/************************************************************************** Etherboot - BOOTP/TFTP Bootstrap Program Inter Pro 1000 for Etherboot Drivers are port from Intel's Linux driver e1000-4.3.15 ***************************************************************************/ /******************************************************************************* Copyright(c) 1999 - 2003 Intel Corporation. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. The full GNU General Public License is included in this distribution in the file called LICENSE. Contact Information: Linux NICS Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 *******************************************************************************/ /* * Copyright (C) Archway Digital Solutions. * * written by Chrsitopher Li or * 2/9/2002 * * Copyright (C) Linux Networx. * Massive upgrade to work with the new intel gigabit NICs. * * * Support for 82541ei & 82547ei chips from Intel's Linux driver 5.1.13 added by * Georg Baum , sponsored by PetaMem GmbH and linkLINE Communications, Inc. * * 01/2004: Updated to Linux driver 5.2.22 by Georg Baum */ /* to get some global routines like printf */ #include "etherboot.h" /* to get the interface to the body of the program */ #include "nic.h" /* to get the PCI support functions, if this is a PCI NIC */ #include "pci.h" #include "timer.h" typedef unsigned char *dma_addr_t; typedef enum { FALSE = 0, TRUE = 1 } boolean_t; #define DEBUG 0 /* Some pieces of code are disabled with #if 0 ... #endif. * They are not deleted to show where the etherboot driver differs * from the linux driver below the function level. * Some member variables of the hw struct have been eliminated * and the corresponding inplace checks inserted instead. * Pieces such as LED handling that we definitely don't need are deleted. * * The following defines should not be needed normally, * but may be helpful for debugging purposes. */ /* Define this if you want to program the transmission control register * the way the Linux driver does it. */ #undef LINUX_DRIVER_TCTL /* Define this to behave more like the Linux driver. */ #undef LINUX_DRIVER #include "e1000_hw.h" /* NIC specific static variables go here */ static struct e1000_hw hw; static char tx_pool[128 + 16]; static char rx_pool[128 + 16]; static char packet[2096]; static struct e1000_tx_desc *tx_base; static struct e1000_rx_desc *rx_base; static int tx_tail; static int rx_tail, rx_last; /* Function forward declarations */ static int e1000_setup_link(struct e1000_hw *hw); static int e1000_setup_fiber_serdes_link(struct e1000_hw *hw); static int e1000_setup_copper_link(struct e1000_hw *hw); static int e1000_phy_setup_autoneg(struct e1000_hw *hw); static void e1000_config_collision_dist(struct e1000_hw *hw); static int e1000_config_mac_to_phy(struct e1000_hw *hw); static int e1000_config_fc_after_link_up(struct e1000_hw *hw); static int e1000_check_for_link(struct e1000_hw *hw); static int e1000_wait_autoneg(struct e1000_hw *hw); static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, uint16_t *duplex); static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data); static int e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data); static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data); static int e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data); static void e1000_phy_hw_reset(struct e1000_hw *hw); static int e1000_phy_reset(struct e1000_hw *hw); static int e1000_detect_gig_phy(struct e1000_hw *hw); /* Printing macros... */ #define E1000_ERR(args...) printf("e1000: " args) #if DEBUG >= 3 #define E1000_DBG(args...) printf("e1000: " args) #else #define E1000_DBG(args...) #endif #define MSGOUT(S, A, B) printk(S "\n", A, B) #if DEBUG >= 2 #define DEBUGFUNC(F) DEBUGOUT(F "\n"); #else #define DEBUGFUNC(F) #endif #if DEBUG >= 1 #define DEBUGOUT(S) printf(S) #define DEBUGOUT1(S,A) printf(S,A) #define DEBUGOUT2(S,A,B) printf(S,A,B) #define DEBUGOUT3(S,A,B,C) printf(S,A,B,C) #define DEBUGOUT7(S,A,B,C,D,E,F,G) printf(S,A,B,C,D,E,F,G) #else #define DEBUGOUT(S) #define DEBUGOUT1(S,A) #define DEBUGOUT2(S,A,B) #define DEBUGOUT3(S,A,B,C) #define DEBUGOUT7(S,A,B,C,D,E,F,G) #endif #define E1000_WRITE_REG(a, reg, value) ( \ ((a)->mac_type >= e1000_82543) ? \ (writel((value), ((a)->hw_addr + E1000_##reg))) : \ (writel((value), ((a)->hw_addr + E1000_82542_##reg)))) #define E1000_READ_REG(a, reg) ( \ ((a)->mac_type >= e1000_82543) ? \ readl((a)->hw_addr + E1000_##reg) : \ readl((a)->hw_addr + E1000_82542_##reg)) #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \ ((a)->mac_type >= e1000_82543) ? \ writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))) : \ writel((value), ((a)->hw_addr + E1000_82542_##reg + ((offset) << 2)))) #define E1000_READ_REG_ARRAY(a, reg, offset) ( \ ((a)->mac_type >= e1000_82543) ? \ readl((a)->hw_addr + E1000_##reg + ((offset) << 2)) : \ readl((a)->hw_addr + E1000_82542_##reg + ((offset) << 2))) #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);} uint32_t e1000_io_read(struct e1000_hw *hw __unused, uint32_t port) { return inl(port); } void e1000_io_write(struct e1000_hw *hw __unused, uint32_t port, uint32_t value) { outl(value, port); } static inline void e1000_pci_set_mwi(struct e1000_hw *hw) { pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); } static inline void e1000_pci_clear_mwi(struct e1000_hw *hw) { pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE); } /****************************************************************************** * Raises the EEPROM's clock input. * * hw - Struct containing variables accessed by shared code * eecd - EECD's current value *****************************************************************************/ static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd) { /* Raise the clock input to the EEPROM (by setting the SK bit), and then * wait microseconds. */ *eecd = *eecd | E1000_EECD_SK; E1000_WRITE_REG(hw, EECD, *eecd); E1000_WRITE_FLUSH(hw); udelay(hw->eeprom.delay_usec); } /****************************************************************************** * Lowers the EEPROM's clock input. * * hw - Struct containing variables accessed by shared code * eecd - EECD's current value *****************************************************************************/ static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd) { /* Lower the clock input to the EEPROM (by clearing the SK bit), and then * wait 50 microseconds. */ *eecd = *eecd & ~E1000_EECD_SK; E1000_WRITE_REG(hw, EECD, *eecd); E1000_WRITE_FLUSH(hw); udelay(hw->eeprom.delay_usec); } /****************************************************************************** * Shift data bits out to the EEPROM. * * hw - Struct containing variables accessed by shared code * data - data to send to the EEPROM * count - number of bits to shift out *****************************************************************************/ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) { struct e1000_eeprom_info *eeprom = &hw->eeprom; uint32_t eecd; uint32_t mask; /* We need to shift "count" bits out to the EEPROM. So, value in the * "data" parameter will be shifted out to the EEPROM one bit at a time. * In order to do this, "data" must be broken down into bits. */ mask = 0x01 << (count - 1); eecd = E1000_READ_REG(hw, EECD); if (eeprom->type == e1000_eeprom_microwire) { eecd &= ~E1000_EECD_DO; } else if (eeprom->type == e1000_eeprom_spi) { eecd |= E1000_EECD_DO; } do { /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", * and then raising and then lowering the clock (the SK bit controls * the clock input to the EEPROM). A "0" is shifted out to the EEPROM * by setting "DI" to "0" and then raising and then lowering the clock. */ eecd &= ~E1000_EECD_DI; if(data & mask) eecd |= E1000_EECD_DI; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); e1000_raise_ee_clk(hw, &eecd); e1000_lower_ee_clk(hw, &eecd); mask = mask >> 1; } while(mask); /* We leave the "DI" bit set to "0" when we leave this routine. */ eecd &= ~E1000_EECD_DI; E1000_WRITE_REG(hw, EECD, eecd); } /****************************************************************************** * Shift data bits in from the EEPROM * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count) { uint32_t eecd; uint32_t i; uint16_t data; /* In order to read a register from the EEPROM, we need to shift 'count' * bits in from the EEPROM. Bits are "shifted in" by raising the clock * input to the EEPROM (setting the SK bit), and then reading the value of * the "DO" bit. During this "shifting in" process the "DI" bit should * always be clear. */ eecd = E1000_READ_REG(hw, EECD); eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); data = 0; for(i = 0; i < count; i++) { data = data << 1; e1000_raise_ee_clk(hw, &eecd); eecd = E1000_READ_REG(hw, EECD); eecd &= ~(E1000_EECD_DI); if(eecd & E1000_EECD_DO) data |= 1; e1000_lower_ee_clk(hw, &eecd); } return data; } /****************************************************************************** * Prepares EEPROM for access * * hw - Struct containing variables accessed by shared code * * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This * function should be called before issuing a command to the EEPROM. *****************************************************************************/ static int32_t e1000_acquire_eeprom(struct e1000_hw *hw) { struct e1000_eeprom_info *eeprom = &hw->eeprom; uint32_t eecd, i=0; eecd = E1000_READ_REG(hw, EECD); /* Request EEPROM Access */ if(hw->mac_type > e1000_82544) { eecd |= E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); eecd = E1000_READ_REG(hw, EECD); while((!(eecd & E1000_EECD_GNT)) && (i < E1000_EEPROM_GRANT_ATTEMPTS)) { i++; udelay(5); eecd = E1000_READ_REG(hw, EECD); } if(!(eecd & E1000_EECD_GNT)) { eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); DEBUGOUT("Could not acquire EEPROM grant\n"); return -E1000_ERR_EEPROM; } } /* Setup EEPROM for Read/Write */ if (eeprom->type == e1000_eeprom_microwire) { /* Clear SK and DI */ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); E1000_WRITE_REG(hw, EECD, eecd); /* Set CS */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, EECD, eecd); } else if (eeprom->type == e1000_eeprom_spi) { /* Clear SK and CS */ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); E1000_WRITE_REG(hw, EECD, eecd); udelay(1); } return E1000_SUCCESS; } /****************************************************************************** * Returns EEPROM to a "standby" state * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void e1000_standby_eeprom(struct e1000_hw *hw) { struct e1000_eeprom_info *eeprom = &hw->eeprom; uint32_t eecd; eecd = E1000_READ_REG(hw, EECD); if(eeprom->type == e1000_eeprom_microwire) { /* Deselect EEPROM */ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); /* Clock high */ eecd |= E1000_EECD_SK; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); /* Select EEPROM */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); /* Clock low */ eecd &= ~E1000_EECD_SK; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); } else if(eeprom->type == e1000_eeprom_spi) { /* Toggle CS to flush commands */ eecd |= E1000_EECD_CS; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); eecd &= ~E1000_EECD_CS; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(eeprom->delay_usec); } } /****************************************************************************** * Terminates a command by inverting the EEPROM's chip select pin * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void e1000_release_eeprom(struct e1000_hw *hw) { uint32_t eecd; eecd = E1000_READ_REG(hw, EECD); if (hw->eeprom.type == e1000_eeprom_spi) { eecd |= E1000_EECD_CS; /* Pull CS high */ eecd &= ~E1000_EECD_SK; /* Lower SCK */ E1000_WRITE_REG(hw, EECD, eecd); udelay(hw->eeprom.delay_usec); } else if(hw->eeprom.type == e1000_eeprom_microwire) { /* cleanup eeprom */ /* CS on Microwire is active-high */ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); E1000_WRITE_REG(hw, EECD, eecd); /* Rising edge of clock */ eecd |= E1000_EECD_SK; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(hw->eeprom.delay_usec); /* Falling edge of clock */ eecd &= ~E1000_EECD_SK; E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(hw->eeprom.delay_usec); } /* Stop requesting EEPROM access */ if(hw->mac_type > e1000_82544) { eecd &= ~E1000_EECD_REQ; E1000_WRITE_REG(hw, EECD, eecd); } } /****************************************************************************** * Reads a 16 bit word from the EEPROM. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw) { uint16_t retry_count = 0; uint8_t spi_stat_reg; /* Read "Status Register" repeatedly until the LSB is cleared. The * EEPROM will signal that the command has been completed by clearing * bit 0 of the internal status register. If it's not cleared within * 5 milliseconds, then error out. */ retry_count = 0; do { e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, hw->eeprom.opcode_bits); spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) break; udelay(5); retry_count += 5; } while(retry_count < EEPROM_MAX_RETRY_SPI); /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and * only 0-5mSec on 5V devices) */ if(retry_count >= EEPROM_MAX_RETRY_SPI) { DEBUGOUT("SPI EEPROM Status error\n"); return -E1000_ERR_EEPROM; } return E1000_SUCCESS; } /****************************************************************************** * Reads a 16 bit word from the EEPROM. * * hw - Struct containing variables accessed by shared code * offset - offset of word in the EEPROM to read * data - word read from the EEPROM * words - number of words to read *****************************************************************************/ static int e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data) { struct e1000_eeprom_info *eeprom = &hw->eeprom; uint32_t i = 0; DEBUGFUNC("e1000_read_eeprom"); /* A check for invalid values: offset too large, too many words, and not * enough words. */ if((offset > eeprom->word_size) || (words > eeprom->word_size - offset) || (words == 0)) { DEBUGOUT("\"words\" parameter out of bounds\n"); return -E1000_ERR_EEPROM; } /* Prepare the EEPROM for reading */ if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) return -E1000_ERR_EEPROM; if(eeprom->type == e1000_eeprom_spi) { uint16_t word_in; uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; if(e1000_spi_eeprom_ready(hw)) { e1000_release_eeprom(hw); return -E1000_ERR_EEPROM; } e1000_standby_eeprom(hw); /* Some SPI eeproms use the 8th address bit embedded in the opcode */ if((eeprom->address_bits == 8) && (offset >= 128)) read_opcode |= EEPROM_A8_OPCODE_SPI; /* Send the READ command (opcode + addr) */ e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits); /* Read the data. The address of the eeprom internally increments with * each byte (spi) being read, saving on the overhead of eeprom setup * and tear-down. The address counter will roll over if reading beyond * the size of the eeprom, thus allowing the entire memory to be read * starting from any offset. */ for (i = 0; i < words; i++) { word_in = e1000_shift_in_ee_bits(hw, 16); data[i] = (word_in >> 8) | (word_in << 8); } } else if(eeprom->type == e1000_eeprom_microwire) { for (i = 0; i < words; i++) { /* Send the READ command (opcode + addr) */ e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, eeprom->opcode_bits); e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), eeprom->address_bits); /* Read the data. For microwire, each word requires the overhead * of eeprom setup and tear-down. */ data[i] = e1000_shift_in_ee_bits(hw, 16); e1000_standby_eeprom(hw); } } /* End this read operation */ e1000_release_eeprom(hw); return E1000_SUCCESS; } /****************************************************************************** * Verifies that the EEPROM has a valid checksum * * hw - Struct containing variables accessed by shared code * * Reads the first 64 16 bit words of the EEPROM and sums the values read. * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is * valid. *****************************************************************************/ static int e1000_validate_eeprom_checksum(struct e1000_hw *hw) { uint16_t checksum = 0; uint16_t i, eeprom_data; DEBUGFUNC("e1000_validate_eeprom_checksum"); for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } checksum += eeprom_data; } if(checksum == (uint16_t) EEPROM_SUM) return E1000_SUCCESS; else { DEBUGOUT("EEPROM Checksum Invalid\n"); return -E1000_ERR_EEPROM; } } /****************************************************************************** * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the * second function of dual function devices * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static int e1000_read_mac_addr(struct e1000_hw *hw) { uint16_t offset; uint16_t eeprom_data; int i; DEBUGFUNC("e1000_read_mac_addr"); for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) { offset = i >> 1; if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } hw->mac_addr[i] = eeprom_data & 0xff; hw->mac_addr[i+1] = (eeprom_data >> 8) & 0xff; } if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) && (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) /* Invert the last bit if this is the second device */ hw->mac_addr[5] ^= 1; return E1000_SUCCESS; } /****************************************************************************** * Initializes receive address filters. * * hw - Struct containing variables accessed by shared code * * Places the MAC address in receive address register 0 and clears the rest * of the receive addresss registers. Clears the multicast table. Assumes * the receiver is in reset when the routine is called. *****************************************************************************/ static void e1000_init_rx_addrs(struct e1000_hw *hw) { uint32_t i; uint32_t addr_low; uint32_t addr_high; DEBUGFUNC("e1000_init_rx_addrs"); /* Setup the receive address. */ DEBUGOUT("Programming MAC Address into RAR[0]\n"); addr_low = (hw->mac_addr[0] | (hw->mac_addr[1] << 8) | (hw->mac_addr[2] << 16) | (hw->mac_addr[3] << 24)); addr_high = (hw->mac_addr[4] | (hw->mac_addr[5] << 8) | E1000_RAH_AV); E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); /* Zero out the other 15 receive addresses. */ DEBUGOUT("Clearing RAR[1-15]\n"); for(i = 1; i < E1000_RAR_ENTRIES; i++) { E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); } } /****************************************************************************** * Clears the VLAN filer table * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void e1000_clear_vfta(struct e1000_hw *hw) { uint32_t offset; for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); } /****************************************************************************** * Writes a value to one of the devices registers using port I/O (as opposed to * memory mapped I/O). Only 82544 and newer devices support port I/O. * * hw - Struct containing variables accessed by shared code * offset - offset to write to * value - value to write *****************************************************************************/ void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value){ uint32_t io_addr = hw->io_base; uint32_t io_data = hw->io_base + 4; e1000_io_write(hw, io_addr, offset); e1000_io_write(hw, io_data, value); } /****************************************************************************** * Set the phy type member in the hw struct. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static int32_t e1000_set_phy_type(struct e1000_hw *hw) { DEBUGFUNC("e1000_set_phy_type"); switch(hw->phy_id) { case M88E1000_E_PHY_ID: case M88E1000_I_PHY_ID: case M88E1011_I_PHY_ID: hw->phy_type = e1000_phy_m88; break; case IGP01E1000_I_PHY_ID: hw->phy_type = e1000_phy_igp; break; default: /* Should never have loaded on this device */ hw->phy_type = e1000_phy_undefined; return -E1000_ERR_PHY_TYPE; } return E1000_SUCCESS; } /****************************************************************************** * IGP phy init script - initializes the GbE PHY * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void e1000_phy_init_script(struct e1000_hw *hw) { DEBUGFUNC("e1000_phy_init_script"); #if 0 /* See e1000_sw_init() of the Linux driver */ if(hw->phy_init_script) { #else if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547) || (hw->mac_type == e1000_82541_rev_2) || (hw->mac_type == e1000_82547_rev_2)) { #endif mdelay(20); e1000_write_phy_reg(hw,0x0000,0x0140); mdelay(5); if(hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547) { e1000_write_phy_reg(hw, 0x1F95, 0x0001); e1000_write_phy_reg(hw, 0x1F71, 0xBD21); e1000_write_phy_reg(hw, 0x1F79, 0x0018); e1000_write_phy_reg(hw, 0x1F30, 0x1600); e1000_write_phy_reg(hw, 0x1F31, 0x0014); e1000_write_phy_reg(hw, 0x1F32, 0x161C); e1000_write_phy_reg(hw, 0x1F94, 0x0003); e1000_write_phy_reg(hw, 0x1F96, 0x003F); e1000_write_phy_reg(hw, 0x2010, 0x0008); } else { e1000_write_phy_reg(hw, 0x1F73, 0x0099); } e1000_write_phy_reg(hw, 0x0000, 0x3300); if(hw->mac_type == e1000_82547) { uint16_t fused, fine, coarse; /* Move to analog registers page */ e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; fine -= IGP01E1000_ANALOG_FUSE_FINE_1; } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) fine -= IGP01E1000_ANALOG_FUSE_FINE_10; fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); } } } } /****************************************************************************** * Set the mac type member in the hw struct. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static int e1000_set_mac_type(struct e1000_hw *hw) { DEBUGFUNC("e1000_set_mac_type"); switch (hw->device_id) { case E1000_DEV_ID_82542: switch (hw->revision_id) { case E1000_82542_2_0_REV_ID: hw->mac_type = e1000_82542_rev2_0; break; case E1000_82542_2_1_REV_ID: hw->mac_type = e1000_82542_rev2_1; break; default: /* Invalid 82542 revision ID */ return -E1000_ERR_MAC_TYPE; } break; case E1000_DEV_ID_82543GC_FIBER: case E1000_DEV_ID_82543GC_COPPER: hw->mac_type = e1000_82543; break; case E1000_DEV_ID_82544EI_COPPER: case E1000_DEV_ID_82544EI_FIBER: case E1000_DEV_ID_82544GC_COPPER: case E1000_DEV_ID_82544GC_LOM: hw->mac_type = e1000_82544; break; case E1000_DEV_ID_82540EM: case E1000_DEV_ID_82540EM_LOM: case E1000_DEV_ID_82540EP: case E1000_DEV_ID_82540EP_LOM: case E1000_DEV_ID_82540EP_LP: hw->mac_type = e1000_82540; break; case E1000_DEV_ID_82545EM_COPPER: case E1000_DEV_ID_82545EM_FIBER: hw->mac_type = e1000_82545; break; case E1000_DEV_ID_82545GM_COPPER: case E1000_DEV_ID_82545GM_FIBER: case E1000_DEV_ID_82545GM_SERDES: hw->mac_type = e1000_82545_rev_3; break; case E1000_DEV_ID_82546EB_COPPER: case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546EB_QUAD_COPPER: hw->mac_type = e1000_82546; break; case E1000_DEV_ID_82546GB_COPPER: case E1000_DEV_ID_82546GB_FIBER: case E1000_DEV_ID_82546GB_SERDES: hw->mac_type = e1000_82546_rev_3; break; case E1000_DEV_ID_82541EI: case E1000_DEV_ID_82541EI_MOBILE: hw->mac_type = e1000_82541; break; case E1000_DEV_ID_82541ER: case E1000_DEV_ID_82541GI: case E1000_DEV_ID_82541GI_MOBILE: hw->mac_type = e1000_82541_rev_2; break; case E1000_DEV_ID_82547EI: hw->mac_type = e1000_82547; break; case E1000_DEV_ID_82547GI: hw->mac_type = e1000_82547_rev_2; break; default: /* Should never have loaded on this device */ return -E1000_ERR_MAC_TYPE; } return E1000_SUCCESS; } /***************************************************************************** * Set media type and TBI compatibility. * * hw - Struct containing variables accessed by shared code * **************************************************************************/ static void e1000_set_media_type(struct e1000_hw *hw) { uint32_t status; DEBUGFUNC("e1000_set_media_type"); if(hw->mac_type != e1000_82543) { /* tbi_compatibility is only valid on 82543 */ hw->tbi_compatibility_en = FALSE; } switch (hw->device_id) { case E1000_DEV_ID_82545GM_SERDES: case E1000_DEV_ID_82546GB_SERDES: hw->media_type = e1000_media_type_internal_serdes; break; default: if(hw->mac_type >= e1000_82543) { status = E1000_READ_REG(hw, STATUS); if(status & E1000_STATUS_TBIMODE) { hw->media_type = e1000_media_type_fiber; /* tbi_compatibility not valid on fiber */ hw->tbi_compatibility_en = FALSE; } else { hw->media_type = e1000_media_type_copper; } } else { /* This is an 82542 (fiber only) */ hw->media_type = e1000_media_type_fiber; } } } /****************************************************************************** * Reset the transmit and receive units; mask and clear all interrupts. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void e1000_reset_hw(struct e1000_hw *hw) { uint32_t ctrl; uint32_t ctrl_ext; uint32_t icr; uint32_t manc; DEBUGFUNC("e1000_reset_hw"); /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ if(hw->mac_type == e1000_82542_rev2_0) { DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); e1000_pci_clear_mwi(hw); } /* Clear interrupt mask to stop board from generating interrupts */ DEBUGOUT("Masking off all interrupts\n"); E1000_WRITE_REG(hw, IMC, 0xffffffff); /* Disable the Transmit and Receive units. Then delay to allow * any pending transactions to complete before we hit the MAC with * the global reset. */ E1000_WRITE_REG(hw, RCTL, 0); E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); E1000_WRITE_FLUSH(hw); /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ hw->tbi_compatibility_on = FALSE; /* Delay to allow any outstanding PCI transactions to complete before * resetting the device */ mdelay(10); ctrl = E1000_READ_REG(hw, CTRL); /* Must reset the PHY before resetting the MAC */ if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); mdelay(5); } /* Issue a global reset to the MAC. This will reset the chip's * transmit, receive, DMA, and link units. It will not effect * the current PCI configuration. The global reset bit is self- * clearing, and should clear within a microsecond. */ DEBUGOUT("Issuing a global reset to MAC\n"); switch(hw->mac_type) { case e1000_82544: case e1000_82540: case e1000_82545: case e1000_82546: case e1000_82541: case e1000_82541_rev_2: /* These controllers can't ack the 64-bit write when issuing the * reset, so use IO-mapping as a workaround to issue the reset */ E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); break; case e1000_82545_rev_3: case e1000_82546_rev_3: /* Reset is performed on a shadow of the control register */ E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); break; default: E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); break; } /* After MAC reset, force reload of EEPROM to restore power-on settings to * device. Later controllers reload the EEPROM automatically, so just wait * for reload to complete. */ switch(hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: case e1000_82544: /* Wait for reset to complete */ udelay(10); ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_EE_RST; E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); /* Wait for EEPROM reload */ mdelay(2); break; case e1000_82541: case e1000_82541_rev_2: case e1000_82547: case e1000_82547_rev_2: /* Wait for EEPROM reload */ mdelay(20); break; default: /* Wait for EEPROM reload (it happens automatically) */ mdelay(5); break; } /* Disable HW ARPs on ASF enabled adapters */ if(hw->mac_type >= e1000_82540) { manc = E1000_READ_REG(hw, MANC); manc &= ~(E1000_MANC_ARP_EN); E1000_WRITE_REG(hw, MANC, manc); } if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { e1000_phy_init_script(hw); } /* Clear interrupt mask to stop board from generating interrupts */ DEBUGOUT("Masking off all interrupts\n"); E1000_WRITE_REG(hw, IMC, 0xffffffff); /* Clear any pending interrupt events. */ icr = E1000_READ_REG(hw, ICR); /* If MWI was previously enabled, reenable it. */ if(hw->mac_type == e1000_82542_rev2_0) { #ifdef LINUX_DRIVER if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) #endif e1000_pci_set_mwi(hw); } } /****************************************************************************** * Performs basic configuration of the adapter. * * hw - Struct containing variables accessed by shared code * * Assumes that the controller has previously been reset and is in a * post-reset uninitialized state. Initializes the receive address registers, * multicast table, and VLAN filter table. Calls routines to setup link * configuration and flow control settings. Clears all on-chip counters. Leaves * the transmit and receive units disabled and uninitialized. *****************************************************************************/ static int e1000_init_hw(struct e1000_hw *hw) { uint32_t ctrl, status; uint32_t i; int32_t ret_val; uint16_t pcix_cmd_word; uint16_t pcix_stat_hi_word; uint16_t cmd_mmrbc; uint16_t stat_mmrbc; e1000_bus_type bus_type = e1000_bus_type_unknown; DEBUGFUNC("e1000_init_hw"); /* Set the media type and TBI compatibility */ e1000_set_media_type(hw); /* Disabling VLAN filtering. */ DEBUGOUT("Initializing the IEEE VLAN\n"); E1000_WRITE_REG(hw, VET, 0); e1000_clear_vfta(hw); /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ if(hw->mac_type == e1000_82542_rev2_0) { DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); e1000_pci_clear_mwi(hw); E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); E1000_WRITE_FLUSH(hw); mdelay(5); } /* Setup the receive address. This involves initializing all of the Receive * Address Registers (RARs 0 - 15). */ e1000_init_rx_addrs(hw); /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ if(hw->mac_type == e1000_82542_rev2_0) { E1000_WRITE_REG(hw, RCTL, 0); E1000_WRITE_FLUSH(hw); mdelay(1); #ifdef LINUX_DRIVER if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) #endif e1000_pci_set_mwi(hw); } /* Zero out the Multicast HASH table */ DEBUGOUT("Zeroing the MTA\n"); for(i = 0; i < E1000_MC_TBL_SIZE; i++) E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); #if 0 /* Set the PCI priority bit correctly in the CTRL register. This * determines if the adapter gives priority to receives, or if it * gives equal priority to transmits and receives. */ if(hw->dma_fairness) { ctrl = E1000_READ_REG(hw, CTRL); E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); } #endif switch(hw->mac_type) { case e1000_82545_rev_3: case e1000_82546_rev_3: break; default: if (hw->mac_type >= e1000_82543) { /* See e1000_get_bus_info() of the Linux driver */ status = E1000_READ_REG(hw, STATUS); bus_type = (status & E1000_STATUS_PCIX_MODE) ? e1000_bus_type_pcix : e1000_bus_type_pci; } /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ if(bus_type == e1000_bus_type_pcix) { pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, &pcix_cmd_word); pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> PCIX_COMMAND_MMRBC_SHIFT; stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> PCIX_STATUS_HI_MMRBC_SHIFT; if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; if(cmd_mmrbc > stat_mmrbc) { pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, pcix_cmd_word); } } break; } /* Call a subroutine to configure the link and setup flow control. */ ret_val = e1000_setup_link(hw); /* Set the transmit descriptor write-back policy */ if(hw->mac_type > e1000_82544) { ctrl = E1000_READ_REG(hw, TXDCTL); ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; E1000_WRITE_REG(hw, TXDCTL, ctrl); } #if 0 /* Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs(hw); #endif return ret_val; } /****************************************************************************** * Adjust SERDES output amplitude based on EEPROM setting. * * hw - Struct containing variables accessed by shared code. *****************************************************************************/ static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw) { uint16_t eeprom_data; int32_t ret_val; DEBUGFUNC("e1000_adjust_serdes_amplitude"); if(hw->media_type != e1000_media_type_internal_serdes) return E1000_SUCCESS; switch(hw->mac_type) { case e1000_82545_rev_3: case e1000_82546_rev_3: break; default: return E1000_SUCCESS; } if ((ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data))) { return ret_val; } if(eeprom_data != EEPROM_RESERVED_WORD) { /* Adjust SERDES output amplitude only. */ eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; if((ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data))) return ret_val; } return E1000_SUCCESS; } /****************************************************************************** * Configures flow control and link settings. * * hw - Struct containing variables accessed by shared code * * Determines which flow control settings to use. Calls the apropriate media- * specific link configuration function. Configures the flow control settings. * Assuming the adapter has a valid link partner, a valid link should be * established. Assumes the hardware has previously been reset and the * transmitter and receiver are not enabled. *****************************************************************************/ static int e1000_setup_link(struct e1000_hw *hw) { uint32_t ctrl_ext; int32_t ret_val; uint16_t eeprom_data; DEBUGFUNC("e1000_setup_link"); /* Read and store word 0x0F of the EEPROM. This word contains bits * that determine the hardware's default PAUSE (flow control) mode, * a bit that determines whether the HW defaults to enabling or * disabling auto-negotiation, and the direction of the * SW defined pins. If there is no SW over-ride of the flow * control setting, then the variable hw->fc will * be initialized based on a value in the EEPROM. */ if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) { DEBUGOUT("EEPROM Read Error\n"); return -E1000_ERR_EEPROM; } if(hw->fc == e1000_fc_default) { if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) hw->fc = e1000_fc_none; else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == EEPROM_WORD0F_ASM_DIR) hw->fc = e1000_fc_tx_pause; else hw->fc = e1000_fc_full; } /* We want to save off the original Flow Control configuration just * in case we get disconnected and then reconnected into a different * hub or switch with different Flow Control capabilities. */ if(hw->mac_type == e1000_82542_rev2_0) hw->fc &= (~e1000_fc_tx_pause); #if 0 /* See e1000_sw_init() of the Linux driver */ if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) #else if((hw->mac_type < e1000_82543) && (hw->mac_type >= e1000_82543)) #endif hw->fc &= (~e1000_fc_rx_pause); #if 0 hw->original_fc = hw->fc; #endif DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); /* Take the 4 bits from EEPROM word 0x0F that determine the initial * polarity value for the SW controlled pins, and setup the * Extended Device Control reg with that info. * This is needed because one of the SW controlled pins is used for * signal detection. So this should be done before e1000_setup_pcs_link() * or e1000_phy_setup() is called. */ if(hw->mac_type == e1000_82543) { ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << SWDPIO__EXT_SHIFT); E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); } /* Call the necessary subroutine to configure the link. */ ret_val = (hw->media_type == e1000_media_type_copper) ? e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); if (ret_val < 0) { return ret_val; } /* Initialize the flow control address, type, and PAUSE timer * registers to their default values. This is done even if flow * control is disabled, because it does not hurt anything to * initialize these registers. */ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); #if 0 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); #else E1000_WRITE_REG(hw, FCTTV, FC_DEFAULT_TX_TIMER); #endif /* Set the flow control receive threshold registers. Normally, * these registers will be set to a default threshold that may be * adjusted later by the driver's runtime code. However, if the * ability to transmit pause frames in not enabled, then these * registers will be set to 0. */ if(!(hw->fc & e1000_fc_tx_pause)) { E1000_WRITE_REG(hw, FCRTL, 0); E1000_WRITE_REG(hw, FCRTH, 0); } else { /* We need to set up the Receive Threshold high and low water marks * as well as (optionally) enabling the transmission of XON frames. */ #if 0 if(hw->fc_send_xon) { E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); } else { E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); } #else E1000_WRITE_REG(hw, FCRTL, (FC_DEFAULT_LO_THRESH | E1000_FCRTL_XONE)); E1000_WRITE_REG(hw, FCRTH, FC_DEFAULT_HI_THRESH); #endif } return ret_val; } /****************************************************************************** * Sets up link for a fiber based or serdes based adapter * * hw - Struct containing variables accessed by shared code * * Manipulates Physical Coding Sublayer functions in order to configure * link. Assumes the hardware has been previously reset and the transmitter * and receiver are not enabled. *****************************************************************************/ static int e1000_setup_fiber_serdes_link(struct e1000_hw *hw) { uint32_t ctrl; uint32_t status; uint32_t txcw = 0; uint32_t i; uint32_t signal = 0; int32_t ret_val; DEBUGFUNC("e1000_setup_fiber_serdes_link"); /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be * set when the optics detect a signal. On older adapters, it will be * cleared when there is a signal. This applies to fiber media only. * If we're on serdes media, adjust the output amplitude to value set in * the EEPROM. */ ctrl = E1000_READ_REG(hw, CTRL); if(hw->media_type == e1000_media_type_fiber) signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; if((ret_val = e1000_adjust_serdes_amplitude(hw))) return ret_val; /* Take the link out of reset */ ctrl &= ~(E1000_CTRL_LRST); #if 0 /* Adjust VCO speed to improve BER performance */ if((ret_val = e1000_set_vco_speed(hw))) return ret_val; #endif e1000_config_collision_dist(hw); /* Check for a software override of the flow control settings, and setup * the device accordingly. If auto-negotiation is enabled, then software * will have to set the "PAUSE" bits to the correct value in the Tranmsit * Config Word Register (TXCW) and re-start auto-negotiation. However, if * auto-negotiation is disabled, then software will have to manually * configure the two flow control enable bits in the CTRL register. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames, but * not send pause frames). * 2: Tx flow control is enabled (we can send pause frames but we do * not support receiving pause frames). * 3: Both Rx and TX flow control (symmetric) are enabled. */ switch (hw->fc) { case e1000_fc_none: /* Flow control is completely disabled by a software over-ride. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); break; case e1000_fc_rx_pause: /* RX Flow control is enabled and TX Flow control is disabled by a * software over-ride. Since there really isn't a way to advertise * that we are capable of RX Pause ONLY, we will advertise that we * support both symmetric and asymmetric RX PAUSE. Later, we will * disable the adapter's ability to send PAUSE frames. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); break; case e1000_fc_tx_pause: /* TX Flow control is enabled, and RX Flow control is disabled, by a * software over-ride. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); break; case e1000_fc_full: /* Flow control (both RX and TX) is enabled by a software over-ride. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); break; default: DEBUGOUT("Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; break; } /* Since auto-negotiation is enabled, take the link out of reset (the link * will be in reset, because we previously reset the chip). This will * restart auto-negotiation. If auto-neogtiation is successful then the * link-up status bit will be set and the flow control enable bits (RFCE * and TFCE) will be set according to their negotiated value. */ DEBUGOUT("Auto-negotiation enabled\n"); E1000_WRITE_REG(hw, TXCW, txcw); E1000_WRITE_REG(hw, CTRL, ctrl); E1000_WRITE_FLUSH(hw); hw->txcw = txcw; mdelay(1); /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" * indication in the Device Status Register. Time-out if a link isn't * seen in 500 milliseconds seconds (Auto-negotiation should complete in * less than 500 milliseconds even if the other end is doing it in SW). * For internal serdes, we just assume a signal is present, then poll. */ if(hw->media_type == e1000_media_type_internal_serdes || (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { DEBUGOUT("Looking for Link\n"); for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { mdelay(10); status = E1000_READ_REG(hw, STATUS); if(status & E1000_STATUS_LU) break; } if(i == (LINK_UP_TIMEOUT / 10)) { DEBUGOUT("Never got a valid link from auto-neg!!!\n"); hw->autoneg_failed = 1; /* AutoNeg failed to achieve a link, so we'll call * e1000_check_for_link. This routine will force the link up if * we detect a signal. This will allow us to communicate with * non-autonegotiating link partners. */ if((ret_val = e1000_check_for_link(hw))) { DEBUGOUT("Error while checking for link\n"); return ret_val; } hw->autoneg_failed = 0; } else { hw->autoneg_failed = 0; DEBUGOUT("Valid Link Found\n"); } } else { DEBUGOUT("No Signal Detected\n"); } return E1000_SUCCESS; } /****************************************************************************** * Detects which PHY is present and the speed and duplex * * hw - Struct containing variables accessed by shared code ******************************************************************************/ static int e1000_setup_copper_link(struct e1000_hw *hw) { uint32_t ctrl; int32_t ret_val; uint16_t i; uint16_t phy_data; DEBUGFUNC("e1000_setup_copper_link"); ctrl = E1000_READ_REG(hw, CTRL); /* With 82543, we need to force speed and duplex on the MAC equal to what * the PHY speed and duplex configuration is. In addition, we need to * perform a hardware reset on the PHY to take it out of reset. */ if(hw->mac_type > e1000_82543) { ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, CTRL, ctrl); } else { ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); E1000_WRITE_REG(hw, CTRL, ctrl); e1000_phy_hw_reset(hw); } /* Make sure we have a valid PHY */ if((ret_val = e1000_detect_gig_phy(hw))) { DEBUGOUT("Error, did not detect valid phy.\n"); return ret_val; } DEBUGOUT1("Phy ID = %x \n", hw->phy_id); if(hw->mac_type <= e1000_82543 || hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || #if 0 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) hw->phy_reset_disable = FALSE; if(!hw->phy_reset_disable) { #else hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { #endif if (hw->phy_type == e1000_phy_igp) { if((ret_val = e1000_phy_reset(hw))) { DEBUGOUT("Error Resetting the PHY\n"); return ret_val; } /* Wait 10ms for MAC to configure PHY from eeprom settings */ mdelay(15); #if 0 /* disable lplu d3 during driver init */ if((ret_val = e1000_set_d3_lplu_state(hw, FALSE))) { DEBUGOUT("Error Disabling LPLU D3\n"); return ret_val; } /* Configure mdi-mdix settings */ if((ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data))) return ret_val; if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { hw->dsp_config_state = e1000_dsp_config_disabled; /* Force MDI for IGP B-0 PHY */ phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); hw->mdix = 1; } else { hw->dsp_config_state = e1000_dsp_config_enabled; phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; switch (hw->mdix) { case 1: phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; break; case 2: phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; break; case 0: default: phy_data |= IGP01E1000_PSCR_AUTO_MDIX; break; } } if((ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data))) return ret_val; /* set auto-master slave resolution settings */ e1000_ms_type phy_ms_setting = hw->master_slave; if(hw->ffe_config_state == e1000_ffe_config_active) hw->ffe_config_state = e1000_ffe_config_enabled; if(hw->dsp_config_state == e1000_dsp_config_activated) hw->dsp_config_state = e1000_dsp_config_enabled; #endif /* when autonegotiation advertisment is only 1000Mbps then we * should disable SmartSpeed and enable Auto MasterSlave * resolution as hardware default. */ if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { /* Disable SmartSpeed */ if((ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data))) return ret_val; phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; if((ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data))) return ret_val; /* Set auto Master/Slave resolution process */ if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data))) return ret_val; phy_data &= ~CR_1000T_MS_ENABLE; if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data))) return ret_val; } if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data))) return ret_val; #if 0 /* load defaults for future use */ hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? ((phy_data & CR_1000T_MS_VALUE) ? e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto; switch (phy_ms_setting) { case e1000_ms_force_master: phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); break; case e1000_ms_force_slave: phy_data |= CR_1000T_MS_ENABLE; phy_data &= ~(CR_1000T_MS_VALUE); break; case e1000_ms_auto: phy_data &= ~CR_1000T_MS_ENABLE; default: break; } #endif if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data))) return ret_val; } else { /* Enable CRS on TX. This must be set for half-duplex operation. */ if((ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data))) return ret_val; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; /* Options: * MDI/MDI-X = 0 (default) * 0 - Auto for all speeds * 1 - MDI mode * 2 - MDI-X mode * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) */ #if 0 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; switch (hw->mdix) { case 1: phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; break; case 2: phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; break; case 3: phy_data |= M88E1000_PSCR_AUTO_X_1000T; break; case 0: default: #endif phy_data |= M88E1000_PSCR_AUTO_X_MODE; #if 0 break; } #endif /* Options: * disable_polarity_correction = 0 (default) * Automatic Correction for Reversed Cable Polarity * 0 - Disabled * 1 - Enabled */ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; if((ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data))) return ret_val; /* Force TX_CLK in the Extended PHY Specific Control Register * to 25MHz clock. */ if((ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data))) return ret_val; phy_data |= M88E1000_EPSCR_TX_CLK_25; #ifdef LINUX_DRIVER if (hw->phy_revision < M88E1011_I_REV_4) { #endif /* Configure Master and Slave downshift values */ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); if((ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data))) return ret_val; } /* SW Reset the PHY so all changes take effect */ if((ret_val = e1000_phy_reset(hw))) { DEBUGOUT("Error Resetting the PHY\n"); return ret_val; #ifdef LINUX_DRIVER } #endif } /* Options: * autoneg = 1 (default) * PHY will advertise value(s) parsed from * autoneg_advertised and fc * autoneg = 0 * PHY will be set to 10H, 10F, 100H, or 100F * depending on value parsed from forced_speed_duplex. */ /* Is autoneg enabled? This is enabled by default or by software * override. If so, call e1000_phy_setup_autoneg routine to parse the * autoneg_advertised and fc options. If autoneg is NOT enabled, then * the user should have provided a speed/duplex override. If so, then * call e1000_phy_force_speed_duplex to parse and set this up. */ /* Perform some bounds checking on the hw->autoneg_advertised * parameter. If this variable is zero, then set it to the default. */ hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; /* If autoneg_advertised is zero, we assume it was not defaulted * by the calling code so we set to advertise full capability. */ if(hw->autoneg_advertised == 0) hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); if((ret_val = e1000_phy_setup_autoneg(hw))) { DEBUGOUT("Error Setting up Auto-Negotiation\n"); return ret_val; } DEBUGOUT("Restarting Auto-Neg\n"); /* Restart auto-negotiation by setting the Auto Neg Enable bit and * the Auto Neg Restart bit in the PHY control register. */ if((ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data))) return ret_val; phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); if((ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data))) return ret_val; #if 0 /* Does the user want to wait for Auto-Neg to complete here, or * check at a later time (for example, callback routine). */ if(hw->wait_autoneg_complete) { if((ret_val = e1000_wait_autoneg(hw))) { DEBUGOUT("Error while waiting for autoneg to complete\n"); return ret_val; } } #else /* If we do not wait for autonegotiation to complete I * do not see a valid link status. */ if((ret_val = e1000_wait_autoneg(hw))) { DEBUGOUT("Error while waiting for autoneg to complete\n"); return ret_val; } #endif } /* !hw->phy_reset_disable */ /* Check link status. Wait up to 100 microseconds for link to become * valid. */ for(i = 0; i < 10; i++) { if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data))) return ret_val; if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data))) return ret_val; if(phy_data & MII_SR_LINK_STATUS) { /* We have link, so we need to finish the config process: * 1) Set up the MAC to the current PHY speed/duplex * if we are on 82543. If we * are on newer silicon, we only need to configure * collision distance in the Transmit Control Register. * 2) Set up flow control on the MAC to that established with * the link partner. */ if(hw->mac_type >= e1000_82544) { e1000_config_collision_dist(hw); } else { if((ret_val = e1000_config_mac_to_phy(hw))) { DEBUGOUT("Error configuring MAC to PHY settings\n"); return ret_val; } } if((ret_val = e1000_config_fc_after_link_up(hw))) { DEBUGOUT("Error Configuring Flow Control\n"); return ret_val; } #if 0 if(hw->phy_type == e1000_phy_igp) { if((ret_val = e1000_config_dsp_after_link_change(hw, TRUE))) { DEBUGOUT("Error Configuring DSP after link up\n"); return ret_val; } } #endif DEBUGOUT("Valid link established!!!\n"); return E1000_SUCCESS; } udelay(10); } DEBUGOUT("Unable to establish link!!!\n"); return -E1000_ERR_NOLINK; } /****************************************************************************** * Configures PHY autoneg and flow control advertisement settings * * hw - Struct containing variables accessed by shared code ******************************************************************************/ static int e1000_phy_setup_autoneg(struct e1000_hw *hw) { int32_t ret_val; uint16_t mii_autoneg_adv_reg; uint16_t mii_1000t_ctrl_reg; DEBUGFUNC("e1000_phy_setup_autoneg"); /* Read the MII Auto-Neg Advertisement Register (Address 4). */ if((ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg))) return ret_val; /* Read the MII 1000Base-T Control Register (Address 9). */ if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg))) return ret_val; /* Need to parse both autoneg_advertised and fc and set up * the appropriate PHY registers. First we will parse for * autoneg_advertised software override. Since we can advertise * a plethora of combinations, we need to check each bit * individually. */ /* First we clear all the 10/100 mb speed bits in the Auto-Neg * Advertisement Register (Address 4) and the 1000 mb speed bits in * the 1000Base-T Control Register (Address 9). */ mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); /* Do we want to advertise 10 Mb Half Duplex? */ if(hw->autoneg_advertised & ADVERTISE_10_HALF) { DEBUGOUT("Advertise 10mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; } /* Do we want to advertise 10 Mb Full Duplex? */ if(hw->autoneg_advertised & ADVERTISE_10_FULL) { DEBUGOUT("Advertise 10mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; } /* Do we want to advertise 100 Mb Half Duplex? */ if(hw->autoneg_advertised & ADVERTISE_100_HALF) { DEBUGOUT("Advertise 100mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; } /* Do we want to advertise 100 Mb Full Duplex? */ if(hw->autoneg_advertised & ADVERTISE_100_FULL) { DEBUGOUT("Advertise 100mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; } /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ if(hw->autoneg_advertised & ADVERTISE_1000_HALF) { DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); } /* Do we want to advertise 1000 Mb Full Duplex? */ if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { DEBUGOUT("Advertise 1000mb Full duplex\n"); mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; } /* Check for a software override of the flow control settings, and * setup the PHY advertisement registers accordingly. If * auto-negotiation is enabled, then software will have to set the * "PAUSE" bits to the correct value in the Auto-Negotiation * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * but we do not support receiving pause frames). * 3: Both Rx and TX flow control (symmetric) are enabled. * other: No software override. The flow control configuration * in the EEPROM is used. */ switch (hw->fc) { case e1000_fc_none: /* 0 */ /* Flow control (RX & TX) is completely disabled by a * software over-ride. */ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case e1000_fc_rx_pause: /* 1 */ /* RX Flow control is enabled, and TX Flow control is * disabled, by a software over-ride. */ /* Since there really isn't a way to advertise that we are * capable of RX Pause ONLY, we will advertise that we * support both symmetric and asymmetric RX PAUSE. Later * (in e1000_config_fc_after_link_up) we will disable the *hw's ability to send PAUSE frames. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case e1000_fc_tx_pause: /* 2 */ /* TX Flow control is enabled, and RX Flow control is * disabled, by a software over-ride. */ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; break; case e1000_fc_full: /* 3 */ /* Flow control (both RX and TX) is enabled by a software * over-ride. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; default: DEBUGOUT("Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; } if((ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg))) return ret_val; DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg))) return ret_val; return E1000_SUCCESS; } /****************************************************************************** * Sets the collision distance in the Transmit Control register * * hw - Struct containing variables accessed by shared code * * Link should have been established previously. Reads the speed and duplex * information from the Device Status register. ******************************************************************************/ static void e1000_config_collision_dist(struct e1000_hw *hw) { uint32_t tctl; tctl = E1000_READ_REG(hw, TCTL); tctl &= ~E1000_TCTL_COLD; tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; E1000_WRITE_REG(hw, TCTL, tctl); E1000_WRITE_FLUSH(hw); } /****************************************************************************** * Sets MAC speed and duplex settings to reflect the those in the PHY * * hw - Struct containing variables accessed by shared code * mii_reg - data to write to the MII control register * * The contents of the PHY register containing the needed information need to * be passed in. ******************************************************************************/ static int e1000_config_mac_to_phy(struct e1000_hw *hw) { uint32_t ctrl; int32_t ret_val; uint16_t phy_data; DEBUGFUNC("e1000_config_mac_to_phy"); /* Read the Device Control Register and set the bits to Force Speed * and Duplex. */ ctrl = E1000_READ_REG(hw, CTRL); ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); /* Set up duplex in the Device Control and Transmit Control * registers depending on negotiated values. */ if (hw->phy_type == e1000_phy_igp) { if((ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data))) return ret_val; if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD; else ctrl &= ~E1000_CTRL_FD; e1000_config_collision_dist(hw); /* Set up speed in the Device Control register depending on * negotiated values. */ if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) ctrl |= E1000_CTRL_SPD_1000; else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_100MBPS) ctrl |= E1000_CTRL_SPD_100; } else { if((ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data))) return ret_val; if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; else ctrl &= ~E1000_CTRL_FD; e1000_config_collision_dist(hw); /* Set up speed in the Device Control register depending on * negotiated values. */ if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) ctrl |= E1000_CTRL_SPD_1000; else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) ctrl |= E1000_CTRL_SPD_100; } /* Write the configured values back to the Device Control Reg. */ E1000_WRITE_REG(hw, CTRL, ctrl); return E1000_SUCCESS; } /****************************************************************************** * Forces the MAC's flow control settings. * * hw - Struct containing variables accessed by shared code * * Sets the TFCE and RFCE bits in the device control register to reflect * the adapter settings. TFCE and RFCE need to be explicitly set by * software when a Copper PHY is used because autonegotiation is managed * by the PHY rather than the MAC. Software must also configure these * bits when link is forced on a fiber connection. *****************************************************************************/ static int e1000_force_mac_fc(struct e1000_hw *hw) { uint32_t ctrl; DEBUGFUNC("e1000_force_mac_fc"); /* Get the current configuration of the Device Control Register */ ctrl = E1000_READ_REG(hw, CTRL); /* Because we didn't get link via the internal auto-negotiation * mechanism (we either forced link or we got link via PHY * auto-neg), we have to manually enable/disable transmit an * receive flow control. * * The "Case" statement below enables/disable flow control * according to the "hw->fc" parameter. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause * frames but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * frames but we do not receive pause frames). * 3: Both Rx and TX flow control (symmetric) is enabled. * other: No other values should be possible at this point. */ switch (hw->fc) { case e1000_fc_none: ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); break; case e1000_fc_rx_pause: ctrl &= (~E1000_CTRL_TFCE); ctrl |= E1000_CTRL_RFCE; break; case e1000_fc_tx_pause: ctrl &= (~E1000_CTRL_RFCE); ctrl |= E1000_CTRL_TFCE; break; case e1000_fc_full: ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); break; default: DEBUGOUT("Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; } /* Disable TX Flow Control for 82542 (rev 2.0) */ if(hw->mac_type == e1000_82542_rev2_0) ctrl &= (~E1000_CTRL_TFCE); E1000_WRITE_REG(hw, CTRL, ctrl); return E1000_SUCCESS; } /****************************************************************************** * Configures flow control settings after link is established * * hw - Struct containing variables accessed by shared code * * Should be called immediately after a valid link has been established. * Forces MAC flow control settings if link was forced. When in MII/GMII mode * and autonegotiation is enabled, the MAC flow control settings will be set * based on the flow control negotiated by the PHY. In TBI mode, the TFCE * and RFCE bits will be automaticaly set to the negotiated flow control mode. *****************************************************************************/ static int e1000_config_fc_after_link_up(struct e1000_hw *hw) { int32_t ret_val; uint16_t mii_status_reg; uint16_t mii_nway_adv_reg; uint16_t mii_nway_lp_ability_reg; uint16_t speed; uint16_t duplex; DEBUGFUNC("e1000_config_fc_after_link_up"); /* Check for the case where we have fiber media and auto-neg failed * so we had to force link. In this case, we need to force the * configuration of the MAC to match the "fc" parameter. */ if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed))) { if((ret_val = e1000_force_mac_fc(hw))) { DEBUGOUT("Error forcing flow control settings\n"); return ret_val; } } /* Check for the case where we have copper media and auto-neg is * enabled. In this case, we need to check and see if Auto-Neg * has completed, and if so, how the PHY and link partner has * flow control configured. */ if(hw->media_type == e1000_media_type_copper) { /* Read the MII Status Register and check to see if AutoNeg * has completed. We read this twice because this reg has * some "sticky" (latched) bits. */ if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg))) return ret_val; if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg))) return ret_val; if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) { /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement Register * (Address 4) and the Auto_Negotiation Base Page Ability * Register (Address 5) to determine how flow control was * negotiated. */ if((ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg))) return ret_val; if((ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg))) return ret_val; /* Two bits in the Auto Negotiation Advertisement Register * (Address 4) and two bits in the Auto Negotiation Base * Page Ability Register (Address 5) determine flow control * for both the PHY and the link partner. The following * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, * 1999, describes these PAUSE resolution bits and how flow * control is determined based upon these settings. * NOTE: DC = Don't Care * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution *-------|---------|-------|---------|-------------------- * 0 | 0 | DC | DC | e1000_fc_none * 0 | 1 | 0 | DC | e1000_fc_none * 0 | 1 | 1 | 0 | e1000_fc_none * 0 | 1 | 1 | 1 | e1000_fc_tx_pause * 1 | 0 | 0 | DC | e1000_fc_none * 1 | DC | 1 | DC | e1000_fc_full * 1 | 1 | 0 | 0 | e1000_fc_none * 1 | 1 | 0 | 1 | e1000_fc_rx_pause * */ /* Are both PAUSE bits set to 1? If so, this implies * Symmetric Flow Control is enabled at both ends. The * ASM_DIR bits are irrelevant per the spec. * * For Symmetric Flow Control: * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | DC | 1 | DC | e1000_fc_full * */ if((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { /* Now we need to check if the user selected RX ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise RX * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ #if 0 if(hw->original_fc == e1000_fc_full) { hw->fc = e1000_fc_full; #else if(hw->fc == e1000_fc_full) { #endif DEBUGOUT("Flow Control = FULL.\r\n"); } else { hw->fc = e1000_fc_rx_pause; DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); } } /* For receiving PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause * */ else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc = e1000_fc_tx_pause; DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); } /* For transmitting PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause * */ else if((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { hw->fc = e1000_fc_rx_pause; DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); } /* Per the IEEE spec, at this point flow control should be * disabled. However, we want to consider that we could * be connected to a legacy switch that doesn't advertise * desired flow control, but can be forced on the link * partner. So if we advertised no flow control, that is * what we will resolve to. If we advertised some kind of * receive capability (Rx Pause Only or Full Flow Control) * and the link partner advertised none, we will configure * ourselves to enable Rx Flow Control only. We can do * this safely for two reasons: If the link partner really * didn't want flow control enabled, and we enable Rx, no * harm done since we won't be receiving any PAUSE frames * anyway. If the intent on the link partner was to have * flow control enabled, then by us enabling RX only, we * can at least receive pause frames and process them. * This is a good idea because in most cases, since we are * predominantly a server NIC, more times than not we will * be asked to delay transmission of packets than asking * our link partner to pause transmission of frames. */ #if 0 else if(hw->original_fc == e1000_fc_none || hw->original_fc == e1000_fc_tx_pause) { #else else if(hw->fc == e1000_fc_none) DEBUGOUT("Flow Control = NONE.\r\n"); else if(hw->fc == e1000_fc_tx_pause) { #endif hw->fc = e1000_fc_none; DEBUGOUT("Flow Control = NONE.\r\n"); } else { hw->fc = e1000_fc_rx_pause; DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); } /* Now we need to do one last check... If we auto- * negotiated to HALF DUPLEX, flow control should not be * enabled per IEEE 802.3 spec. */ e1000_get_speed_and_duplex(hw, &speed, &duplex); if(duplex == HALF_DUPLEX) hw->fc = e1000_fc_none; /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ if((ret_val = e1000_force_mac_fc(hw))) { DEBUGOUT("Error forcing flow control settings\n"); return ret_val; } } else { DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n"); } } return E1000_SUCCESS; } /****************************************************************************** * Checks to see if the link status of the hardware has changed. * * hw - Struct containing variables accessed by shared code * * Called by any function that needs to check the link status of the adapter. *****************************************************************************/ static int e1000_check_for_link(struct e1000_hw *hw) { uint32_t rxcw; uint32_t ctrl; uint32_t status; uint32_t rctl; uint32_t signal = 0; int32_t ret_val; uint16_t phy_data; uint16_t lp_capability; DEBUGFUNC("e1000_check_for_link"); /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be * set when the optics detect a signal. On older adapters, it will be * cleared when there is a signal. This applies to fiber media only. */ if(hw->media_type == e1000_media_type_fiber) signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; ctrl = E1000_READ_REG(hw, CTRL); status = E1000_READ_REG(hw, STATUS); rxcw = E1000_READ_REG(hw, RXCW); /* If we have a copper PHY then we only want to go out to the PHY * registers to see if Auto-Neg has completed and/or if our link * status has changed. The get_link_status flag will be set if we * receive a Link Status Change interrupt or we have Rx Sequence * Errors. */ #if 0 if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { #else if(hw->media_type == e1000_media_type_copper) { #endif /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. * Read the register twice since the link bit is sticky. */ if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data))) return ret_val; if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data))) return ret_val; if(phy_data & MII_SR_LINK_STATUS) { #if 0 hw->get_link_status = FALSE; #endif } else { /* No link detected */ return -E1000_ERR_NOLINK; } /* We have a M88E1000 PHY and Auto-Neg is enabled. If we * have Si on board that is 82544 or newer, Auto * Speed Detection takes care of MAC speed/duplex * configuration. So we only need to configure Collision * Distance in the MAC. Otherwise, we need to force * speed/duplex on the MAC to the current PHY speed/duplex * settings. */ if(hw->mac_type >= e1000_82544) e1000_config_collision_dist(hw); else { if((ret_val = e1000_config_mac_to_phy(hw))) { DEBUGOUT("Error configuring MAC to PHY settings\n"); return ret_val; } } /* Configure Flow Control now that Auto-Neg has completed. First, we * need to restore the desired flow control settings because we may * have had to re-autoneg with a different link partner. */ if((ret_val = e1000_config_fc_after_link_up(hw))) { DEBUGOUT("Error configuring flow control\n"); return ret_val; } /* At this point we know that we are on copper and we have * auto-negotiated link. These are conditions for checking the link * parter capability register. We use the link partner capability to * determine if TBI Compatibility needs to be turned on or off. If * the link partner advertises any speed in addition to Gigabit, then * we assume that they are GMII-based, and TBI compatibility is not * needed. If no other speeds are advertised, we assume the link * partner is TBI-based, and we turn on TBI Compatibility. */ if(hw->tbi_compatibility_en) { if((ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &lp_capability))) return ret_val; if(lp_capability & (NWAY_LPAR_10T_HD_CAPS | NWAY_LPAR_10T_FD_CAPS | NWAY_LPAR_100TX_HD_CAPS | NWAY_LPAR_100TX_FD_CAPS | NWAY_LPAR_100T4_CAPS)) { /* If our link partner advertises anything in addition to * gigabit, we do not need to enable TBI compatibility. */ if(hw->tbi_compatibility_on) { /* If we previously were in the mode, turn it off. */ rctl = E1000_READ_REG(hw, RCTL); rctl &= ~E1000_RCTL_SBP; E1000_WRITE_REG(hw, RCTL, rctl); hw->tbi_compatibility_on = FALSE; } } else { /* If TBI compatibility is was previously off, turn it on. For * compatibility with a TBI link partner, we will store bad * packets. Some frames have an additional byte on the end and * will look like CRC errors to to the hardware. */ if(!hw->tbi_compatibility_on) { hw->tbi_compatibility_on = TRUE; rctl = E1000_READ_REG(hw, RCTL); rctl |= E1000_RCTL_SBP; E1000_WRITE_REG(hw, RCTL, rctl); } } } } /* If we don't have link (auto-negotiation failed or link partner cannot * auto-negotiate), the cable is plugged in (we have signal), and our * link partner is not trying to auto-negotiate with us (we are receiving * idles or data), we need to force link up. We also need to give * auto-negotiation time to complete, in case the cable was just plugged * in. The autoneg_failed flag does this. */ else if((((hw->media_type == e1000_media_type_fiber) && ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || (hw->media_type == e1000_media_type_internal_serdes)) && (!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { if(hw->autoneg_failed == 0) { hw->autoneg_failed = 1; return 0; } DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); /* Disable auto-negotiation in the TXCW register */ E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); /* Force link-up and also force full-duplex. */ ctrl = E1000_READ_REG(hw, CTRL); ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); E1000_WRITE_REG(hw, CTRL, ctrl); /* Configure Flow Control after forcing link up. */ if((ret_val = e1000_config_fc_after_link_up(hw))) { DEBUGOUT("Error configuring flow control\n"); return ret_val; } } /* If we are forcing link and we are receiving /C/ ordered sets, re-enable * auto-negotiation in the TXCW register and disable forced link in the * Device Control register in an attempt to auto-negotiate with our link * partner. */ else if(((hw->media_type == e1000_media_type_fiber) || (hw->media_type == e1000_media_type_internal_serdes)) && (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); E1000_WRITE_REG(hw, TXCW, hw->txcw); E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); } #if 0 /* If we force link for non-auto-negotiation switch, check link status * based on MAC synchronization for internal serdes media type. */ else if((hw->media_type == e1000_media_type_internal_serdes) && !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { /* SYNCH bit and IV bit are sticky. */ udelay(10); if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { if(!(rxcw & E1000_RXCW_IV)) { hw->serdes_link_down = FALSE; DEBUGOUT("SERDES: Link is up.\n"); } } else { hw->serdes_link_down = TRUE; DEBUGOUT("SERDES: Link is down.\n"); } } #endif return E1000_SUCCESS; } /****************************************************************************** * Detects the current speed and duplex settings of the hardware. * * hw - Struct containing variables accessed by shared code * speed - Speed of the connection * duplex - Duplex setting of the connection *****************************************************************************/ static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, uint16_t *duplex) { uint32_t status; DEBUGFUNC("e1000_get_speed_and_duplex"); if(hw->mac_type >= e1000_82543) { status = E1000_READ_REG(hw, STATUS); if(status & E1000_STATUS_SPEED_1000) { *speed = SPEED_1000; DEBUGOUT("1000 Mbs, "); } else if(status & E1000_STATUS_SPEED_100) { *speed = SPEED_100; DEBUGOUT("100 Mbs, "); } else { *speed = SPEED_10; DEBUGOUT("10 Mbs, "); } if(status & E1000_STATUS_FD) { *duplex = FULL_DUPLEX; DEBUGOUT("Full Duplex\r\n"); } else { *duplex = HALF_DUPLEX; DEBUGOUT(" Half Duplex\r\n"); } } else { DEBUGOUT("1000 Mbs, Full Duplex\r\n"); *speed = SPEED_1000; *duplex = FULL_DUPLEX; } } /****************************************************************************** * Blocks until autoneg completes or times out (~4.5 seconds) * * hw - Struct containing variables accessed by shared code ******************************************************************************/ static int e1000_wait_autoneg(struct e1000_hw *hw) { int32_t ret_val; uint16_t i; uint16_t phy_data; DEBUGFUNC("e1000_wait_autoneg"); DEBUGOUT("Waiting for Auto-Neg to complete.\n"); /* We will wait for autoneg to complete or 4.5 seconds to expire. */ for(i = PHY_AUTO_NEG_TIME; i > 0; i--) { /* Read the MII Status Register and wait for Auto-Neg * Complete bit to be set. */ if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data))) return ret_val; if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data))) return ret_val; if(phy_data & MII_SR_AUTONEG_COMPLETE) { DEBUGOUT("Auto-Neg complete.\n"); return E1000_SUCCESS; } mdelay(100); } DEBUGOUT("Auto-Neg timedout.\n"); return -E1000_ERR_TIMEOUT; } /****************************************************************************** * Raises the Management Data Clock * * hw - Struct containing variables accessed by shared code * ctrl - Device control register's current value ******************************************************************************/ static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl) { /* Raise the clock input to the Management Data Clock (by setting the MDC * bit), and then delay 10 microseconds. */ E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); E1000_WRITE_FLUSH(hw); udelay(10); } /****************************************************************************** * Lowers the Management Data Clock * * hw - Struct containing variables accessed by shared code * ctrl - Device control register's current value ******************************************************************************/ static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl) { /* Lower the clock input to the Management Data Clock (by clearing the MDC * bit), and then delay 10 microseconds. */ E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); E1000_WRITE_FLUSH(hw); udelay(10); } /****************************************************************************** * Shifts data bits out to the PHY * * hw - Struct containing variables accessed by shared code * data - Data to send out to the PHY * count - Number of bits to shift out * * Bits are shifted out in MSB to LSB order. ******************************************************************************/ static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count) { uint32_t ctrl; uint32_t mask; /* We need to shift "count" number of bits out to the PHY. So, the value * in the "data" parameter will be shifted out to the PHY one bit at a * time. In order to do this, "data" must be broken down into bits. */ mask = 0x01; mask <<= (count - 1); ctrl = E1000_READ_REG(hw, CTRL); /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); while(mask) { /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and * then raising and lowering the Management Data Clock. A "0" is * shifted out to the PHY by setting the MDIO bit to "0" and then * raising and lowering the clock. */ if(data & mask) ctrl |= E1000_CTRL_MDIO; else ctrl &= ~E1000_CTRL_MDIO; E1000_WRITE_REG(hw, CTRL, ctrl); E1000_WRITE_FLUSH(hw); udelay(10); e1000_raise_mdi_clk(hw, &ctrl); e1000_lower_mdi_clk(hw, &ctrl); mask = mask >> 1; } } /****************************************************************************** * Shifts data bits in from the PHY * * hw - Struct containing variables accessed by shared code * * Bits are shifted in in MSB to LSB order. ******************************************************************************/ static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw) { uint32_t ctrl; uint16_t data = 0; uint8_t i; /* In order to read a register from the PHY, we need to shift in a total * of 18 bits from the PHY. The first two bit (turnaround) times are used * to avoid contention on the MDIO pin when a read operation is performed. * These two bits are ignored by us and thrown away. Bits are "shifted in" * by raising the input to the Management Data Clock (setting the MDC bit), * and then reading the value of the MDIO bit. */ ctrl = E1000_READ_REG(hw, CTRL); /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ ctrl &= ~E1000_CTRL_MDIO_DIR; ctrl &= ~E1000_CTRL_MDIO; E1000_WRITE_REG(hw, CTRL, ctrl); E1000_WRITE_FLUSH(hw); /* Raise and Lower the clock before reading in the data. This accounts for * the turnaround bits. The first clock occurred when we clocked out the * last bit of the Register Address. */ e1000_raise_mdi_clk(hw, &ctrl); e1000_lower_mdi_clk(hw, &ctrl); for(data = 0, i = 0; i < 16; i++) { data = data << 1; e1000_raise_mdi_clk(hw, &ctrl); ctrl = E1000_READ_REG(hw, CTRL); /* Check to see if we shifted in a "1". */ if(ctrl & E1000_CTRL_MDIO) data |= 1; e1000_lower_mdi_clk(hw, &ctrl); } e1000_raise_mdi_clk(hw, &ctrl); e1000_lower_mdi_clk(hw, &ctrl); return data; } /***************************************************************************** * Reads the value from a PHY register, if the value is on a specific non zero * page, sets the page first. * * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to read ******************************************************************************/ static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data) { uint32_t ret_val; DEBUGFUNC("e1000_read_phy_reg"); if(hw->phy_type == e1000_phy_igp && (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { if((ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, (uint16_t)reg_addr))) return ret_val; } ret_val = e1000_read_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr, phy_data); return ret_val; } static int e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data) { uint32_t i; uint32_t mdic = 0; const uint32_t phy_addr = 1; DEBUGFUNC("e1000_read_phy_reg_ex"); if(reg_addr > MAX_PHY_REG_ADDRESS) { DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); return -E1000_ERR_PARAM; } if(hw->mac_type > e1000_82543) { /* Set up Op-code, Phy Address, and register address in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | (phy_addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_READ)); E1000_WRITE_REG(hw, MDIC, mdic); /* Poll the ready bit to see if the MDI read completed */ for(i = 0; i < 64; i++) { udelay(50); mdic = E1000_READ_REG(hw, MDIC); if(mdic & E1000_MDIC_READY) break; } if(!(mdic & E1000_MDIC_READY)) { DEBUGOUT("MDI Read did not complete\n"); return -E1000_ERR_PHY; } if(mdic & E1000_MDIC_ERROR) { DEBUGOUT("MDI Error\n"); return -E1000_ERR_PHY; } *phy_data = (uint16_t) mdic; } else { /* We must first send a preamble through the MDIO pin to signal the * beginning of an MII instruction. This is done by sending 32 * consecutive "1" bits. */ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); /* Now combine the next few fields that are required for a read * operation. We use this method instead of calling the * e1000_shift_out_mdi_bits routine five different times. The format of * a MII read instruction consists of a shift out of 14 bits and is * defined as follows: * * followed by a shift in of 18 bits. This first two bits shifted in * are TurnAround bits used to avoid contention on the MDIO pin when a * READ operation is performed. These two bits are thrown away * followed by a shift in of 16 bits which contains the desired data. */ mdic = ((reg_addr) | (phy_addr << 5) | (PHY_OP_READ << 10) | (PHY_SOF << 12)); e1000_shift_out_mdi_bits(hw, mdic, 14); /* Now that we've shifted out the read command to the MII, we need to * "shift in" the 16-bit value (18 total bits) of the requested PHY * register address. */ *phy_data = e1000_shift_in_mdi_bits(hw); } return E1000_SUCCESS; } /****************************************************************************** * Writes a value to a PHY register * * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to write * data - data to write to the PHY ******************************************************************************/ static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) { uint32_t ret_val; DEBUGFUNC("e1000_write_phy_reg"); if(hw->phy_type == e1000_phy_igp && (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { if((ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, (uint16_t)reg_addr))) return ret_val; } ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr, phy_data); return ret_val; } static int e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) { uint32_t i; uint32_t mdic = 0; const uint32_t phy_addr = 1; DEBUGFUNC("e1000_write_phy_reg_ex"); if(reg_addr > MAX_PHY_REG_ADDRESS) { DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); return -E1000_ERR_PARAM; } if(hw->mac_type > e1000_82543) { /* Set up Op-code, Phy Address, register address, and data intended * for the PHY register in the MDI Control register. The MAC will take * care of interfacing with the PHY to send the desired data. */ mdic = (((uint32_t) phy_data) | (reg_addr << E1000_MDIC_REG_SHIFT) | (phy_addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_WRITE)); E1000_WRITE_REG(hw, MDIC, mdic); /* Poll the ready bit to see if the MDI read completed */ for(i = 0; i < 640; i++) { udelay(5); mdic = E1000_READ_REG(hw, MDIC); if(mdic & E1000_MDIC_READY) break; } if(!(mdic & E1000_MDIC_READY)) { DEBUGOUT("MDI Write did not complete\n"); return -E1000_ERR_PHY; } } else { /* We'll need to use the SW defined pins to shift the write command * out to the PHY. We first send a preamble to the PHY to signal the * beginning of the MII instruction. This is done by sending 32 * consecutive "1" bits. */ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); /* Now combine the remaining required fields that will indicate a * write operation. We use this method instead of calling the * e1000_shift_out_mdi_bits routine for each field in the command. The * format of a MII write instruction is as follows: * . */ mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); mdic <<= 16; mdic |= (uint32_t) phy_data; e1000_shift_out_mdi_bits(hw, mdic, 32); } return E1000_SUCCESS; } /****************************************************************************** * Returns the PHY to the power-on reset state * * hw - Struct containing variables accessed by shared code ******************************************************************************/ static void e1000_phy_hw_reset(struct e1000_hw *hw) { uint32_t ctrl, ctrl_ext; DEBUGFUNC("e1000_phy_hw_reset"); DEBUGOUT("Resetting Phy...\n"); if(hw->mac_type > e1000_82543) { /* Read the device control register and assert the E1000_CTRL_PHY_RST * bit. Then, take it out of reset. */ ctrl = E1000_READ_REG(hw, CTRL); E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); E1000_WRITE_FLUSH(hw); mdelay(10); E1000_WRITE_REG(hw, CTRL, ctrl); E1000_WRITE_FLUSH(hw); } else { /* Read the Extended Device Control Register, assert the PHY_RESET_DIR * bit to put the PHY into reset. Then, take it out of reset. */ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); mdelay(10); ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); } udelay(150); } /****************************************************************************** * Resets the PHY * * hw - Struct containing variables accessed by shared code * * Sets bit 15 of the MII Control regiser ******************************************************************************/ static int e1000_phy_reset(struct e1000_hw *hw) { int32_t ret_val; uint16_t phy_data; DEBUGFUNC("e1000_phy_reset"); if(hw->mac_type != e1000_82541_rev_2) { if((ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data))) return ret_val; phy_data |= MII_CR_RESET; if((ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data))) return ret_val; udelay(1); } else e1000_phy_hw_reset(hw); if(hw->phy_type == e1000_phy_igp) e1000_phy_init_script(hw); return E1000_SUCCESS; } /****************************************************************************** * Probes the expected PHY address for known PHY IDs * * hw - Struct containing variables accessed by shared code ******************************************************************************/ static int e1000_detect_gig_phy(struct e1000_hw *hw) { int32_t phy_init_status, ret_val; uint16_t phy_id_high, phy_id_low; boolean_t match = FALSE; DEBUGFUNC("e1000_detect_gig_phy"); /* Read the PHY ID Registers to identify which PHY is onboard. */ if((ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high))) return ret_val; hw->phy_id = (uint32_t) (phy_id_high << 16); udelay(20); if((ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low))) return ret_val; hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); #ifdef LINUX_DRIVER hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; #endif switch(hw->mac_type) { case e1000_82543: if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; break; case e1000_82544: if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; break; case e1000_82540: case e1000_82545: case e1000_82545_rev_3: case e1000_82546: case e1000_82546_rev_3: if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; break; case e1000_82541: case e1000_82541_rev_2: case e1000_82547: case e1000_82547_rev_2: if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; break; default: DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); return -E1000_ERR_CONFIG; } phy_init_status = e1000_set_phy_type(hw); if ((match) && (phy_init_status == E1000_SUCCESS)) { DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); return E1000_SUCCESS; } DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); return -E1000_ERR_PHY; } /****************************************************************************** * Sets up eeprom variables in the hw struct. Must be called after mac_type * is configured. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void e1000_init_eeprom_params(struct e1000_hw *hw) { struct e1000_eeprom_info *eeprom = &hw->eeprom; uint32_t eecd = E1000_READ_REG(hw, EECD); uint16_t eeprom_size; DEBUGFUNC("e1000_init_eeprom_params"); switch (hw->mac_type) { case e1000_82542_rev2_0: case e1000_82542_rev2_1: case e1000_82543: case e1000_82544: eeprom->type = e1000_eeprom_microwire; eeprom->word_size = 64; eeprom->opcode_bits = 3; eeprom->address_bits = 6; eeprom->delay_usec = 50; break; case e1000_82540: case e1000_82545: case e1000_82545_rev_3: case e1000_82546: case e1000_82546_rev_3: eeprom->type = e1000_eeprom_microwire; eeprom->opcode_bits = 3; eeprom->delay_usec = 50; if(eecd & E1000_EECD_SIZE) { eeprom->word_size = 256; eeprom->address_bits = 8; } else { eeprom->word_size = 64; eeprom->address_bits = 6; } break; case e1000_82541: case e1000_82541_rev_2: case e1000_82547: case e1000_82547_rev_2: if (eecd & E1000_EECD_TYPE) { eeprom->type = e1000_eeprom_spi; if (eecd & E1000_EECD_ADDR_BITS) { eeprom->page_size = 32; eeprom->address_bits = 16; } else { eeprom->page_size = 8; eeprom->address_bits = 8; } } else { eeprom->type = e1000_eeprom_microwire; eeprom->opcode_bits = 3; eeprom->delay_usec = 50; if (eecd & E1000_EECD_ADDR_BITS) { eeprom->word_size = 256; eeprom->address_bits = 8; } else { eeprom->word_size = 64; eeprom->address_bits = 6; } } break; default: eeprom->type = e1000_eeprom_spi; if (eecd & E1000_EECD_ADDR_BITS) { eeprom->page_size = 32; eeprom->address_bits = 16; } else { eeprom->page_size = 8; eeprom->address_bits = 8; } break; } if (eeprom->type == e1000_eeprom_spi) { eeprom->opcode_bits = 8; eeprom->delay_usec = 1; eeprom->word_size = 64; if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) { eeprom_size &= EEPROM_SIZE_MASK; switch (eeprom_size) { case EEPROM_SIZE_16KB: eeprom->word_size = 8192; break; case EEPROM_SIZE_8KB: eeprom->word_size = 4096; break; case EEPROM_SIZE_4KB: eeprom->word_size = 2048; break; case EEPROM_SIZE_2KB: eeprom->word_size = 1024; break; case EEPROM_SIZE_1KB: eeprom->word_size = 512; break; case EEPROM_SIZE_512B: eeprom->word_size = 256; break; case EEPROM_SIZE_128B: default: break; } } } } /** * e1000_reset - Reset the adapter */ static int e1000_reset(struct e1000_hw *hw) { uint32_t pba; /* Repartition Pba for greater than 9k mtu * To take effect CTRL.RST is required. */ if(hw->mac_type < e1000_82547) { pba = E1000_PBA_48K; } else { pba = E1000_PBA_30K; } E1000_WRITE_REG(hw, PBA, pba); /* flow control settings */ #if 0 hw->fc_high_water = FC_DEFAULT_HI_THRESH; hw->fc_low_water = FC_DEFAULT_LO_THRESH; hw->fc_pause_time = FC_DEFAULT_TX_TIMER; hw->fc_send_xon = 1; hw->fc = hw->original_fc; #endif e1000_reset_hw(hw); if(hw->mac_type >= e1000_82544) E1000_WRITE_REG(hw, WUC, 0); return e1000_init_hw(hw); } /** * e1000_sw_init - Initialize general software structures (struct e1000_adapter) * @adapter: board private structure to initialize * * e1000_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). **/ static int e1000_sw_init(struct pci_device *pdev, struct e1000_hw *hw) { int result; /* PCI config space info */ pci_read_config_word(pdev, PCI_VENDOR_ID, &hw->vendor_id); pci_read_config_word(pdev, PCI_DEVICE_ID, &hw->device_id); pci_read_config_byte(pdev, PCI_REVISION, &hw->revision_id); #if 0 pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &hw->subsystem_vendor_id); pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id); #endif pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); /* identify the MAC */ result = e1000_set_mac_type(hw); if (result) { E1000_ERR("Unknown MAC Type\n"); return result; } /* initialize eeprom parameters */ e1000_init_eeprom_params(hw); #if 0 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547) || (hw->mac_type == e1000_82541_rev_2) || (hw->mac_type == e1000_82547_rev_2)) hw->phy_init_script = 1; #endif e1000_set_media_type(hw); #if 0 if(hw->mac_type < e1000_82543) hw->report_tx_early = 0; else hw->report_tx_early = 1; hw->wait_autoneg_complete = FALSE; #endif hw->tbi_compatibility_en = TRUE; #if 0 hw->adaptive_ifs = TRUE; /* Copper options */ if(hw->media_type == e1000_media_type_copper) { hw->mdix = AUTO_ALL_MODES; hw->disable_polarity_correction = FALSE; hw->master_slave = E1000_MASTER_SLAVE; } #endif return E1000_SUCCESS; } static void fill_rx (void) { struct e1000_rx_desc *rd; rx_last = rx_tail; rd = rx_base + rx_tail; rx_tail = (rx_tail + 1) % 8; memset (rd, 0, 16); rd->buffer_addr = virt_to_bus(&packet); E1000_WRITE_REG (&hw, RDT, rx_tail); } static void init_descriptor (void) { unsigned long ptr; unsigned long tctl; ptr = virt_to_phys(tx_pool); if (ptr & 0xf) ptr = (ptr + 0x10) & (~0xf); tx_base = phys_to_virt(ptr); E1000_WRITE_REG (&hw, TDBAL, virt_to_bus(tx_base)); E1000_WRITE_REG (&hw, TDBAH, 0); E1000_WRITE_REG (&hw, TDLEN, 128); /* Setup the HW Tx Head and Tail descriptor pointers */ E1000_WRITE_REG (&hw, TDH, 0); E1000_WRITE_REG (&hw, TDT, 0); tx_tail = 0; /* Program the Transmit Control Register */ #ifdef LINUX_DRIVER_TCTL tctl = E1000_READ_REG(&hw, TCTL); tctl &= ~E1000_TCTL_CT; tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); #else tctl = E1000_TCTL_PSP | E1000_TCTL_EN | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) | (E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); #endif E1000_WRITE_REG (&hw, TCTL, tctl); e1000_config_collision_dist(&hw); rx_tail = 0; /* disable receive */ E1000_WRITE_REG (&hw, RCTL, 0); ptr = virt_to_phys(rx_pool); if (ptr & 0xf) ptr = (ptr + 0x10) & (~0xf); rx_base = phys_to_virt(ptr); /* Setup the Base and Length of the Rx Descriptor Ring */ E1000_WRITE_REG (&hw, RDBAL, virt_to_bus(rx_base)); E1000_WRITE_REG (&hw, RDBAH, 0); E1000_WRITE_REG (&hw, RDLEN, 128); /* Setup the HW Rx Head and Tail Descriptor Pointers */ E1000_WRITE_REG (&hw, RDH, 0); E1000_WRITE_REG (&hw, RDT, 0); E1000_WRITE_REG (&hw, RCTL, E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | E1000_RCTL_MPE); fill_rx(); } /************************************************************************** POLL - Wait for a frame ***************************************************************************/ static int e1000_poll (struct nic *nic, int retrieve) { /* return true if there's an ethernet packet ready to read */ /* nic->packet should contain data on return */ /* nic->packetlen should contain length of data */ struct e1000_rx_desc *rd; rd = rx_base + rx_last; if (!rd->status & E1000_RXD_STAT_DD) return 0; if ( ! retrieve ) return 1; // printf("recv: packet %! -> %! len=%d \n", packet+6, packet,rd->Length); memcpy (nic->packet, packet, rd->length); nic->packetlen = rd->length; fill_rx (); return 1; } /************************************************************************** TRANSMIT - Transmit a frame ***************************************************************************/ static void e1000_transmit (struct nic *nic, const char *d, /* Destination */ unsigned int type, /* Type */ unsigned int size, /* size */ const char *p) /* Packet */ { /* send the packet to destination */ struct eth_hdr { unsigned char dst_addr[ETH_ALEN]; unsigned char src_addr[ETH_ALEN]; unsigned short type; } hdr; struct e1000_tx_desc *txhd; /* header */ struct e1000_tx_desc *txp; /* payload */ DEBUGFUNC("send"); memcpy (&hdr.dst_addr, d, ETH_ALEN); memcpy (&hdr.src_addr, nic->node_addr, ETH_ALEN); hdr.type = htons (type); txhd = tx_base + tx_tail; tx_tail = (tx_tail + 1) % 8; txp = tx_base + tx_tail; tx_tail = (tx_tail + 1) % 8; txhd->buffer_addr = virt_to_bus (&hdr); txhd->lower.data = sizeof (hdr); txhd->upper.data = 0; txp->buffer_addr = virt_to_bus(p); txp->lower.data = E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS | size; txp->upper.data = 0; E1000_WRITE_REG (&hw, TDT, tx_tail); while (!(txp->upper.data & E1000_TXD_STAT_DD)) { udelay(10); /* give the nic a chance to write to the register */ poll_interruptions(); } DEBUGFUNC("send end"); } /************************************************************************** DISABLE - Turn off ethernet interface ***************************************************************************/ static void e1000_disable (struct dev *dev __unused) { /* Clear the transmit ring */ E1000_WRITE_REG (&hw, TDH, 0); E1000_WRITE_REG (&hw, TDT, 0); /* Clear the receive ring */ E1000_WRITE_REG (&hw, RDH, 0); E1000_WRITE_REG (&hw, RDT, 0); /* put the card in its initial state */ E1000_WRITE_REG (&hw, CTRL, E1000_CTRL_RST); /* Turn off the ethernet interface */ E1000_WRITE_REG (&hw, RCTL, 0); E1000_WRITE_REG (&hw, TCTL, 0); mdelay (10); /* Unmap my window to the device */ iounmap(hw.hw_addr); } /************************************************************************** IRQ - Enable, Disable, or Force interrupts ***************************************************************************/ static void e1000_irq(struct nic *nic __unused, irq_action_t action __unused) { switch ( action ) { case DISABLE : break; case ENABLE : break; case FORCE : break; } } #define IORESOURCE_IO 0x00000100 /* Resource type */ #define BAR_0 0 #define BAR_1 1 #define BAR_5 5 /************************************************************************** PROBE - Look for an adapter, this routine's visible to the outside You should omit the last argument struct pci_device * for a non-PCI NIC ***************************************************************************/ static int e1000_probe(struct dev *dev, struct pci_device *p) { struct nic *nic = (struct nic *)dev; unsigned long mmio_start, mmio_len; int ret_val, i; if (p == 0) return 0; /* Initialize hw with default values */ memset(&hw, 0, sizeof(hw)); hw.pdev = p; #if 1 /* Are these variables needed? */ hw.fc = e1000_fc_none; #if 0 hw.original_fc = e1000_fc_none; #endif hw.autoneg_failed = 0; #if 0 hw.get_link_status = TRUE; #endif #endif mmio_start = pci_bar_start(p, PCI_BASE_ADDRESS_0); mmio_len = pci_bar_size(p, PCI_BASE_ADDRESS_0); hw.hw_addr = ioremap(mmio_start, mmio_len); for(i = BAR_1; i <= BAR_5; i++) { if(pci_bar_size(p, i) == 0) continue; if(pci_find_capability(p, i) & IORESOURCE_IO) { hw.io_base = pci_bar_start(p, i); break; } } adjust_pci_device(p); nic->ioaddr = p->ioaddr & ~3; nic->irqno = 0; /* From Matt Hortman */ /* MAC and Phy settings */ /* setup the private structure */ if (e1000_sw_init(p, &hw) < 0) { iounmap(hw.hw_addr); return 0; } /* make sure the EEPROM is good */ if (e1000_validate_eeprom_checksum(&hw) < 0) { printf ("The EEPROM Checksum Is Not Valid\n"); iounmap(hw.hw_addr); return 0; } /* copy the MAC address out of the EEPROM */ e1000_read_mac_addr(&hw); memcpy (nic->node_addr, hw.mac_addr, ETH_ALEN); printf("Ethernet addr: %!\n", nic->node_addr); /* reset the hardware with the new settings */ ret_val = e1000_reset(&hw); if (ret_val < 0) { if ((ret_val == -E1000_ERR_NOLINK) || (ret_val == -E1000_ERR_TIMEOUT)) { E1000_ERR("Valid Link not detected\n"); } else { E1000_ERR("Hardware Initialization Failed\n"); } iounmap(hw.hw_addr); return 0; } init_descriptor(); /* point to NIC specific routines */ dev->disable = e1000_disable; nic->poll = e1000_poll; nic->transmit = e1000_transmit; nic->irq = e1000_irq; return 1; } static struct pci_id e1000_nics[] = { PCI_ROM(0x8086, 0x1000, "e1000-82542", "Intel EtherExpressPro1000"), PCI_ROM(0x8086, 0x1001, "e1000-82543gc-fiber", "Intel EtherExpressPro1000 82543GC Fiber"), PCI_ROM(0x8086, 0x1004, "e1000-82543gc-copper", "Intel EtherExpressPro1000 82543GC Copper"), PCI_ROM(0x8086, 0x1008, "e1000-82544ei-copper", "Intel EtherExpressPro1000 82544EI Copper"), PCI_ROM(0x8086, 0x1009, "e1000-82544ei-fiber", "Intel EtherExpressPro1000 82544EI Fiber"), PCI_ROM(0x8086, 0x100C, "e1000-82544gc-copper", "Intel EtherExpressPro1000 82544GC Copper"), PCI_ROM(0x8086, 0x100D, "e1000-82544gc-lom", "Intel EtherExpressPro1000 82544GC LOM"), PCI_ROM(0x8086, 0x100E, "e1000-82540em", "Intel EtherExpressPro1000 82540EM"), PCI_ROM(0x8086, 0x100F, "e1000-82545em-copper", "Intel EtherExpressPro1000 82545EM Copper"), PCI_ROM(0x8086, 0x1010, "e1000-82546eb-copper", "Intel EtherExpressPro1000 82546EB Copper"), PCI_ROM(0x8086, 0x1011, "e1000-82545em-fiber", "Intel EtherExpressPro1000 82545EM Fiber"), PCI_ROM(0x8086, 0x1012, "e1000-82546eb-fiber", "Intel EtherExpressPro1000 82546EB Copper"), PCI_ROM(0x8086, 0x1013, "e1000-82541ei", "Intel EtherExpressPro1000 82541EI"), PCI_ROM(0x8086, 0x1015, "e1000-82540em-lom", "Intel EtherExpressPro1000 82540EM LOM"), PCI_ROM(0x8086, 0x1016, "e1000-82540ep-lom", "Intel EtherExpressPro1000 82540EP LOM"), PCI_ROM(0x8086, 0x1017, "e1000-82540ep", "Intel EtherExpressPro1000 82540EP"), PCI_ROM(0x8086, 0x1018, "e1000-82541ep", "Intel EtherExpressPro1000 82541EP"), PCI_ROM(0x8086, 0x1019, "e1000-82547ei", "Intel EtherExpressPro1000 82547EI"), PCI_ROM(0x8086, 0x101d, "e1000-82546eb-quad-copper", "Intel EtherExpressPro1000 82546EB Quad Copper"), PCI_ROM(0x8086, 0x101e, "e1000-82540ep-lp", "Intel EtherExpressPro1000 82540EP LP"), PCI_ROM(0x8086, 0x1026, "e1000-82545gm-copper", "Intel EtherExpressPro1000 82545GM Copper"), PCI_ROM(0x8086, 0x1027, "e1000-82545gm-fiber", "Intel EtherExpressPro1000 82545GM Fiber"), PCI_ROM(0x8086, 0x1028, "e1000-82545gm-serdes", "Intel EtherExpressPro1000 82545GM SERDES"), PCI_ROM(0x8086, 0x1075, "e1000-82547gi", "Intel EtherExpressPro1000 82547GI"), PCI_ROM(0x8086, 0x1076, "e1000-82541gi", "Intel EtherExpressPro1000 82541GI"), PCI_ROM(0x8086, 0x1077, "e1000-82541gi-mobile", "Intel EtherExpressPro1000 82541GI Mobile"), PCI_ROM(0x8086, 0x1078, "e1000-82541er", "Intel EtherExpressPro1000 82541ER"), PCI_ROM(0x8086, 0x1079, "e1000-82546gb-copper", "Intel EtherExpressPro1000 82546GB Copper"), PCI_ROM(0x8086, 0x107a, "e1000-82546gb-fiber", "Intel EtherExpressPro1000 82546GB Fiber"), PCI_ROM(0x8086, 0x107b, "e1000-82546gb-serdes", "Intel EtherExpressPro1000 82546GB SERDES"), }; struct pci_driver e1000_driver = { .type = NIC_DRIVER, .name = "E1000", .probe = e1000_probe, .ids = e1000_nics, .id_count = sizeof(e1000_nics)/sizeof(e1000_nics[0]), .class = 0, };