/*- * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Margo Seltzer. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "db-int.h" #include "hash.h" #include "page.h" #include "extern.h" #if 0 static u_int32_t hash1 __P((const void *, size_t)); static u_int32_t hash2 __P((const void *, size_t)); static u_int32_t hash3 __P((const void *, size_t)); #endif static u_int32_t hash4 __P((const void *, size_t)); /* Default hash function. */ u_int32_t (*__default_hash) __P((const void *, size_t)) = hash4; /* * Assume that we've already split the bucket to which this key hashes, * calculate that bucket, and check that in fact we did already split it. * * EJB's original hsearch hash. */ #define PRIME1 37 #define PRIME2 1048583 #if 0 static u_int32_t hash1(key, len) const void *key; size_t len; { u_int32_t h; u_int8_t *k; h = 0; k = (u_int8_t *)key; /* Convert string to integer */ while (len--) h = h * PRIME1 ^ (*k++ - ' '); h %= PRIME2; return (h); } /* * Phong Vo's linear congruential hash */ #define dcharhash(h, c) ((h) = 0x63c63cd9*(h) + 0x9c39c33d + (c)) static u_int32_t hash2(key, len) const void *key; size_t len; { u_int32_t h; u_int8_t *e, c, *k; k = (u_int8_t *)key; e = k + len; for (h = 0; k != e;) { c = *k++; if (!c && k > e) break; dcharhash(h, c); } return (h); } /* * This is INCREDIBLY ugly, but fast. We break the string up into 8 byte * units. On the first time through the loop we get the "leftover bytes" * (strlen % 8). On every other iteration, we perform 8 HASHC's so we handle * all 8 bytes. Essentially, this saves us 7 cmp & branch instructions. If * this routine is heavily used enough, it's worth the ugly coding. * * Ozan Yigit's original sdbm hash. */ static u_int32_t hash3(key, len) const void *key; size_t len; { u_int32_t n, loop; u_int8_t *k; #define HASHC n = *k++ + 65599 * n n = 0; k = (u_int8_t *)key; if (len > 0) { loop = (len + 8 - 1) >> 3; switch (len & (8 - 1)) { case 0: do { /* All fall throughs */ HASHC; case 7: HASHC; case 6: HASHC; case 5: HASHC; case 4: HASHC; case 3: HASHC; case 2: HASHC; case 1: HASHC; } while (--loop); } } return (n); } #endif /* Chris Torek's hash function. */ static u_int32_t hash4(const void *key, size_t len) { u_int32_t h, loop; const u_int8_t *k; #define HASH4a h = (h << 5) - h + *k++; #define HASH4b h = (h << 5) + h + *k++; #define HASH4 HASH4b h = 0; k = (const u_int8_t *)key; if (len > 0) { loop = (len + 8 - 1) >> 3; switch (len & (8 - 1)) { case 0: do { /* All fall throughs */ HASH4; /* FALLTHROUGH */ case 7: HASH4; /* FALLTHROUGH */ case 6: HASH4; /* FALLTHROUGH */ case 5: HASH4; /* FALLTHROUGH */ case 4: HASH4; /* FALLTHROUGH */ case 3: HASH4; /* FALLTHROUGH */ case 2: HASH4; /* FALLTHROUGH */ case 1: HASH4; } while (--loop); } } return (h); }