/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak __catan = catan /* INDENT OFF */ /* * dcomplex catan(dcomplex z); * * If * z = x + iy, * * then * 1 ( 2x ) 1 2 2 * Re w = - arctan(-----------) = - ATAN2(2x, 1 - x - y ) * 2 ( 2 2) 2 * (1 - x - y ) * * ( 2 2) * 1 (x + (y+1) ) 1 4y * Im w = - log(------------) .= --- log [ 1 + ------------- ] * 4 ( 2 2) 4 2 2 * (x + (y-1) ) x + (y-1) * * 2 16 3 y * = t - 2t + -- t - ..., where t = ----------------- * 3 x*x + (y-1)*(y-1) * * Note that: if catan( x, y) = ( u, v), then * catan(-x, y) = (-u, v) * catan( x,-y) = ( u,-v) * * Also, catan(x,y) = -i*catanh(-y,x), or * catanh(x,y) = i*catan(-y,x) * So, if catanh(y,x) = (v,u), then catan(x,y) = -i*(-v,u) = (u,v), i.e., * catan(x,y) = (u,v) * * EXCEPTION CASES (conform to ISO/IEC 9899:1999(E)): * catan( 0 , 0 ) = (0 , 0 ) * catan( NaN, 0 ) = (NaN , 0 ) * catan( 0 , 1 ) = (0 , +inf) with divide-by-zero * catan( inf, y ) = (pi/2 , 0 ) for finite +y * catan( NaN, y ) = (NaN , NaN ) with invalid for finite y != 0 * catan( x , inf ) = (pi/2 , 0 ) for finite +x * catan( inf, inf ) = (pi/2 , 0 ) * catan( NaN, inf ) = (NaN , 0 ) * catan( x , NaN ) = (NaN , NaN ) with invalid for finite x * catan( inf, NaN ) = (pi/2 , +-0 ) */ /* INDENT ON */ #include "libm.h" /* atan/atan2/fabs/log/log1p */ #include "complex_wrapper.h" /* INDENT OFF */ static const double pi_2 = 1.570796326794896558e+00, zero = 0.0, half = 0.5, two = 2.0, ln2 = 6.931471805599453094172321214581765680755e-0001, one = 1.0; /* INDENT ON */ dcomplex catan(dcomplex z) { dcomplex ans; double x, y, ax, ay, t; int hx, hy, ix, iy; unsigned lx, ly; x = D_RE(z); y = D_IM(z); ax = fabs(x); ay = fabs(y); hx = HI_WORD(x); lx = LO_WORD(x); hy = HI_WORD(y); ly = LO_WORD(y); ix = hx & 0x7fffffff; iy = hy & 0x7fffffff; /* x is inf or NaN */ if (ix >= 0x7ff00000) { if (ISINF(ix, lx)) { D_RE(ans) = pi_2; D_IM(ans) = zero; } else { D_RE(ans) = x + x; if ((iy | ly) == 0 || (ISINF(iy, ly))) D_IM(ans) = zero; else D_IM(ans) = (fabs(y) - ay) / (fabs(y) - ay); } } else if (iy >= 0x7ff00000) { /* y is inf or NaN */ if (ISINF(iy, ly)) { D_RE(ans) = pi_2; D_IM(ans) = zero; } else { D_RE(ans) = (fabs(x) - ax) / (fabs(x) - ax); D_IM(ans) = y; } } else if ((ix | lx) == 0) { /* INDENT OFF */ /* * x = 0 * 1 1 * A = --- * atan2(2x, 1-x*x-y*y) = --- atan2(0,1-|y|) * 2 2 * * 1 [ (y+1)*(y+1) ] 1 2 1 2y * B = - log [ ------------ ] = - log (1+ ---) or - log(1+ ----) * 4 [ (y-1)*(y-1) ] 2 y-1 2 1-y */ /* INDENT ON */ t = one - ay; if (((iy - 0x3ff00000) | ly) == 0) { /* y=1: catan(0,1)=(0,+inf) with 1/0 signal */ D_IM(ans) = ay / ax; D_RE(ans) = zero; } else if (iy >= 0x3ff00000) { /* y>1 */ D_IM(ans) = half * log1p(two / (-t)); D_RE(ans) = pi_2; } else { /* y<1 */ D_IM(ans) = half * log1p((ay + ay) / t); D_RE(ans) = zero; } } else if (iy < 0x3e200000 || ((ix - iy) >> 20) >= 30) { /* INDENT OFF */ /* * Tiny y (relative to 1+|x|) * |y| < E*(1+|x|) * where E=2**-29, -35, -60 for double, double extended, quad precision * * 1 [ x<=1: atan(x) * A = --- * atan2(2x, 1-x*x-y*y) ~ [ 1 1+x * 2 [ x>=1: - atan2(2,(1-x)*(-----)) * 2 x * * y/x * B ~ t*(1-2t), where t = ----------------- is tiny * x + (y-1)*(y-1)/x */ /* INDENT ON */ if (ix < 0x3ff00000) D_RE(ans) = atan(ax); else D_RE(ans) = half * atan2(two, (one - ax) * (one + one / ax)); if ((iy | ly) == 0) { D_IM(ans) = ay; } else { if (ix < 0x3e200000) t = ay / ((ay - one) * (ay - one)); else if (ix > 0x41c00000) t = (ay / ax) / ax; else t = ay / (ax * ax + (ay - one) * (ay - one)); D_IM(ans) = t * (one - (t + t)); } } else if (iy >= 0x41c00000 && ((iy - ix) >> 20) >= 30) { /* INDENT OFF */ /* * Huge y relative to 1+|x| * |y| > Einv*(1+|x|), where Einv~2**(prec/2+3), * 1 * A ~ --- * atan2(2x, -y*y) ~ pi/2 * 2 * y * B ~ t*(1-2t), where t = --------------- is tiny * (y-1)*(y-1) */ /* INDENT ON */ D_RE(ans) = pi_2; t = (ay / (ay - one)) / (ay - one); D_IM(ans) = t * (one - (t + t)); } else if (((iy - 0x3ff00000) | ly) == 0) { /* INDENT OFF */ /* * y = 1 * 1 1 * A = --- * atan2(2x, -x*x) = --- atan2(2,-x) * 2 2 * * 1 [x*x + 4] 1 4 [ 0.5(log2-logx) if * B = - log [-------] = - log (1+ ---) = [ |x|= 0x43900000) { /* INDENT OFF */ /* * Huge x: * when |x| > 1/E^2, * 1 pi * A ~ --- * atan2(2x, -x*x-y*y) ~ --- * 2 2 * y y/x * B ~ t*(1-2t), where t = --------------- = (-------------- )/x * x*x+(y-1)*(y-1) 1+((y-1)/x)^2 */ /* INDENT ON */ D_RE(ans) = pi_2; t = ((ay / ax) / (one + ((ay - one) / ax) * ((ay - one) / ax))) / ax; D_IM(ans) = t * (one - (t + t)); } else if (ix < 0x38b00000) { /* INDENT OFF */ /* * Tiny x: * when |x| < E^4, (note that y != 1) * 1 1 * A = --- * atan2(2x, 1-x*x-y*y) ~ --- * atan2(2x,(1-y)*(1+y)) * 2 2 * * 1 [(y+1)*(y+1)] 1 2 1 2y * B = - log [-----------] = - log (1+ ---) or - log(1+ ----) * 4 [(y-1)*(y-1)] 2 y-1 2 1-y */ /* INDENT ON */ D_RE(ans) = half * atan2(ax + ax, (one - ay) * (one + ay)); if (iy >= 0x3ff00000) D_IM(ans) = half * log1p(two / (ay - one)); else D_IM(ans) = half * log1p((ay + ay) / (one - ay)); } else { /* INDENT OFF */ /* * normal x,y * 1 * A = --- * atan2(2x, 1-x*x-y*y) * 2 * * 1 [x*x+(y+1)*(y+1)] 1 4y * B = - log [---------------] = - log (1+ -----------------) * 4 [x*x+(y-1)*(y-1)] 4 x*x + (y-1)*(y-1) */ /* INDENT ON */ t = one - ay; if (iy >= 0x3fe00000 && iy < 0x40000000) { /* y close to 1 */ D_RE(ans) = half * (atan2((ax + ax), (t * (one + ay) - ax * ax))); } else if (ix >= 0x3fe00000 && ix < 0x40000000) { /* x close to 1 */ D_RE(ans) = half * atan2((ax + ax), ((one - ax) * (one + ax) - ay * ay)); } else D_RE(ans) = half * atan2((ax + ax), ((one - ax * ax) - ay * ay)); D_IM(ans) = 0.25 * log1p((4.0 * ay) / (ax * ax + t * t)); } if (hx < 0) D_RE(ans) = -D_RE(ans); if (hy < 0) D_IM(ans) = -D_IM(ans); return (ans); }