL) { clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, 0); zfs_close(zhp); if (clp != NULL) { softerr |= changelist_prefix(clp); changelist_free(clp); } } } nvlist_free(renamed); } } /* * Get the fs specified by the first path in the stream (the top level * specified by 'zfs send') and pass it to each invocation of * zfs_receive_one(). */ (void) strlcpy(sendfs, drr->drr_u.drr_begin.drr_toname, sizeof (sendfs)); if ((cp = strchr(sendfs, '@')) != NULL) { *cp = '\0'; /* * Find the "sendsnap", the final snapshot in a replication * stream. zfs_receive_one() handles certain errors * differently, depending on if the contained stream is the * last one or not. */ sendsnap = (cp + 1); } /* Finally, receive each contained stream */ do { /* * we should figure out if it has a recoverable * error, in which case do a recv_skip() and drive on. * Note, if we fail due to already having this guid, * zfs_receive_one() will take care of it (ie, * recv_skip() and return 0). */ error = zfs_receive_impl(hdl, destname, NULL, flags, fd, sendfs, stream_nv, stream_avl, top_zfs, cleanup_fd, action_handlep, sendsnap, cmdprops); if (error == ENODATA) { error = 0; break; } anyerr |= error; } while (error == 0); if (drr->drr_payloadlen != 0 && recursive && fromsnap != NULL) { /* * Now that we have the fs's they sent us, try the * renames again. */ softerr = recv_incremental_replication(hdl, tofs, flags, stream_nv, stream_avl, NULL); } if (raw && softerr == 0) { softerr = recv_fix_encryption_hierarchy(hdl, destname, stream_nv, stream_avl); } out: fsavl_destroy(stream_avl); nvlist_free(stream_nv); if (softerr) error = -2; if (anyerr) error = -1; return (error); } static void trunc_prop_errs(int truncated) { ASSERT(truncated != 0); if (truncated == 1) (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "1 more property could not be set\n")); else (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "%d more properties could not be set\n"), truncated); } static int recv_skip(libzfs_handle_t *hdl, int fd, boolean_t byteswap) { dmu_replay_record_t *drr; void *buf = zfs_alloc(hdl, SPA_MAXBLOCKSIZE); char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive:")); /* XXX would be great to use lseek if possible... */ drr = buf; while (recv_read(hdl, fd, drr, sizeof (dmu_replay_record_t), byteswap, NULL) == 0) { if (byteswap) drr->drr_type = BSWAP_32(drr->drr_type); switch (drr->drr_type) { case DRR_BEGIN: if (drr->drr_payloadlen != 0) { (void) recv_read(hdl, fd, buf, drr->drr_payloadlen, B_FALSE, NULL); } break; case DRR_END: free(buf); return (0); case DRR_OBJECT: if (byteswap) { drr->drr_u.drr_object.drr_bonuslen = BSWAP_32(drr->drr_u.drr_object. drr_bonuslen); } (void) recv_read(hdl, fd, buf, P2ROUNDUP(drr->drr_u.drr_object.drr_bonuslen, 8), B_FALSE, NULL); break; case DRR_WRITE: if (byteswap) { drr->drr_u.drr_write.drr_logical_size = BSWAP_64( drr->drr_u.drr_write.drr_logical_size); drr->drr_u.drr_write.drr_compressed_size = BSWAP_64( drr->drr_u.drr_write.drr_compressed_size); } uint64_t payload_size = DRR_WRITE_PAYLOAD_SIZE(&drr->drr_u.drr_write); assert(payload_size <= SPA_MAXBLOCKSIZE); (void) recv_read(hdl, fd, buf, payload_size, B_FALSE, NULL); break; case DRR_SPILL: if (byteswap) { drr->drr_u.drr_spill.drr_length = BSWAP_64(drr->drr_u.drr_spill.drr_length); } (void) recv_read(hdl, fd, buf, drr->drr_u.drr_spill.drr_length, B_FALSE, NULL); break; case DRR_WRITE_EMBEDDED: if (byteswap) { drr->drr_u.drr_write_embedded.drr_psize = BSWAP_32(drr->drr_u.drr_write_embedded. drr_psize); } (void) recv_read(hdl, fd, buf, P2ROUNDUP(drr->drr_u.drr_write_embedded.drr_psize, 8), B_FALSE, NULL); break; case DRR_WRITE_BYREF: case DRR_FREEOBJECTS: case DRR_FREE: break; default: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid record type")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } } free(buf); return (-1); } static void recv_ecksum_set_aux(libzfs_handle_t *hdl, const char *target_snap, boolean_t resumable) { char target_fs[ZFS_MAX_DATASET_NAME_LEN]; zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "checksum mismatch or incomplete stream")); if (!resumable) return; (void) strlcpy(target_fs, target_snap, sizeof (target_fs)); *strchr(target_fs, '@') = '\0'; zfs_handle_t *zhp = zfs_open(hdl, target_fs, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) return; char token_buf[ZFS_MAXPROPLEN]; int error = zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, token_buf, sizeof (token_buf), NULL, NULL, 0, B_TRUE); if (error == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "checksum mismatch or incomplete stream.\n" "Partially received snapshot is saved.\n" "A resuming stream can be generated on the sending " "system by running:\n" " zfs send -t %s"), token_buf); } zfs_close(zhp); } /* * Prepare a new nvlist of properties that are to override (-o) or be excluded * (-x) from the received dataset * recvprops: received properties from the send stream * cmdprops: raw input properties from command line * origprops: properties, both locally-set and received, currently set on the * target dataset if it exists, NULL otherwise. * oxprops: valid output override (-o) and excluded (-x) properties */ static int zfs_setup_cmdline_props(libzfs_handle_t *hdl, zfs_type_t type, char *fsname, boolean_t zoned, boolean_t recursive, boolean_t newfs, boolean_t raw, boolean_t toplevel, nvlist_t *recvprops, nvlist_t *cmdprops, nvlist_t *origprops, nvlist_t **oxprops, uint8_t **wkeydata_out, uint_t *wkeylen_out, const char *errbuf) { nvpair_t *nvp; nvlist_t *oprops, *voprops; zfs_handle_t *zhp = NULL; zpool_handle_t *zpool_hdl = NULL; char *cp; int ret = 0; char namebuf[ZFS_MAX_DATASET_NAME_LEN]; if (nvlist_empty(cmdprops)) return (0); /* No properties to override or exclude */ *oxprops = fnvlist_alloc(); oprops = fnvlist_alloc(); strlcpy(namebuf, fsname, ZFS_MAX_DATASET_NAME_LEN); /* * Get our dataset handle. The target dataset may not exist yet. */ if (zfs_dataset_exists(hdl, namebuf, ZFS_TYPE_DATASET)) { zhp = zfs_open(hdl, namebuf, ZFS_TYPE_DATASET); if (zhp == NULL) { ret = -1; goto error; } } /* open the zpool handle */ cp = strchr(namebuf, '/'); if (cp != NULL) *cp = '\0'; zpool_hdl = zpool_open(hdl, namebuf); if (zpool_hdl == NULL) { ret = -1; goto error; } /* restore namebuf to match fsname for later use */ if (cp != NULL) *cp = '/'; /* * first iteration: process excluded (-x) properties now and gather * added (-o) properties to be later processed by zfs_valid_proplist() */ nvp = NULL; while ((nvp = nvlist_next_nvpair(cmdprops, nvp)) != NULL) { const char *name = nvpair_name(nvp); zfs_prop_t prop = zfs_name_to_prop(name); /* "origin" is processed separately, don't handle it here */ if (prop == ZFS_PROP_ORIGIN) continue; /* * we're trying to override or exclude a property that does not * make sense for this type of dataset, but we don't want to * fail if the receive is recursive: this comes in handy when * the send stream contains, for instance, a child ZVOL and * we're trying to receive it with "-o atime=on" */ if (!zfs_prop_valid_for_type(prop, type) && !zfs_prop_user(name)) { if (recursive) continue; zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' does not apply to datasets of this " "type"), name); ret = zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } /* raw streams can't override encryption properties */ if ((zfs_prop_encryption_key_param(prop) || prop == ZFS_PROP_ENCRYPTION) && raw) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "encryption property '%s' cannot " "be set or excluded for raw streams."), name); ret = zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } /* incremental streams can only exclude encryption properties */ if ((zfs_prop_encryption_key_param(prop) || prop == ZFS_PROP_ENCRYPTION) && !newfs && nvpair_type(nvp) != DATA_TYPE_BOOLEAN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "encryption property '%s' cannot " "be set for incremental streams."), name); ret = zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } switch (nvpair_type(nvp)) { case DATA_TYPE_BOOLEAN: /* -x property */ /* * DATA_TYPE_BOOLEAN is the way we're asked to "exclude" * a property: this is done by forcing an explicit * inherit on the destination so the effective value is * not the one we received from the send stream. * We do this only if the property is not already * locally-set, in which case its value will take * priority over the received anyway. */ if (nvlist_exists(origprops, name)) { nvlist_t *attrs; char *source = NULL; attrs = fnvlist_lookup_nvlist(origprops, name); if (nvlist_lookup_string(attrs, ZPROP_SOURCE, &source) == 0 && strcmp(source, ZPROP_SOURCE_VAL_RECVD) != 0) continue; } /* * We can't force an explicit inherit on non-inheritable * properties: if we're asked to exclude this kind of * values we remove them from "recvprops" input nvlist. */ if (!zfs_prop_inheritable(prop) && !zfs_prop_user(name) && /* can be inherited too */ nvlist_exists(recvprops, name)) fnvlist_remove(recvprops, name); else fnvlist_add_nvpair(*oxprops, nvp); break; case DATA_TYPE_STRING: /* -o property=value */ fnvlist_add_nvpair(oprops, nvp); break; default: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' must be a string or boolean"), name); ret = zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } } if (toplevel) { /* convert override strings properties to native */ if ((voprops = zfs_valid_proplist(hdl, ZFS_TYPE_DATASET, oprops, zoned, zhp, zpool_hdl, B_FALSE, errbuf)) == NULL) { ret = zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } /* * zfs_crypto_create() requires the parent name. Get it * by truncating the fsname copy stored in namebuf. */ cp = strrchr(namebuf, '/'); if (cp != NULL) *cp = '\0'; if (!raw && zfs_crypto_create(hdl, namebuf, voprops, NULL, B_FALSE, wkeydata_out, wkeylen_out) != 0) { fnvlist_free(voprops); ret = zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf); goto error; } /* second pass: process "-o" properties */ fnvlist_merge(*oxprops, voprops); fnvlist_free(voprops); } else { /* override props on child dataset are inherited */ nvp = NULL; while ((nvp = nvlist_next_nvpair(oprops, nvp)) != NULL) { const char *name = nvpair_name(nvp); fnvlist_add_boolean(*oxprops, name); } } error: if (zhp != NULL) zfs_close(zhp); if (zpool_hdl != NULL) zpool_close(zpool_hdl); fnvlist_free(oprops); return (ret); } /* * Restores a backup of tosnap from the file descriptor specified by infd. */ static int zfs_receive_one(libzfs_handle_t *hdl, int infd, const char *tosnap, const char *originsnap, recvflags_t *flags, dmu_replay_record_t *drr, dmu_replay_record_t *drr_noswap, const char *sendfs, nvlist_t *stream_nv, avl_tree_t *stream_avl, char **top_zfs, int cleanup_fd, uint64_t *action_handlep, const char *finalsnap, nvlist_t *cmdprops) { time_t begin_time; int ioctl_err, ioctl_errno, err; char *cp; struct drr_begin *drrb = &drr->drr_u.drr_begin; char errbuf[1024]; const char *chopprefix; boolean_t newfs = B_FALSE; boolean_t stream_wantsnewfs; boolean_t newprops = B_FALSE; uint64_t read_bytes = 0; uint64_t errflags = 0; uint64_t parent_snapguid = 0; prop_changelist_t *clp = NULL; nvlist_t *snapprops_nvlist = NULL; nvlist_t *snapholds_nvlist = NULL; zprop_errflags_t prop_errflags; nvlist_t *prop_errors = NULL; boolean_t recursive; char *snapname = NULL; char destsnap[MAXPATHLEN * 2]; char origin[MAXNAMELEN]; char name[MAXPATHLEN]; char tmp_keylocation[MAXNAMELEN]; nvlist_t *rcvprops = NULL; /* props received from the send stream */ nvlist_t *oxprops = NULL; /* override (-o) and exclude (-x) props */ nvlist_t *origprops = NULL; /* original props (if destination exists) */ zfs_type_t type; boolean_t toplevel = B_FALSE; boolean_t zoned = B_FALSE; boolean_t hastoken = B_FALSE; uint8_t *wkeydata = NULL; uint_t wkeylen = 0; begin_time = time(NULL); bzero(origin, MAXNAMELEN); bzero(tmp_keylocation, MAXNAMELEN); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive")); recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") == ENOENT); /* Did the user request holds be skipped via zfs recv -k? */ boolean_t holds = flags->holds && !flags->skipholds; if (stream_avl != NULL) { char *keylocation = NULL; nvlist_t *lookup = NULL; nvlist_t *fs = fsavl_find(stream_avl, drrb->drr_toguid, &snapname); (void) nvlist_lookup_uint64(fs, "parentfromsnap", &parent_snapguid); err = nvlist_lookup_nvlist(fs, "props", &rcvprops); if (err) { VERIFY(0 == nvlist_alloc(&rcvprops, NV_UNIQUE_NAME, 0)); newprops = B_TRUE; } /* * The keylocation property may only be set on encryption roots, * but this dataset might not become an encryption root until * recv_fix_encryption_hierarchy() is called. That function * will fixup the keylocation anyway, so we temporarily unset * the keylocation for now to avoid any errors from the receive * ioctl. */ err = nvlist_lookup_string(rcvprops, zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &keylocation); if (err == 0) { (void) strcpy(tmp_keylocation, keylocation); (void) nvlist_remove_all(rcvprops, zfs_prop_to_name(ZFS_PROP_KEYLOCATION)); } if (flags->canmountoff) { VERIFY(0 == nvlist_add_uint64(rcvprops, zfs_prop_to_name(ZFS_PROP_CANMOUNT), 0)); } else if (newprops) { /* nothing in rcvprops, eliminate it */ nvlist_free(rcvprops); rcvprops = NULL; newprops = B_FALSE; } if (0 == nvlist_lookup_nvlist(fs, "snapprops", &lookup)) { VERIFY(0 == nvlist_lookup_nvlist(lookup, snapname, &snapprops_nvlist)); } if (holds) { if (0 == nvlist_lookup_nvlist(fs, "snapholds", &lookup)) { VERIFY(0 == nvlist_lookup_nvlist(lookup, snapname, &snapholds_nvlist)); } } } cp = NULL; /* * Determine how much of the snapshot name stored in the stream * we are going to tack on to the name they specified on the * command line, and how much we are going to chop off. * * If they specified a snapshot, chop the entire name stored in * the stream. */ if (flags->istail) { /* * A filesystem was specified with -e. We want to tack on only * the tail of the sent snapshot path. */ if (strchr(tosnap, '@')) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "argument - snapshot not allowed with -e")); err = zfs_error(hdl, EZFS_INVALIDNAME, errbuf); goto out; } chopprefix = strrchr(sendfs, '/'); if (chopprefix == NULL) { /* * The tail is the poolname, so we need to * prepend a path separator. */ int len = strlen(drrb->drr_toname); cp = malloc(len + 2); cp[0] = '/'; (void) strcpy(&cp[1], drrb->drr_toname); chopprefix = cp; } else { chopprefix = drrb->drr_toname + (chopprefix - sendfs); } } else if (flags->isprefix) { /* * A filesystem was specified with -d. We want to tack on * everything but the first element of the sent snapshot path * (all but the pool name). */ if (strchr(tosnap, '@')) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "argument - snapshot not allowed with -d")); err = zfs_error(hdl, EZFS_INVALIDNAME, errbuf); goto out; } chopprefix = strchr(drrb->drr_toname, '/'); if (chopprefix == NULL) chopprefix = strchr(drrb->drr_toname, '@'); } else if (strchr(tosnap, '@') == NULL) { /* * If a filesystem was specified without -d or -e, we want to * tack on everything after the fs specified by 'zfs send'. */ chopprefix = drrb->drr_toname + strlen(sendfs); } else { /* A snapshot was specified as an exact path (no -d or -e). */ if (recursive) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot specify snapshot name for multi-snapshot " "stream")); err = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } chopprefix = drrb->drr_toname + strlen(drrb->drr_toname); } ASSERT(strstr(drrb->drr_toname, sendfs) == drrb->drr_toname); ASSERT(chopprefix > drrb->drr_toname); ASSERT(chopprefix <= drrb->drr_toname + strlen(drrb->drr_toname)); ASSERT(chopprefix[0] == '/' || chopprefix[0] == '@' || chopprefix[0] == '\0'); /* * Determine name of destination snapshot, store in zc_value. */ (void) strlcpy(destsnap, tosnap, sizeof (destsnap)); (void) strlcat(destsnap, chopprefix, sizeof (destsnap)); free(cp); if (!zfs_name_valid(destsnap, ZFS_TYPE_SNAPSHOT)) { err = zfs_error(hdl, EZFS_INVALIDNAME, errbuf); goto out; } /* * Determine the name of the origin snapshot, store in zc_string. */ if (originsnap) { (void) strlcpy(origin, originsnap, sizeof (origin)); if (flags->verbose) (void) printf("using provided clone origin %s\n", origin); } else if (drrb->drr_flags & DRR_FLAG_CLONE) { if (guid_to_name(hdl, destsnap, drrb->drr_fromguid, B_FALSE, origin) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "local origin for clone %s does not exist"), destsnap); err = zfs_error(hdl, EZFS_NOENT, errbuf); goto out; } if (flags->verbose) (void) printf("found clone origin %s\n", origin); } boolean_t resuming = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & DMU_BACKUP_FEATURE_RESUMING; boolean_t raw = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & DMU_BACKUP_FEATURE_RAW; boolean_t embedded = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & DMU_BACKUP_FEATURE_EMBED_DATA; stream_wantsnewfs = (drrb->drr_fromguid == 0 || (drrb->drr_flags & DRR_FLAG_CLONE) || originsnap) && !resuming; if (stream_wantsnewfs) { /* * if the parent fs does not exist, look for it based on * the parent snap GUID */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive new filesystem stream")); (void) strcpy(name, destsnap); cp = strrchr(name, '/'); if (cp) *cp = '\0'; if (cp && !zfs_dataset_exists(hdl, name, ZFS_TYPE_DATASET)) { char suffix[ZFS_MAX_DATASET_NAME_LEN]; (void) strcpy(suffix, strrchr(destsnap, '/')); if (guid_to_name(hdl, name, parent_snapguid, B_FALSE, destsnap) == 0) { *strchr(destsnap, '@') = '\0'; (void) strcat(destsnap, suffix); } } } else { /* * if the fs does not exist, look for it based on the * fromsnap GUID */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive incremental stream")); (void) strcpy(name, destsnap); *strchr(name, '@') = '\0'; /* * If the exact receive path was specified and this is the * topmost path in the stream, then if the fs does not exist we * should look no further. */ if ((flags->isprefix || (*(chopprefix = drrb->drr_toname + strlen(sendfs)) != '\0' && *chopprefix != '@')) && !zfs_dataset_exists(hdl, name, ZFS_TYPE_DATASET)) { char snap[ZFS_MAX_DATASET_NAME_LEN]; (void) strcpy(snap, strchr(destsnap, '@')); if (guid_to_name(hdl, name, drrb->drr_fromguid, B_FALSE, destsnap) == 0) { *strchr(destsnap, '@') = '\0'; (void) strcat(destsnap, snap); } } } (void) strcpy(name, destsnap); *strchr(name, '@') = '\0'; if (zfs_dataset_exists(hdl, name, ZFS_TYPE_DATASET)) { zfs_cmd_t zc = { 0 }; zfs_handle_t *zhp; boolean_t encrypted; (void) strcpy(zc.zc_name, name); /* * Destination fs exists. It must be one of these cases: * - an incremental send stream * - the stream specifies a new fs (full stream or clone) * and they want us to blow away the existing fs (and * have therefore specified -F and removed any snapshots) * - we are resuming a failed receive. */ if (stream_wantsnewfs) { if (!flags->force) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' exists\n" "must specify -F to overwrite it"), name); err = zfs_error(hdl, EZFS_EXISTS, errbuf); goto out; } if (ioctl(hdl->libzfs_fd, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc) == 0) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination has snapshots (eg. %s)\n" "must destroy them to overwrite it"), zc.zc_name); err = zfs_error(hdl, EZFS_EXISTS, errbuf); goto out; } } if ((zhp = zfs_open(hdl, name, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) == NULL) { zcmd_free_nvlists(&zc); err = -1; goto out; } if (stream_wantsnewfs && zhp->zfs_dmustats.dds_origin[0]) { zcmd_free_nvlists(&zc); zfs_close(zhp); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' is a clone\n" "must destroy it to overwrite it"), name); err = zfs_error(hdl, EZFS_EXISTS, errbuf); goto out; } /* * Raw sends can not be performed as an incremental on top * of existing unencrypted datasets. zfs recv -F cant be * used to blow away an existing encrypted filesystem. This * is because it would require the dsl dir to point to the * new key (or lack of a key) and the old key at the same * time. The -F flag may still be used for deleting * intermediate snapshots that would otherwise prevent the * receive from working. */ encrypted = zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF; if (!stream_wantsnewfs && !encrypted && raw) { zfs_close(zhp); zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot perform raw receive on top of " "existing unencrypted dataset")); err = zfs_error(hdl, EZFS_BADRESTORE, errbuf); goto out; } if (stream_wantsnewfs && flags->force && ((raw && !encrypted) || encrypted)) { zfs_close(zhp); zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "zfs receive -F cannot be used to destroy an " "encrypted filesystem or overwrite an " "unencrypted one with an encrypted one")); err = zfs_error(hdl, EZFS_BADRESTORE, errbuf); goto out; } if (!flags->dryrun && zhp->zfs_type == ZFS_TYPE_FILESYSTEM && stream_wantsnewfs) { /* We can't do online recv in this case */ clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, 0); if (clp == NULL) { zfs_close(zhp); err = -1; goto out; } if (changelist_prefix(clp) != 0) { changelist_free(clp); zfs_close(zhp); err = -1; goto out; } } /* * If we are resuming a newfs, set newfs here so that we will * mount it if the recv succeeds this time. We can tell * that it was a newfs on the first recv because the fs * itself will be inconsistent (if the fs existed when we * did the first recv, we would have received it into * .../%recv). */ if (resuming && zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT)) newfs = B_TRUE; /* we want to know if we're zoned when validating -o|-x props */ zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED); /* may need this info later, get it now we have zhp around */ if (zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, NULL, 0, NULL, NULL, 0, B_TRUE) == 0) hastoken = B_TRUE; /* gather existing properties on destination */ origprops = fnvlist_alloc(); fnvlist_merge(origprops, zhp->zfs_props); fnvlist_merge(origprops, zhp->zfs_user_props); zfs_close(zhp); cp = NULL; } else { zfs_handle_t *zhp; /* * Destination filesystem does not exist. Therefore we better * be creating a new filesystem (either from a full backup, or * a clone). It would therefore be invalid if the user * specified only the pool name (i.e. if the destination name * contained no slash character). */ cp = strrchr(name, '/'); if (!stream_wantsnewfs || cp == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' does not exist"), name); err = zfs_error(hdl, EZFS_NOENT, errbuf); goto out; } /* * Trim off the final dataset component so we perform the * recvbackup ioctl to the filesystems's parent. */ *cp = '\0'; if (flags->isprefix && !flags->istail && !flags->dryrun && create_parents(hdl, destsnap, strlen(tosnap)) != 0) { err = zfs_error(hdl, EZFS_BADRESTORE, errbuf); goto out; } /* validate parent */ zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET); if (zhp == NULL) { err = zfs_error(hdl, EZFS_BADRESTORE, errbuf); goto out; } if (zfs_get_type(zhp) != ZFS_TYPE_FILESYSTEM) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent '%s' is not a filesystem"), name); err = zfs_error(hdl, EZFS_WRONG_PARENT, errbuf); zfs_close(zhp); goto out; } /* * It is invalid to receive a properties stream that was * unencrypted on the send side as a child of an encrypted * parent. Technically there is nothing preventing this, but * it would mean that the encryption=off property which is * locally set on the send side would not be received correctly. * We can infer encryption=off if the stream is not raw and * properties were included since the send side will only ever * send the encryption property in a raw nvlist header. This * check will be avoided if the user specifically overrides * the encryption property on the command line. */ if (!raw && rcvprops != NULL && !nvlist_exists(cmdprops, zfs_prop_to_name(ZFS_PROP_ENCRYPTION))) { uint64_t crypt; crypt = zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION); if (crypt != ZIO_CRYPT_OFF) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent '%s' must not be encrypted to " "receive unenecrypted property"), name); err = zfs_error(hdl, EZFS_BADPROP, errbuf); zfs_close(zhp); goto out; } } zfs_close(zhp); newfs = B_TRUE; *cp = '/'; } if (flags->verbose) { (void) printf("%s %s stream of %s into %s\n", flags->dryrun ? "would receive" : "receiving", drrb->drr_fromguid ? "incremental" : "full", drrb->drr_toname, destsnap); (void) fflush(stdout); } if (flags->dryrun) { err = recv_skip(hdl, infd, flags->byteswap); goto out; } if (top_zfs && (*top_zfs == NULL || strcmp(*top_zfs, name) == 0)) toplevel = B_TRUE; if (drrb->drr_type == DMU_OST_ZVOL) { type = ZFS_TYPE_VOLUME; } else if (drrb->drr_type == DMU_OST_ZFS) { type = ZFS_TYPE_FILESYSTEM; } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid record type: 0x%d"), drrb->drr_type); err = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } if ((err = zfs_setup_cmdline_props(hdl, type, name, zoned, recursive, stream_wantsnewfs, raw, toplevel, rcvprops, cmdprops, origprops, &oxprops, &wkeydata, &wkeylen, errbuf)) != 0) goto out; /* * The following is a difference between ZoL and illumos. * * On illumos, we must trim the last component of the dataset name * that is passed via the ioctl so that we can properly validate * zfs_secpolicy_recv() when receiving to a delegated dataset within * zone. This matches the historical behavior of the receive ioctl. * However, we can't do this until after zfs_setup_cmdline_props() * has finished with the full name. */ if (cp != NULL) *cp = '\0'; err = ioctl_err = lzc_receive_with_cmdprops(destsnap, rcvprops, oxprops, wkeydata, wkeylen, origin, flags->force, flags->resumable, raw, infd, drr_noswap, cleanup_fd, &read_bytes, &errflags, action_handlep, &prop_errors); ioctl_errno = errno; prop_errflags = errflags; if (err == 0) { nvpair_t *prop_err = NULL; while ((prop_err = nvlist_next_nvpair(prop_errors, prop_err)) != NULL) { char tbuf[1024]; zfs_prop_t prop; int intval; prop = zfs_name_to_prop(nvpair_name(prop_err)); (void) nvpair_value_int32(prop_err, &intval); if (strcmp(nvpair_name(prop_err), ZPROP_N_MORE_ERRORS) == 0) { trunc_prop_errs(intval); break; } else if (snapname == NULL || finalsnap == NULL || strcmp(finalsnap, snapname) == 0 || strcmp(nvpair_name(prop_err), zfs_prop_to_name(ZFS_PROP_REFQUOTA)) != 0) { /* * Skip the special case of, for example, * "refquota", errors on intermediate * snapshots leading up to a final one. * That's why we have all of the checks above. * * See zfs_ioctl.c's extract_delay_props() for * a list of props which can fail on * intermediate snapshots, but shouldn't * affect the overall receive. */ (void) snprintf(tbuf, sizeof (tbuf), dgettext(TEXT_DOMAIN, "cannot receive %s property on %s"), nvpair_name(prop_err), name); zfs_setprop_error(hdl, prop, intval, tbuf); } } nvlist_free(prop_errors); } if (err == 0 && snapprops_nvlist) { zfs_cmd_t zc = { 0 }; (void) strcpy(zc.zc_name, destsnap); zc.zc_cookie = B_TRUE; /* received */ if (zcmd_write_src_nvlist(hdl, &zc, snapprops_nvlist) == 0) { (void) zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc); zcmd_free_nvlists(&zc); } } if (err == 0 && snapholds_nvlist) { nvpair_t *pair; nvlist_t *holds, *errors = NULL; int cleanup_fd = -1; VERIFY(0 == nvlist_alloc(&holds, 0, KM_SLEEP)); for (pair = nvlist_next_nvpair(snapholds_nvlist, NULL); pair != NULL; pair = nvlist_next_nvpair(snapholds_nvlist, pair)) { VERIFY(0 == nvlist_add_string(holds, destsnap, nvpair_name(pair))); } (void) lzc_hold(holds, cleanup_fd, &errors); nvlist_free(snapholds_nvlist); nvlist_free(holds); } if (err && (ioctl_errno == ENOENT || ioctl_errno == EEXIST)) { /* * It may be that this snapshot already exists, * in which case we want to consume & ignore it * rather than failing. */ avl_tree_t *local_avl; nvlist_t *local_nv, *fs; cp = strchr(destsnap, '@'); /* * XXX Do this faster by just iterating over snaps in * this fs. Also if zc_value does not exist, we will * get a strange "does not exist" error message. */ *cp = '\0'; if (gather_nvlist(hdl, destsnap, NULL, NULL, B_FALSE, B_TRUE, B_FALSE, B_FALSE, B_FALSE, B_TRUE, &local_nv, &local_avl) == 0) { *cp = '@'; fs = fsavl_find(local_avl, drrb->drr_toguid, NULL); fsavl_destroy(local_avl); nvlist_free(local_nv); if (fs != NULL) { if (flags->verbose) { (void) printf("snap %s already exists; " "ignoring\n", destsnap); } err = ioctl_err = recv_skip(hdl, infd, flags->byteswap); } } *cp = '@'; } if (ioctl_err != 0) { switch (ioctl_errno) { case ENODEV: cp = strchr(destsnap, '@'); *cp = '\0'; zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "most recent snapshot of %s does not\n" "match incremental source"), destsnap); (void) zfs_error(hdl, EZFS_BADRESTORE, errbuf); *cp = '@'; break; case ETXTBSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination %s has been modified\n" "since most recent snapshot"), name); (void) zfs_error(hdl, EZFS_BADRESTORE, errbuf); break; case EACCES: if (raw && stream_wantsnewfs) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "failed to create encryption key")); } else if (raw && !stream_wantsnewfs) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "encryption key does not match " "existing key")); } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "inherited key must be loaded")); } (void) zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf); break; case EEXIST: cp = strchr(destsnap, '@'); if (newfs) { /* it's the containing fs that exists */ *cp = '\0'; } zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination already exists")); (void) zfs_error_fmt(hdl, EZFS_EXISTS, dgettext(TEXT_DOMAIN, "cannot restore to %s"), destsnap); *cp = '@'; break; case EINVAL: if (embedded && !raw) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incompatible embedded data stream " "feature with encrypted receive.")); (void) zfs_error(hdl, EZFS_BADSTREAM, errbuf); break; case ECKSUM: recv_ecksum_set_aux(hdl, destsnap, flags->resumable); (void) zfs_error(hdl, EZFS_BADSTREAM, errbuf); break; case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to receive this stream.")); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); break; case EDQUOT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination %s space quota exceeded."), name); (void) zfs_error(hdl, EZFS_NOSPC, errbuf); break; case ZFS_ERR_FROM_IVSET_GUID_MISSING: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "IV set guid missing. See errata %u at" "http://zfsonlinux.org/msg/ZFS-8000-ER"), ZPOOL_ERRATA_ZOL_8308_ENCRYPTION); (void) zfs_error(hdl, EZFS_BADSTREAM, errbuf); break; case ZFS_ERR_FROM_IVSET_GUID_MISMATCH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "IV set guid mismatch. See the 'zfs receive' " "man page section\n discussing the limitations " "of raw encrypted send streams.")); (void) zfs_error(hdl, EZFS_BADSTREAM, errbuf); break; case ZFS_ERR_SPILL_BLOCK_FLAG_MISSING: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Spill block flag missing for raw send.\n" "The zfs software on the sending system must " "be updated.")); (void) zfs_error(hdl, EZFS_BADSTREAM, errbuf); break; case EBUSY: if (hastoken) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination %s contains " "partially-complete state from " "\"zfs receive -s\"."), name); (void) zfs_error(hdl, EZFS_BUSY, errbuf); break; } /* fallthru */ default: (void) zfs_standard_error(hdl, ioctl_errno, errbuf); } } /* * Mount the target filesystem (if created). Also mount any * children of the target filesystem if we did a replication * receive (indicated by stream_avl being non-NULL). */ cp = strchr(destsnap, '@'); if (cp && (ioctl_err == 0 || !newfs)) { zfs_handle_t *h; *cp = '\0'; h = zfs_open(hdl, destsnap, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (h != NULL) { if (h->zfs_type == ZFS_TYPE_VOLUME) { *cp = '@'; } else if (newfs || stream_avl) { /* * Track the first/top of hierarchy fs, * for mounting and sharing later. */ if (top_zfs && *top_zfs == NULL) *top_zfs = zfs_strdup(hdl, destsnap); } zfs_close(h); } *cp = '@'; } if (clp) { if (!flags->nomount) err |= changelist_postfix(clp); changelist_free(clp); } if (prop_errflags & ZPROP_ERR_NOCLEAR) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "Warning: " "failed to clear unreceived properties on %s"), name); (void) fprintf(stderr, "\n"); } if (prop_errflags & ZPROP_ERR_NORESTORE) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "Warning: " "failed to restore original properties on %s"), name); (void) fprintf(stderr, "\n"); } if (err || ioctl_err) { err = -1; goto out; } if (flags->verbose) { char buf1[64]; char buf2[64]; uint64_t bytes = read_bytes; time_t delta = time(NULL) - begin_time; if (delta == 0) delta = 1; zfs_nicenum(bytes, buf1, sizeof (buf1)); zfs_nicenum(bytes/delta, buf2, sizeof (buf1)); (void) printf("received %sB stream in %lu seconds (%sB/sec)\n", buf1, delta, buf2); } err = 0; out: if (tmp_keylocation[0] != '\0') { VERIFY(0 == nvlist_add_string(rcvprops, zfs_prop_to_name(ZFS_PROP_KEYLOCATION), tmp_keylocation)); } if (newprops) nvlist_free(rcvprops); nvlist_free(oxprops); nvlist_free(origprops); return (err); } /* * Check properties we were asked to override (both -o|-x) */ static boolean_t zfs_receive_checkprops(libzfs_handle_t *hdl, nvlist_t *props, const char *errbuf) { nvpair_t *nvp; zfs_prop_t prop; const char *name; nvp = NULL; while ((nvp = nvlist_next_nvpair(props, nvp)) != NULL) { name = nvpair_name(nvp); prop = zfs_name_to_prop(name); if (prop == ZPROP_INVAL) { if (!zfs_prop_user(name)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property '%s'"), name); return (B_FALSE); } continue; } /* * "origin" is readonly but is used to receive datasets as * clones so we don't raise an error here */ if (prop == ZFS_PROP_ORIGIN) continue; /* encryption params have their own verification later */ if (prop == ZFS_PROP_ENCRYPTION || zfs_prop_encryption_key_param(prop)) continue; /* * cannot override readonly, set-once and other specific * settable properties */ if (zfs_prop_readonly(prop) || prop == ZFS_PROP_VERSION || prop == ZFS_PROP_VOLSIZE) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property '%s'"), name); return (B_FALSE); } } return (B_TRUE); } static int zfs_receive_impl(libzfs_handle_t *hdl, const char *tosnap, const char *originsnap, recvflags_t *flags, int infd, const char *sendfs, nvlist_t *stream_nv, avl_tree_t *stream_avl, char **top_zfs, int cleanup_fd, uint64_t *action_handlep, const char *finalsnap, nvlist_t *cmdprops) { int err; dmu_replay_record_t drr, drr_noswap; struct drr_begin *drrb = &drr.drr_u.drr_begin; char errbuf[1024]; zio_cksum_t zcksum = { 0 }; uint64_t featureflags; int hdrtype; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive")); /* check cmdline props, raise an error if they cannot be received */ if (!zfs_receive_checkprops(hdl, cmdprops, errbuf)) { return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } if (flags->isprefix && !zfs_dataset_exists(hdl, tosnap, ZFS_TYPE_DATASET)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "specified fs " "(%s) does not exist"), tosnap); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } if (originsnap && !zfs_dataset_exists(hdl, originsnap, ZFS_TYPE_DATASET)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "specified origin fs " "(%s) does not exist"), originsnap); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } /* read in the BEGIN record */ if (0 != (err = recv_read(hdl, infd, &drr, sizeof (drr), B_FALSE, &zcksum))) return (err); if (drr.drr_type == DRR_END || drr.drr_type == BSWAP_32(DRR_END)) { /* It's the double end record at the end of a package */ return (ENODATA); } /* the kernel needs the non-byteswapped begin record */ drr_noswap = drr; flags->byteswap = B_FALSE; if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { /* * We computed the checksum in the wrong byteorder in * recv_read() above; do it again correctly. */ bzero(&zcksum, sizeof (zio_cksum_t)); (void) fletcher_4_incremental_byteswap(&drr, sizeof (drr), &zcksum); flags->byteswap = B_TRUE; drr.drr_type = BSWAP_32(drr.drr_type); drr.drr_payloadlen = BSWAP_32(drr.drr_payloadlen); drrb->drr_magic = BSWAP_64(drrb->drr_magic); drrb->drr_versioninfo = BSWAP_64(drrb->drr_versioninfo); drrb->drr_creation_time = BSWAP_64(drrb->drr_creation_time); drrb->drr_type = BSWAP_32(drrb->drr_type); drrb->drr_flags = BSWAP_32(drrb->drr_flags); drrb->drr_toguid = BSWAP_64(drrb->drr_toguid); drrb->drr_fromguid = BSWAP_64(drrb->drr_fromguid); } if (drrb->drr_magic != DMU_BACKUP_MAGIC || drr.drr_type != DRR_BEGIN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (bad magic number)")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); hdrtype = DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo); if (!DMU_STREAM_SUPPORTED(featureflags) || (hdrtype != DMU_SUBSTREAM && hdrtype != DMU_COMPOUNDSTREAM)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "stream has unsupported feature, feature flags = %lx"), featureflags); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } /* Holds feature is set once in the compound stream header. */ boolean_t holds = (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & DMU_BACKUP_FEATURE_HOLDS); if (holds) flags->holds = B_TRUE; if (strchr(drrb->drr_toname, '@') == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (bad snapshot name)")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_SUBSTREAM) { char nonpackage_sendfs[ZFS_MAX_DATASET_NAME_LEN]; if (sendfs == NULL) { /* * We were not called from zfs_receive_package(). Get * the fs specified by 'zfs send'. */ char *cp; (void) strlcpy(nonpackage_sendfs, drr.drr_u.drr_begin.drr_toname, sizeof (nonpackage_sendfs)); if ((cp = strchr(nonpackage_sendfs, '@')) != NULL) *cp = '\0'; sendfs = nonpackage_sendfs; VERIFY(finalsnap == NULL); } return (zfs_receive_one(hdl, infd, tosnap, originsnap, flags, &drr, &drr_noswap, sendfs, stream_nv, stream_avl, top_zfs, cleanup_fd, action_handlep, finalsnap, cmdprops)); } else { assert(DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM); return (zfs_receive_package(hdl, infd, tosnap, flags, &drr, &zcksum, top_zfs, cleanup_fd, action_handlep, cmdprops)); } } /* * Restores a backup of tosnap from the file descriptor specified by infd. * Return 0 on total success, -2 if some things couldn't be * destroyed/renamed/promoted, -1 if some things couldn't be received. * (-1 will override -2, if -1 and the resumable flag was specified the * transfer can be resumed if the sending side supports it). */ int zfs_receive(libzfs_handle_t *hdl, const char *tosnap, nvlist_t *props, recvflags_t *flags, int infd, avl_tree_t *stream_avl) { char *top_zfs = NULL; int err; int cleanup_fd; uint64_t action_handle = 0; char *originsnap = NULL; if (props) { err = nvlist_lookup_string(props, "origin", &originsnap); if (err && err != ENOENT) return (err); } cleanup_fd = open(ZFS_DEV, O_RDWR|O_EXCL); VERIFY(cleanup_fd >= 0); err = zfs_receive_impl(hdl, tosnap, originsnap, flags, infd, NULL, NULL, stream_avl, &top_zfs, cleanup_fd, &action_handle, NULL, props); VERIFY(0 == close(cleanup_fd)); if (err == 0 && !flags->nomount && top_zfs) { zfs_handle_t *zhp; prop_changelist_t *clp; zhp = zfs_open(hdl, top_zfs, ZFS_TYPE_FILESYSTEM); if (zhp != NULL) { clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, CL_GATHER_MOUNT_ALWAYS, 0); zfs_close(zhp); if (clp != NULL) { /* mount and share received datasets */ err = changelist_postfix(clp); changelist_free(clp); } } if (zhp == NULL || clp == NULL || err) err = -1; } if (top_zfs) free(top_zfs); return (err); }