/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright 2019, Joyent, Inc. */ #include #include /* * Compare the given input string and length against a table of known C storage * qualifier keywords. We just ignore these in ctf_lookup_by_name, below. To * do this quickly, we use a pre-computed Perfect Hash Function similar to the * technique originally described in the classic paper: * * R.J. Cichelli, "Minimal Perfect Hash Functions Made Simple", * Communications of the ACM, Volume 23, Issue 1, January 1980, pp. 17-19. * * For an input string S of length N, we use hash H = S[N - 1] + N - 105, which * for the current set of qualifiers yields a unique H in the range [0 .. 20]. * The hash can be modified when the keyword set changes as necessary. We also * store the length of each keyword and check it prior to the final strcmp(). */ static int isqualifier(const char *s, size_t len) { static const struct qual { const char *q_name; size_t q_len; } qhash[] = { { "static", 6 }, { "", 0 }, { "", 0 }, { "", 0 }, { "volatile", 8 }, { "", 0 }, { "", 0 }, { "", 0 }, { "", 0 }, { "", 0 }, { "auto", 4 }, { "extern", 6 }, { "", 0 }, { "", 0 }, { "", 0 }, { "", 0 }, { "const", 5 }, { "register", 8 }, { "", 0 }, { "restrict", 8 }, { "_Restrict", 9 } }; int h = s[len - 1] + (int)len - 105; const struct qual *qp = &qhash[h]; return (h >= 0 && h < sizeof (qhash) / sizeof (qhash[0]) && len == qp->q_len && strncmp(qp->q_name, s, qp->q_len) == 0); } /* * Attempt to convert the given C type name into the corresponding CTF type ID. * It is not possible to do complete and proper conversion of type names * without implementing a more full-fledged parser, which is necessary to * handle things like types that are function pointers to functions that * have arguments that are function pointers, and fun stuff like that. * Instead, this function implements a very simple conversion algorithm that * finds the things that we actually care about: structs, unions, enums, * integers, floats, typedefs, and pointers to any of these named types. */ ctf_id_t ctf_lookup_by_name(ctf_file_t *fp, const char *name) { static const char delimiters[] = " \t\n\r\v\f*"; const ctf_lookup_t *lp; const ctf_helem_t *hp; const char *p, *q, *end; ctf_id_t type = 0; ctf_id_t ntype, ptype; if (name == NULL) return (ctf_set_errno(fp, EINVAL)); for (p = name, end = name + strlen(name); *p != '\0'; p = q) { while (isspace(*p)) p++; /* skip leading ws */ if (p == end) break; if ((q = strpbrk(p + 1, delimiters)) == NULL) q = end; /* compare until end */ if (*p == '*') { /* * Find a pointer to type by looking in fp->ctf_ptrtab. * If we can't find a pointer to the given type, see if * we can compute a pointer to the type resulting from * resolving the type down to its base type and use * that instead. This helps with cases where the CTF * data includes "struct foo *" but not "foo_t *" and * the user tries to access "foo_t *" in the debugger. */ ntype = fp->ctf_ptrtab[CTF_TYPE_TO_INDEX(type)]; if (ntype == 0) { ntype = ctf_type_resolve(fp, type); if (ntype == CTF_ERR || (ntype = fp->ctf_ptrtab[ CTF_TYPE_TO_INDEX(ntype)]) == 0) { (void) ctf_set_errno(fp, ECTF_NOTYPE); goto err; } } type = CTF_INDEX_TO_TYPE(ntype, (fp->ctf_flags & LCTF_CHILD)); q = p + 1; continue; } if (isqualifier(p, (size_t)(q - p))) continue; /* skip qualifier keyword */ for (lp = fp->ctf_lookups; lp->ctl_prefix != NULL; lp++) { if (lp->ctl_prefix[0] == '\0' || ((size_t)(q - p) >= lp->ctl_len && strncmp(p, lp->ctl_prefix, (size_t)(q - p)) == 0)) { for (p += lp->ctl_len; isspace(*p); p++) continue; /* skip prefix and next ws */ if ((q = strchr(p, '*')) == NULL) q = end; /* compare until end */ while (isspace(q[-1])) q--; /* exclude trailing ws */ if ((hp = ctf_hash_lookup(lp->ctl_hash, fp, p, (size_t)(q - p))) == NULL) { (void) ctf_set_errno(fp, ECTF_NOTYPE); goto err; } type = hp->h_type; break; } } if (lp->ctl_prefix == NULL) { (void) ctf_set_errno(fp, ECTF_NOTYPE); goto err; } } if (*p != '\0' || type == 0) return (ctf_set_errno(fp, ECTF_SYNTAX)); return (type); err: if (fp->ctf_parent != NULL && (ptype = ctf_lookup_by_name(fp->ctf_parent, name)) != CTF_ERR) return (ptype); return (CTF_ERR); } /* * Given a symbol table index, return the type of the data object described * by the corresponding entry in the symbol table. */ ctf_id_t ctf_lookup_by_symbol(ctf_file_t *fp, ulong_t symidx) { const ctf_sect_t *sp = &fp->ctf_symtab; ctf_id_t type; if (sp->cts_data == NULL) return (ctf_set_errno(fp, ECTF_NOSYMTAB)); if (symidx >= fp->ctf_nsyms) return (ctf_set_errno(fp, EINVAL)); if (sp->cts_entsize == sizeof (Elf32_Sym)) { const Elf32_Sym *symp = (Elf32_Sym *)sp->cts_data + symidx; if (ELF32_ST_TYPE(symp->st_info) != STT_OBJECT) return (ctf_set_errno(fp, ECTF_NOTDATA)); } else { const Elf64_Sym *symp = (Elf64_Sym *)sp->cts_data + symidx; if (ELF64_ST_TYPE(symp->st_info) != STT_OBJECT) return (ctf_set_errno(fp, ECTF_NOTDATA)); } if (fp->ctf_sxlate[symidx] == -1u) return (ctf_set_errno(fp, ECTF_NOTYPEDAT)); type = *(ushort_t *)((uintptr_t)fp->ctf_buf + fp->ctf_sxlate[symidx]); if (type == 0) return (ctf_set_errno(fp, ECTF_NOTYPEDAT)); return (type); } /* * Return the pointer to the internal CTF type data corresponding to the * given type ID. If the ID is invalid, the function returns NULL. * This function is not exported outside of the library. */ const ctf_type_t * ctf_lookup_by_id(ctf_file_t **fpp, ctf_id_t type) { ctf_file_t *fp = *fpp; /* caller passes in starting CTF container */ if ((fp->ctf_flags & LCTF_CHILD) && CTF_TYPE_ISPARENT(type) && (fp = fp->ctf_parent) == NULL) { (void) ctf_set_errno(*fpp, ECTF_NOPARENT); return (NULL); } type = CTF_TYPE_TO_INDEX(type); if (type > 0 && type <= fp->ctf_typemax) { *fpp = fp; /* function returns ending CTF container */ return (LCTF_INDEX_TO_TYPEPTR(fp, type)); } (void) ctf_set_errno(fp, ECTF_BADID); return (NULL); } /* * Given a symbol table index, return the info for the function described * by the corresponding entry in the symbol table. */ int ctf_func_info(ctf_file_t *fp, ulong_t symidx, ctf_funcinfo_t *fip) { const ctf_sect_t *sp = &fp->ctf_symtab; const ushort_t *dp; ushort_t info, kind, n; if (sp->cts_data == NULL) return (ctf_set_errno(fp, ECTF_NOSYMTAB)); if (symidx >= fp->ctf_nsyms) return (ctf_set_errno(fp, EINVAL)); if (sp->cts_entsize == sizeof (Elf32_Sym)) { const Elf32_Sym *symp = (Elf32_Sym *)sp->cts_data + symidx; if (ELF32_ST_TYPE(symp->st_info) != STT_FUNC) return (ctf_set_errno(fp, ECTF_NOTFUNC)); } else { const Elf64_Sym *symp = (Elf64_Sym *)sp->cts_data + symidx; if (ELF64_ST_TYPE(symp->st_info) != STT_FUNC) return (ctf_set_errno(fp, ECTF_NOTFUNC)); } if (fp->ctf_sxlate[symidx] == -1u) return (ctf_set_errno(fp, ECTF_NOFUNCDAT)); dp = (ushort_t *)((uintptr_t)fp->ctf_buf + fp->ctf_sxlate[symidx]); info = *dp++; kind = LCTF_INFO_KIND(fp, info); n = LCTF_INFO_VLEN(fp, info); if (kind == CTF_K_UNKNOWN && n == 0) return (ctf_set_errno(fp, ECTF_NOFUNCDAT)); if (kind != CTF_K_FUNCTION) return (ctf_set_errno(fp, ECTF_CORRUPT)); fip->ctc_return = *dp++; fip->ctc_argc = n; fip->ctc_flags = 0; if (n != 0 && dp[n - 1] == 0) { fip->ctc_flags |= CTF_FUNC_VARARG; fip->ctc_argc--; } return (0); } /* * Given a symbol table index, return the arguments for the function described * by the corresponding entry in the symbol table. */ int ctf_func_args(ctf_file_t *fp, ulong_t symidx, uint_t argc, ctf_id_t *argv) { const ushort_t *dp; ctf_funcinfo_t f; if (ctf_func_info(fp, symidx, &f) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ /* * The argument data is two ushort_t's past the translation table * offset: one for the function info, and one for the return type. */ dp = (ushort_t *)((uintptr_t)fp->ctf_buf + fp->ctf_sxlate[symidx]) + 2; for (argc = MIN(argc, f.ctc_argc); argc != 0; argc--) *argv++ = *dp++; return (0); } /* * Unlike the normal lookup routines, ctf_dyn_*() variants consult both the * processed CTF contents of a ctf_file_t as well as the dynamic types in the * dtdef list. */ const ctf_type_t * ctf_dyn_lookup_by_id(ctf_file_t *fp, ctf_id_t id) { ctf_file_t **fpp = &fp; const ctf_type_t *t; ctf_dtdef_t *dtd; if ((t = ctf_lookup_by_id(fpp, id)) != NULL) return (t); if ((dtd = ctf_dtd_lookup(fp, id)) == NULL) return (NULL); return (&dtd->dtd_data); } int ctf_dyn_array_info(ctf_file_t *infp, ctf_id_t id, ctf_arinfo_t *arinfop) { ctf_file_t *fp = infp; const ctf_type_t *t; ctf_dtdef_t *dtd; if ((t = ctf_lookup_by_id(&fp, id)) != NULL) { if (LCTF_INFO_KIND(fp, t->ctt_info) != CTF_K_ARRAY) return (ctf_set_errno(infp, ECTF_NOTARRAY)); return (ctf_array_info(fp, id, arinfop)); } if ((dtd = ctf_dtd_lookup(fp, id)) == NULL) return (ctf_set_errno(infp, ENOENT)); if (LCTF_INFO_KIND(fp, dtd->dtd_data.ctt_info) != CTF_K_ARRAY) return (ctf_set_errno(infp, ECTF_NOTARRAY)); bcopy(&dtd->dtd_u.dtu_arr, arinfop, sizeof (*arinfop)); return (0); }