/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright 2020 Joyent, Inc. * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. */ #include #include #include #include #include /* * SSIZE_MAX is not available in the kernel, so we define it here rather than * accidentally inject into headers where it's not wanted. */ #ifndef SSIZE_MAX #define SSIZE_MAX (LONG_MAX) #endif /* * This static string is used as the template for initially populating a * dynamic container's string table. We always store \0 in the first byte, * and we use the generic string "PARENT" to mark this container's parent * if one is associated with the container using ctf_import(). */ static const char _CTF_STRTAB_TEMPLATE[] = "\0PARENT"; /* * To create an empty CTF container, we just declare a zeroed header and call * ctf_bufopen() on it. If ctf_bufopen succeeds, we mark the new container r/w * and initialize the dynamic members. We set dtstrlen to 1 to reserve the * first byte of the string table for a \0 byte, and we start assigning type * IDs at 1 because type ID 0 is used as a sentinel. */ ctf_file_t * ctf_create(int *errp) { static const ctf_header_t hdr = { { CTF_MAGIC, CTF_VERSION, 0 } }; const ulong_t hashlen = 128; ctf_dtdef_t **hash = ctf_alloc(hashlen * sizeof (ctf_dtdef_t *)); ctf_sect_t cts; ctf_file_t *fp; if (hash == NULL) return (ctf_set_open_errno(errp, EAGAIN)); cts.cts_name = _CTF_SECTION; cts.cts_type = SHT_PROGBITS; cts.cts_flags = 0; cts.cts_data = &hdr; cts.cts_size = sizeof (hdr); cts.cts_entsize = 1; cts.cts_offset = 0; if ((fp = ctf_bufopen(&cts, NULL, NULL, errp)) == NULL) { ctf_free(hash, hashlen * sizeof (ctf_dtdef_t *)); return (NULL); } fp->ctf_flags |= LCTF_RDWR; fp->ctf_dthashlen = hashlen; bzero(hash, hashlen * sizeof (ctf_dtdef_t *)); fp->ctf_dthash = hash; fp->ctf_dtstrlen = sizeof (_CTF_STRTAB_TEMPLATE); fp->ctf_dtnextid = 1; fp->ctf_dtoldid = 0; return (fp); } ctf_file_t * ctf_fdcreate(int fd, int *errp) { ctf_file_t *fp; static const ctf_header_t hdr = { { CTF_MAGIC, CTF_VERSION, 0 } }; const ulong_t hashlen = 128; ctf_dtdef_t **hash; ctf_sect_t cts; if (fd == -1) return (ctf_create(errp)); hash = ctf_alloc(hashlen * sizeof (ctf_dtdef_t *)); if (hash == NULL) return (ctf_set_open_errno(errp, EAGAIN)); cts.cts_name = _CTF_SECTION; cts.cts_type = SHT_PROGBITS; cts.cts_flags = 0; cts.cts_data = &hdr; cts.cts_size = sizeof (hdr); cts.cts_entsize = 1; cts.cts_offset = 0; if ((fp = ctf_fdcreate_int(fd, errp, &cts)) == NULL) { ctf_free(hash, hashlen * sizeof (ctf_dtdef_t *)); return (NULL); } fp->ctf_flags |= LCTF_RDWR; fp->ctf_dthashlen = hashlen; bzero(hash, hashlen * sizeof (ctf_dtdef_t *)); fp->ctf_dthash = hash; fp->ctf_dtstrlen = sizeof (_CTF_STRTAB_TEMPLATE); fp->ctf_dtnextid = 1; fp->ctf_dtoldid = 0; return (fp); } static uchar_t * ctf_copy_smembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t) { ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); ctf_member_t ctm; for (; dmd != NULL; dmd = ctf_list_next(dmd)) { if (dmd->dmd_name) { ctm.ctm_name = soff; soff += strlen(dmd->dmd_name) + 1; } else ctm.ctm_name = 0; ctm.ctm_type = (ushort_t)dmd->dmd_type; ctm.ctm_offset = (ushort_t)dmd->dmd_offset; bcopy(&ctm, t, sizeof (ctm)); t += sizeof (ctm); } return (t); } static uchar_t * ctf_copy_lmembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t) { ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); ctf_lmember_t ctlm; for (; dmd != NULL; dmd = ctf_list_next(dmd)) { if (dmd->dmd_name) { ctlm.ctlm_name = soff; soff += strlen(dmd->dmd_name) + 1; } else ctlm.ctlm_name = 0; ctlm.ctlm_type = (ushort_t)dmd->dmd_type; ctlm.ctlm_pad = 0; ctlm.ctlm_offsethi = CTF_OFFSET_TO_LMEMHI(dmd->dmd_offset); ctlm.ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO(dmd->dmd_offset); bcopy(&ctlm, t, sizeof (ctlm)); t += sizeof (ctlm); } return (t); } static uchar_t * ctf_copy_emembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t) { ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); ctf_enum_t cte; for (; dmd != NULL; dmd = ctf_list_next(dmd)) { cte.cte_name = soff; cte.cte_value = dmd->dmd_value; soff += strlen(dmd->dmd_name) + 1; bcopy(&cte, t, sizeof (cte)); t += sizeof (cte); } return (t); } static uchar_t * ctf_copy_membnames(ctf_dtdef_t *dtd, uchar_t *s) { ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); size_t len; for (; dmd != NULL; dmd = ctf_list_next(dmd)) { if (dmd->dmd_name == NULL) continue; /* skip anonymous members */ len = strlen(dmd->dmd_name) + 1; bcopy(dmd->dmd_name, s, len); s += len; } return (s); } /* * Only types of dyanmic CTF containers contain reference counts. These * containers are marked RD/WR. Because of that we basically make this a no-op * for compatability with non-dynamic CTF sections. This is also a no-op for * types which are not dynamic types. It is the responsibility of the caller to * make sure it is a valid type. We help that caller out on debug builds. * * Note that the reference counts are not maintained for types that are not * within this container. In other words if we have a type in a parent, that * will not have its reference count increased. On the flip side, the parent * will not be allowed to remove dynamic types if it has children. */ static void ctf_ref_inc(ctf_file_t *fp, ctf_id_t tid) { ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, tid); if (dtd == NULL) return; if (!(fp->ctf_flags & LCTF_RDWR)) return; dtd->dtd_ref++; } /* * Just as with ctf_ref_inc, this is a no-op on non-writeable containers and the * caller should ensure that this is already a valid type. */ static void ctf_ref_dec(ctf_file_t *fp, ctf_id_t tid) { ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, tid); if (dtd == NULL) return; if (!(fp->ctf_flags & LCTF_RDWR)) return; ASSERT(dtd->dtd_ref >= 1); dtd->dtd_ref--; } /* * If the specified CTF container is writable and has been modified, reload * this container with the updated type definitions. In order to make this * code and the rest of libctf as simple as possible, we perform updates by * taking the dynamic type definitions and creating an in-memory CTF file * containing the definitions, and then call ctf_bufopen() on it. This not * only leverages ctf_bufopen(), but also avoids having to bifurcate the rest * of the library code with different lookup paths for static and dynamic * type definitions. We are therefore optimizing greatly for lookup over * update, which we assume will be an uncommon operation. We perform one * extra trick here for the benefit of callers and to keep our code simple: * ctf_bufopen() will return a new ctf_file_t, but we want to keep the fp * constant for the caller, so after ctf_bufopen() returns, we use bcopy to * swap the interior of the old and new ctf_file_t's, and then free the old. * * Note that the lists of dynamic types stays around and the resulting container * is still writeable. Furthermore, the reference counts that are on the dtd's * are still valid. */ int ctf_update(ctf_file_t *fp) { ctf_file_t ofp, *nfp; ctf_header_t hdr, *bhdr; ctf_dtdef_t *dtd; ctf_dsdef_t *dsd; ctf_dldef_t *dld; ctf_sect_t cts, *symp, *strp; uchar_t *s, *s0, *t; ctf_lblent_t *label; uint16_t *obj, *func; size_t size, objsize, funcsize, labelsize, plen; void *buf; int err; ulong_t i; const char *plabel; const char *sname; uintptr_t symbase = (uintptr_t)fp->ctf_symtab.cts_data; uintptr_t strbase = (uintptr_t)fp->ctf_strtab.cts_data; if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (!(fp->ctf_flags & LCTF_DIRTY)) return (0); /* no update required */ /* * Fill in an initial CTF header. We will leave the label, object, * and function sections empty and only output a header, type section, * and string table. The type section begins at a 4-byte aligned * boundary past the CTF header itself (at relative offset zero). */ bzero(&hdr, sizeof (hdr)); hdr.cth_magic = CTF_MAGIC; hdr.cth_version = CTF_VERSION; if (fp->ctf_flags & LCTF_CHILD) { if (fp->ctf_parname == NULL) { plen = 0; hdr.cth_parname = 1; /* i.e. _CTF_STRTAB_TEMPLATE[1] */ plabel = NULL; } else { plen = strlen(fp->ctf_parname) + 1; plabel = ctf_label_topmost(fp->ctf_parent); } } else { plabel = NULL; plen = 0; } /* * Iterate over the labels that we have. */ for (labelsize = 0, dld = ctf_list_next(&fp->ctf_dldefs); dld != NULL; dld = ctf_list_next(dld)) labelsize += sizeof (ctf_lblent_t); /* * Iterate through the dynamic type definition list and compute the * size of the CTF type section we will need to generate. */ for (size = 0, dtd = ctf_list_next(&fp->ctf_dtdefs); dtd != NULL; dtd = ctf_list_next(dtd)) { uint_t kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); uint_t vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT) size += sizeof (ctf_stype_t); else size += sizeof (ctf_type_t); switch (kind) { case CTF_K_INTEGER: case CTF_K_FLOAT: size += sizeof (uint_t); break; case CTF_K_ARRAY: size += sizeof (ctf_array_t); break; case CTF_K_FUNCTION: size += sizeof (ushort_t) * (vlen + (vlen & 1)); break; case CTF_K_STRUCT: case CTF_K_UNION: if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH) size += sizeof (ctf_member_t) * vlen; else size += sizeof (ctf_lmember_t) * vlen; break; case CTF_K_ENUM: size += sizeof (ctf_enum_t) * vlen; break; } } /* * An entry for each object must exist in the data section. However, if * the symbol is SHN_UNDEF, then it is skipped. For objects, the storage * is just the size of the 2-byte id. For functions it's always 2 bytes, * plus 2 bytes per argument and the return type. */ dsd = ctf_list_next(&fp->ctf_dsdefs); for (objsize = 0, funcsize = 0, i = 0; i < fp->ctf_nsyms; i++) { int type; if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) { const Elf32_Sym *symp = (Elf32_Sym *)symbase + i; type = ELF32_ST_TYPE(symp->st_info); if (ctf_sym_valid(strbase, type, symp->st_shndx, symp->st_value, symp->st_name) == B_FALSE) continue; } else { const Elf64_Sym *symp = (Elf64_Sym *)symbase + i; type = ELF64_ST_TYPE(symp->st_info); if (ctf_sym_valid(strbase, type, symp->st_shndx, symp->st_value, symp->st_name) == B_FALSE) continue; } while (dsd != NULL && i > dsd->dsd_symidx) dsd = ctf_list_next(dsd); if (type == STT_OBJECT) { objsize += sizeof (uint16_t); } else { /* Every function has a uint16_t info no matter what */ if (dsd == NULL || i < dsd->dsd_symidx) { funcsize += sizeof (uint16_t); } else { funcsize += sizeof (uint16_t) * (dsd->dsd_nargs + 2); } } } /* * The objtoff and funcoffset must be 2-byte aligned. We're guaranteed * that this is always true for the objtoff because labels are always 8 * bytes large. Similarly, because objects are always two bytes of data, * this will always be true for funcoff. */ hdr.cth_objtoff = hdr.cth_lbloff + labelsize; hdr.cth_funcoff = hdr.cth_objtoff + objsize; /* * The type offset must be 4 byte aligned. */ hdr.cth_typeoff = hdr.cth_funcoff + funcsize; if (hdr.cth_typeoff & 3) hdr.cth_typeoff += 4 - (hdr.cth_typeoff & 3); ASSERT((hdr.cth_typeoff & 3) == 0); /* * Fill in the string table offset and size, compute the size of the * entire CTF buffer we need, and then allocate a new buffer and * bcopy the finished header to the start of the buffer. */ hdr.cth_stroff = hdr.cth_typeoff + size; hdr.cth_strlen = fp->ctf_dtstrlen + plen; size = sizeof (ctf_header_t) + hdr.cth_stroff + hdr.cth_strlen; ctf_dprintf("lbloff: %u\nobjtoff: %u\nfuncoff: %u\n" "typeoff: %u\nstroff: %u\nstrlen: %u\n", hdr.cth_lbloff, hdr.cth_objtoff, hdr.cth_funcoff, hdr.cth_typeoff, hdr.cth_stroff, hdr.cth_strlen); if ((buf = ctf_data_alloc(size)) == MAP_FAILED) return (ctf_set_errno(fp, EAGAIN)); bcopy(&hdr, buf, sizeof (ctf_header_t)); bhdr = buf; label = (ctf_lblent_t *)((uintptr_t)buf + sizeof (ctf_header_t)); t = (uchar_t *)buf + sizeof (ctf_header_t) + hdr.cth_typeoff; s = s0 = (uchar_t *)buf + sizeof (ctf_header_t) + hdr.cth_stroff; obj = (uint16_t *)((uintptr_t)buf + sizeof (ctf_header_t) + hdr.cth_objtoff); func = (uint16_t *)((uintptr_t)buf + sizeof (ctf_header_t) + hdr.cth_funcoff); bcopy(_CTF_STRTAB_TEMPLATE, s, sizeof (_CTF_STRTAB_TEMPLATE)); s += sizeof (_CTF_STRTAB_TEMPLATE); /* * We have an actual parent name and we're a child container, therefore * we should make sure to note our parent's name here. */ if (plen != 0) { VERIFY(s + plen - s0 <= hdr.cth_strlen); bcopy(fp->ctf_parname, s, plen); bhdr->cth_parname = s - s0; s += plen; } /* * First pass over the labels and copy them out. */ for (dld = ctf_list_next(&fp->ctf_dldefs); dld != NULL; dld = ctf_list_next(dld), label++) { size_t len = strlen(dld->dld_name) + 1; VERIFY(s + len - s0 <= hdr.cth_strlen); bcopy(dld->dld_name, s, len); label->ctl_typeidx = dld->dld_type; label->ctl_label = s - s0; s += len; if (plabel != NULL && strcmp(plabel, dld->dld_name) == 0) bhdr->cth_parlabel = label->ctl_label; } /* * We now take a final lap through the dynamic type definition list and * copy the appropriate type records and strings to the output buffer. */ for (dtd = ctf_list_next(&fp->ctf_dtdefs); dtd != NULL; dtd = ctf_list_next(dtd)) { uint_t kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); uint_t vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); ctf_array_t cta; uint_t encoding; size_t len; if (dtd->dtd_name != NULL) { dtd->dtd_data.ctt_name = (uint_t)(s - s0); len = strlen(dtd->dtd_name) + 1; VERIFY(s + len - s0 <= hdr.cth_strlen); bcopy(dtd->dtd_name, s, len); s += len; } else dtd->dtd_data.ctt_name = 0; if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT) len = sizeof (ctf_stype_t); else len = sizeof (ctf_type_t); bcopy(&dtd->dtd_data, t, len); t += len; switch (kind) { case CTF_K_INTEGER: case CTF_K_FLOAT: if (kind == CTF_K_INTEGER) { encoding = CTF_INT_DATA( dtd->dtd_u.dtu_enc.cte_format, dtd->dtd_u.dtu_enc.cte_offset, dtd->dtd_u.dtu_enc.cte_bits); } else { encoding = CTF_FP_DATA( dtd->dtd_u.dtu_enc.cte_format, dtd->dtd_u.dtu_enc.cte_offset, dtd->dtd_u.dtu_enc.cte_bits); } bcopy(&encoding, t, sizeof (encoding)); t += sizeof (encoding); break; case CTF_K_ARRAY: cta.cta_contents = (ushort_t) dtd->dtd_u.dtu_arr.ctr_contents; cta.cta_index = (ushort_t) dtd->dtd_u.dtu_arr.ctr_index; cta.cta_nelems = dtd->dtd_u.dtu_arr.ctr_nelems; bcopy(&cta, t, sizeof (cta)); t += sizeof (cta); break; case CTF_K_FUNCTION: { ushort_t *argv = (ushort_t *)(uintptr_t)t; uint_t argc; for (argc = 0; argc < vlen; argc++) *argv++ = (ushort_t)dtd->dtd_u.dtu_argv[argc]; if (vlen & 1) *argv++ = 0; /* pad to 4-byte boundary */ t = (uchar_t *)argv; break; } case CTF_K_STRUCT: case CTF_K_UNION: if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH) t = ctf_copy_smembers(dtd, (uint_t)(s - s0), t); else t = ctf_copy_lmembers(dtd, (uint_t)(s - s0), t); s = ctf_copy_membnames(dtd, s); break; case CTF_K_ENUM: t = ctf_copy_emembers(dtd, (uint_t)(s - s0), t); s = ctf_copy_membnames(dtd, s); break; } } /* * Now we fill in our dynamic data and function sections. We use the * same criteria as above, but also consult the dsd list. */ dsd = ctf_list_next(&fp->ctf_dsdefs); for (i = 0; i < fp->ctf_nsyms; i++) { int type; if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) { const Elf32_Sym *symp = (Elf32_Sym *)symbase + i; type = ELF32_ST_TYPE(symp->st_info); if (ctf_sym_valid(strbase, type, symp->st_shndx, symp->st_value, symp->st_name) == B_FALSE) continue; } else { const Elf64_Sym *symp = (Elf64_Sym *)symbase + i; type = ELF64_ST_TYPE(symp->st_info); if (ctf_sym_valid(strbase, type, symp->st_shndx, symp->st_value, symp->st_name) == B_FALSE) continue; } while (dsd != NULL && i > dsd->dsd_symidx) { dsd = ctf_list_next(dsd); } if (type == STT_OBJECT) { if (dsd == NULL || i < dsd->dsd_symidx) { *obj = 0; } else { *obj = dsd->dsd_tid; } obj++; VERIFY((uintptr_t)obj <= (uintptr_t)func); } else { if (dsd == NULL || i < dsd->dsd_symidx) { ushort_t data = CTF_TYPE_INFO(CTF_K_UNKNOWN, 0, 0); *func = data; func++; } else { int j; ushort_t data = CTF_TYPE_INFO(CTF_K_FUNCTION, 0, dsd->dsd_nargs); *func = data; func++; *func = dsd->dsd_tid; func++; for (j = 0; j < dsd->dsd_nargs; j++) func[j] = dsd->dsd_argc[j]; func += dsd->dsd_nargs; } } } /* * Finally, we are ready to ctf_bufopen() the new container. If this * is successful, we then switch nfp and fp and free the old container. */ ctf_data_protect(buf, size); cts.cts_name = _CTF_SECTION; cts.cts_type = SHT_PROGBITS; cts.cts_flags = 0; cts.cts_data = buf; cts.cts_size = size; cts.cts_entsize = 1; cts.cts_offset = 0; if (fp->ctf_nsyms == 0) { symp = NULL; strp = NULL; } else { symp = &fp->ctf_symtab; strp = &fp->ctf_strtab; } if ((nfp = ctf_bufopen(&cts, symp, strp, &err)) == NULL) { ctf_data_free(buf, size); return (ctf_set_errno(fp, err)); } (void) ctf_setmodel(nfp, ctf_getmodel(fp)); (void) ctf_import(nfp, fp->ctf_parent); nfp->ctf_refcnt = fp->ctf_refcnt; nfp->ctf_flags |= fp->ctf_flags & ~LCTF_DIRTY; nfp->ctf_flags |= LCTF_FREE; nfp->ctf_dthash = fp->ctf_dthash; nfp->ctf_dthashlen = fp->ctf_dthashlen; nfp->ctf_dtdefs = fp->ctf_dtdefs; nfp->ctf_dsdefs = fp->ctf_dsdefs; nfp->ctf_dldefs = fp->ctf_dldefs; nfp->ctf_dtstrlen = fp->ctf_dtstrlen; nfp->ctf_dtnextid = fp->ctf_dtnextid; nfp->ctf_dtoldid = fp->ctf_dtnextid - 1; nfp->ctf_specific = fp->ctf_specific; fp->ctf_dthash = NULL; fp->ctf_dthashlen = 0; bzero(&fp->ctf_dtdefs, sizeof (ctf_list_t)); bzero(&fp->ctf_dsdefs, sizeof (ctf_list_t)); bzero(&fp->ctf_dldefs, sizeof (ctf_list_t)); /* * Because the various containers share the data sections, we don't want * to have ctf_close free it all. However, the name of the section is in * fact unique to the ctf_sect_t. Thus we save the names of the symbol * and string sections around the bzero() and restore them afterwards, * ensuring that we don't result in a memory leak. */ sname = fp->ctf_symtab.cts_name; bzero(&fp->ctf_symtab, sizeof (ctf_sect_t)); fp->ctf_symtab.cts_name = sname; sname = fp->ctf_strtab.cts_name; bzero(&fp->ctf_strtab, sizeof (ctf_sect_t)); fp->ctf_strtab.cts_name = sname; bcopy(fp, &ofp, sizeof (ctf_file_t)); bcopy(nfp, fp, sizeof (ctf_file_t)); bcopy(&ofp, nfp, sizeof (ctf_file_t)); /* * Initialize the ctf_lookup_by_name top-level dictionary. We keep an * array of type name prefixes and the corresponding ctf_hash to use. * NOTE: This code must be kept in sync with the code in ctf_bufopen(). */ fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs; fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions; fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums; fp->ctf_lookups[3].ctl_hash = &fp->ctf_names; nfp->ctf_refcnt = 1; /* force nfp to be freed */ ctf_close(nfp); return (0); } void ctf_dtd_insert(ctf_file_t *fp, ctf_dtdef_t *dtd) { ulong_t h = dtd->dtd_type & (fp->ctf_dthashlen - 1); dtd->dtd_hash = fp->ctf_dthash[h]; fp->ctf_dthash[h] = dtd; ctf_list_append(&fp->ctf_dtdefs, dtd); } void ctf_dtd_delete(ctf_file_t *fp, ctf_dtdef_t *dtd) { ulong_t h = dtd->dtd_type & (fp->ctf_dthashlen - 1); ctf_dtdef_t *p, **q = &fp->ctf_dthash[h]; ctf_dmdef_t *dmd, *nmd; size_t len; int kind, i; for (p = *q; p != NULL; p = p->dtd_hash) { if (p != dtd) q = &p->dtd_hash; else break; } if (p != NULL) *q = p->dtd_hash; kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); switch (kind) { case CTF_K_STRUCT: case CTF_K_UNION: case CTF_K_ENUM: for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); dmd != NULL; dmd = nmd) { if (dmd->dmd_name != NULL) { len = strlen(dmd->dmd_name) + 1; ctf_free(dmd->dmd_name, len); fp->ctf_dtstrlen -= len; } if (kind != CTF_K_ENUM) ctf_ref_dec(fp, dmd->dmd_type); nmd = ctf_list_next(dmd); ctf_free(dmd, sizeof (ctf_dmdef_t)); } break; case CTF_K_FUNCTION: ctf_ref_dec(fp, dtd->dtd_data.ctt_type); for (i = 0; i < CTF_INFO_VLEN(dtd->dtd_data.ctt_info); i++) if (dtd->dtd_u.dtu_argv[i] != 0) ctf_ref_dec(fp, dtd->dtd_u.dtu_argv[i]); ctf_free(dtd->dtd_u.dtu_argv, sizeof (ctf_id_t) * CTF_INFO_VLEN(dtd->dtd_data.ctt_info)); break; case CTF_K_ARRAY: ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_contents); ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_index); break; case CTF_K_TYPEDEF: ctf_ref_dec(fp, dtd->dtd_data.ctt_type); break; case CTF_K_POINTER: case CTF_K_VOLATILE: case CTF_K_CONST: case CTF_K_RESTRICT: ctf_ref_dec(fp, dtd->dtd_data.ctt_type); break; } if (dtd->dtd_name) { len = strlen(dtd->dtd_name) + 1; ctf_free(dtd->dtd_name, len); fp->ctf_dtstrlen -= len; } ctf_list_delete(&fp->ctf_dtdefs, dtd); ctf_free(dtd, sizeof (ctf_dtdef_t)); } ctf_dtdef_t * ctf_dtd_lookup(ctf_file_t *fp, ctf_id_t type) { ulong_t h = type & (fp->ctf_dthashlen - 1); ctf_dtdef_t *dtd; if (fp->ctf_dthash == NULL) return (NULL); for (dtd = fp->ctf_dthash[h]; dtd != NULL; dtd = dtd->dtd_hash) { if (dtd->dtd_type == type) break; } return (dtd); } ctf_dsdef_t * ctf_dsd_lookup(ctf_file_t *fp, ulong_t idx) { ctf_dsdef_t *dsd; for (dsd = ctf_list_next(&fp->ctf_dsdefs); dsd != NULL; dsd = ctf_list_next(dsd)) { if (dsd->dsd_symidx == idx) return (dsd); } return (NULL); } /* * We order the ctf_dsdef_t by symbol index to make things better for updates. */ void ctf_dsd_insert(ctf_file_t *fp, ctf_dsdef_t *dsd) { ctf_dsdef_t *i; for (i = ctf_list_next(&fp->ctf_dsdefs); i != NULL; i = ctf_list_next(i)) { if (i->dsd_symidx > dsd->dsd_symidx) break; } if (i == NULL) { ctf_list_append(&fp->ctf_dsdefs, dsd); return; } ctf_list_insert_before(&fp->ctf_dsdefs, i, dsd); } /* ARGSUSED */ void ctf_dsd_delete(ctf_file_t *fp, ctf_dsdef_t *dsd) { if (dsd->dsd_nargs > 0) ctf_free(dsd->dsd_argc, sizeof (ctf_id_t) * dsd->dsd_nargs); ctf_list_delete(&fp->ctf_dsdefs, dsd); ctf_free(dsd, sizeof (ctf_dsdef_t)); } ctf_dldef_t * ctf_dld_lookup(ctf_file_t *fp, const char *name) { ctf_dldef_t *dld; for (dld = ctf_list_next(&fp->ctf_dldefs); dld != NULL; dld = ctf_list_next(dld)) { if (strcmp(name, dld->dld_name) == 0) return (dld); } return (NULL); } void ctf_dld_insert(ctf_file_t *fp, ctf_dldef_t *dld, uint_t pos) { ctf_dldef_t *l; if (pos == 0) { ctf_list_prepend(&fp->ctf_dldefs, dld); return; } for (l = ctf_list_next(&fp->ctf_dldefs); pos != 0 && dld != NULL; l = ctf_list_next(l), pos--) ; if (l == NULL) ctf_list_append(&fp->ctf_dldefs, dld); else ctf_list_insert_before(&fp->ctf_dsdefs, l, dld); } void ctf_dld_delete(ctf_file_t *fp, ctf_dldef_t *dld) { ctf_list_delete(&fp->ctf_dldefs, dld); if (dld->dld_name != NULL) { size_t len = strlen(dld->dld_name) + 1; ctf_free(dld->dld_name, len); fp->ctf_dtstrlen -= len; } ctf_free(dld, sizeof (ctf_dldef_t)); } /* * Discard all of the dynamic type definitions that have been added to the * container since the last call to ctf_update(). We locate such types by * scanning the list and deleting elements that have type IDs greater than * ctf_dtoldid, which is set by ctf_update(), above. Note that to work properly * with our reference counting schemes, we must delete the dynamic list in * reverse. */ int ctf_discard(ctf_file_t *fp) { ctf_dtdef_t *dtd, *ntd; if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (!(fp->ctf_flags & LCTF_DIRTY)) return (0); /* no update required */ for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) { ntd = ctf_list_prev(dtd); if (dtd->dtd_type <= fp->ctf_dtoldid) continue; /* skip types that have been committed */ ctf_dtd_delete(fp, dtd); } fp->ctf_dtnextid = fp->ctf_dtoldid + 1; fp->ctf_flags &= ~LCTF_DIRTY; return (0); } static ctf_id_t ctf_add_generic(ctf_file_t *fp, uint_t flag, const char *name, ctf_dtdef_t **rp) { ctf_dtdef_t *dtd; ctf_id_t type; char *s = NULL; if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT) return (ctf_set_errno(fp, EINVAL)); if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (CTF_INDEX_TO_TYPE(fp->ctf_dtnextid, 1) > CTF_MAX_TYPE) return (ctf_set_errno(fp, ECTF_FULL)); if ((dtd = ctf_alloc(sizeof (ctf_dtdef_t))) == NULL) return (ctf_set_errno(fp, EAGAIN)); if (name != NULL && (s = ctf_strdup(name)) == NULL) { ctf_free(dtd, sizeof (ctf_dtdef_t)); return (ctf_set_errno(fp, EAGAIN)); } type = fp->ctf_dtnextid++; type = CTF_INDEX_TO_TYPE(type, (fp->ctf_flags & LCTF_CHILD)); bzero(dtd, sizeof (ctf_dtdef_t)); dtd->dtd_name = s; dtd->dtd_type = type; if (s != NULL) fp->ctf_dtstrlen += strlen(s) + 1; ctf_dtd_insert(fp, dtd); fp->ctf_flags |= LCTF_DIRTY; *rp = dtd; return (type); } ctf_id_t ctf_add_encoded(ctf_file_t *fp, uint_t flag, const char *name, const ctf_encoding_t *ep, uint_t kind) { ctf_dtdef_t *dtd; ctf_id_t type; if (ep == NULL) return (ctf_set_errno(fp, EINVAL)); if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, 0); /* * If the type's size is not an even number of bytes, then we should * round up the type size to the nearest byte. */ dtd->dtd_data.ctt_size = ep->cte_bits / NBBY; if ((ep->cte_bits % NBBY) != 0) dtd->dtd_data.ctt_size++; dtd->dtd_u.dtu_enc = *ep; return (type); } ctf_id_t ctf_add_reftype(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref, uint_t kind) { ctf_dtdef_t *dtd; ctf_id_t type; if (ref == CTF_ERR || ref < 0 || ref > CTF_MAX_TYPE) return (ctf_set_errno(fp, EINVAL)); if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ ctf_ref_inc(fp, ref); dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, 0); dtd->dtd_data.ctt_type = (ushort_t)ref; return (type); } ctf_id_t ctf_add_integer(ctf_file_t *fp, uint_t flag, const char *name, const ctf_encoding_t *ep) { return (ctf_add_encoded(fp, flag, name, ep, CTF_K_INTEGER)); } ctf_id_t ctf_add_float(ctf_file_t *fp, uint_t flag, const char *name, const ctf_encoding_t *ep) { return (ctf_add_encoded(fp, flag, name, ep, CTF_K_FLOAT)); } ctf_id_t ctf_add_pointer(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref) { return (ctf_add_reftype(fp, flag, name, ref, CTF_K_POINTER)); } ctf_id_t ctf_add_array(ctf_file_t *fp, uint_t flag, const ctf_arinfo_t *arp) { ctf_dtdef_t *dtd; ctf_id_t type; ctf_file_t *fpd; if (arp == NULL) return (ctf_set_errno(fp, EINVAL)); fpd = fp; if (ctf_lookup_by_id(&fpd, arp->ctr_contents) == NULL && ctf_dtd_lookup(fp, arp->ctr_contents) == NULL) { ctf_dprintf("bad contents for array: %ld\n", arp->ctr_contents); return (ctf_set_errno(fp, ECTF_BADID)); } fpd = fp; if (ctf_lookup_by_id(&fpd, arp->ctr_index) == NULL && ctf_dtd_lookup(fp, arp->ctr_index) == NULL) { ctf_dprintf("bad index for array: %ld\n", arp->ctr_index); return (ctf_set_errno(fp, ECTF_BADID)); } if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_ARRAY, flag, 0); dtd->dtd_data.ctt_size = 0; dtd->dtd_u.dtu_arr = *arp; ctf_ref_inc(fp, arp->ctr_contents); ctf_ref_inc(fp, arp->ctr_index); return (type); } int ctf_set_array(ctf_file_t *fp, ctf_id_t type, const ctf_arinfo_t *arp) { ctf_file_t *fpd; ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, type); if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (dtd == NULL || CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_ARRAY) return (ctf_set_errno(fp, ECTF_BADID)); fpd = fp; if (ctf_lookup_by_id(&fpd, arp->ctr_contents) == NULL && ctf_dtd_lookup(fp, arp->ctr_contents) == NULL) return (ctf_set_errno(fp, ECTF_BADID)); fpd = fp; if (ctf_lookup_by_id(&fpd, arp->ctr_index) == NULL && ctf_dtd_lookup(fp, arp->ctr_index) == NULL) return (ctf_set_errno(fp, ECTF_BADID)); ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_contents); ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_index); fp->ctf_flags |= LCTF_DIRTY; dtd->dtd_u.dtu_arr = *arp; ctf_ref_inc(fp, arp->ctr_contents); ctf_ref_inc(fp, arp->ctr_index); return (0); } ctf_id_t ctf_add_funcptr(ctf_file_t *fp, uint_t flag, const ctf_funcinfo_t *ctc, const ctf_id_t *argv) { ctf_dtdef_t *dtd; ctf_id_t type; uint_t vlen; int i; ctf_id_t *vdat = NULL; ctf_file_t *fpd; if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0 || (ctc->ctc_argc != 0 && argv == NULL)) return (ctf_set_errno(fp, EINVAL)); vlen = ctc->ctc_argc; if (ctc->ctc_flags & CTF_FUNC_VARARG) vlen++; /* add trailing zero to indicate varargs (see below) */ if (vlen > CTF_MAX_VLEN) return (ctf_set_errno(fp, EOVERFLOW)); fpd = fp; if (ctf_lookup_by_id(&fpd, ctc->ctc_return) == NULL && ctf_dtd_lookup(fp, ctc->ctc_return) == NULL) return (ctf_set_errno(fp, ECTF_BADID)); for (i = 0; i < ctc->ctc_argc; i++) { fpd = fp; if (ctf_lookup_by_id(&fpd, argv[i]) == NULL && ctf_dtd_lookup(fp, argv[i]) == NULL) return (ctf_set_errno(fp, ECTF_BADID)); } if (vlen != 0 && (vdat = ctf_alloc(sizeof (ctf_id_t) * vlen)) == NULL) return (ctf_set_errno(fp, EAGAIN)); if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR) { ctf_free(vdat, sizeof (ctf_id_t) * vlen); return (CTF_ERR); /* errno is set for us */ } dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_FUNCTION, flag, vlen); dtd->dtd_data.ctt_type = (ushort_t)ctc->ctc_return; ctf_ref_inc(fp, ctc->ctc_return); for (i = 0; i < ctc->ctc_argc; i++) ctf_ref_inc(fp, argv[i]); bcopy(argv, vdat, sizeof (ctf_id_t) * ctc->ctc_argc); if (ctc->ctc_flags & CTF_FUNC_VARARG) vdat[vlen - 1] = 0; /* add trailing zero to indicate varargs */ dtd->dtd_u.dtu_argv = vdat; return (type); } ctf_id_t ctf_add_struct(ctf_file_t *fp, uint_t flag, const char *name) { ctf_hash_t *hp = &fp->ctf_structs; ctf_helem_t *hep = NULL; ctf_dtdef_t *dtd = NULL; ctf_id_t type = CTF_ERR; if (name != NULL) hep = ctf_hash_lookup(hp, fp, name, strlen(name)); if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) { type = hep->h_type; dtd = ctf_dtd_lookup(fp, type); if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_FORWARD) dtd = NULL; } if (dtd == NULL) { type = ctf_add_generic(fp, flag, name, &dtd); if (type == CTF_ERR) return (CTF_ERR); /* errno is set for us */ } VERIFY(type != CTF_ERR); dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_STRUCT, flag, 0); dtd->dtd_data.ctt_size = 0; /* * Always dirty in case we modified a forward. */ fp->ctf_flags |= LCTF_DIRTY; return (type); } ctf_id_t ctf_add_union(ctf_file_t *fp, uint_t flag, const char *name) { ctf_hash_t *hp = &fp->ctf_unions; ctf_helem_t *hep = NULL; ctf_dtdef_t *dtd = NULL; ctf_id_t type = CTF_ERR; if (name != NULL) hep = ctf_hash_lookup(hp, fp, name, strlen(name)); if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) { type = hep->h_type; dtd = ctf_dtd_lookup(fp, type); if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_FORWARD) dtd = NULL; } if (dtd == NULL) { type = ctf_add_generic(fp, flag, name, &dtd); if (type == CTF_ERR) return (CTF_ERR); /* errno is set for us */ } VERIFY(type != CTF_ERR); dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_UNION, flag, 0); dtd->dtd_data.ctt_size = 0; /* * Always dirty in case we modified a forward. */ fp->ctf_flags |= LCTF_DIRTY; return (type); } /* * If size is 0, we use the standard integer size. This is almost always the * case, except for packed enums. */ ctf_id_t ctf_add_enum(ctf_file_t *fp, uint_t flag, const char *name, size_t size) { ctf_hash_t *hp = &fp->ctf_enums; ctf_helem_t *hep = NULL; ctf_dtdef_t *dtd = NULL; ctf_id_t type = CTF_ERR; /* Check we could return something valid in ctf_type_size. */ if (size > SSIZE_MAX) return (ctf_set_errno(fp, EINVAL)); if (name != NULL) hep = ctf_hash_lookup(hp, fp, name, strlen(name)); if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) { type = hep->h_type; dtd = ctf_dtd_lookup(fp, type); if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_FORWARD) dtd = NULL; } if (dtd == NULL) { type = ctf_add_generic(fp, flag, name, &dtd); if (type == CTF_ERR) return (CTF_ERR); /* errno is set for us */ } VERIFY(type != CTF_ERR); dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_ENUM, flag, 0); ctf_set_ctt_size(&dtd->dtd_data, size == 0 ? fp->ctf_dmodel->ctd_int : size); /* * Always dirty in case we modified a forward. */ fp->ctf_flags |= LCTF_DIRTY; return (type); } ctf_id_t ctf_add_forward(ctf_file_t *fp, uint_t flag, const char *name, uint_t kind) { ctf_hash_t *hp; ctf_helem_t *hep; ctf_dtdef_t *dtd; ctf_id_t type; switch (kind) { case CTF_K_STRUCT: hp = &fp->ctf_structs; break; case CTF_K_UNION: hp = &fp->ctf_unions; break; case CTF_K_ENUM: hp = &fp->ctf_enums; break; default: return (ctf_set_errno(fp, ECTF_NOTSUE)); } /* * If the type is already defined or exists as a forward tag, just * return the ctf_id_t of the existing definition. */ if (name != NULL && (hep = ctf_hash_lookup(hp, fp, name, strlen(name))) != NULL) return (hep->h_type); if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_FORWARD, flag, 0); dtd->dtd_data.ctt_type = kind; return (type); } ctf_id_t ctf_add_typedef(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref) { ctf_dtdef_t *dtd; ctf_id_t type; ctf_file_t *fpd; fpd = fp; if (ref == CTF_ERR || (ctf_lookup_by_id(&fpd, ref) == NULL && ctf_dtd_lookup(fp, ref) == NULL)) return (ctf_set_errno(fp, EINVAL)); if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_TYPEDEF, flag, 0); dtd->dtd_data.ctt_type = (ushort_t)ref; ctf_ref_inc(fp, ref); return (type); } ctf_id_t ctf_add_volatile(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref) { return (ctf_add_reftype(fp, flag, name, ref, CTF_K_VOLATILE)); } ctf_id_t ctf_add_const(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref) { return (ctf_add_reftype(fp, flag, name, ref, CTF_K_CONST)); } ctf_id_t ctf_add_restrict(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref) { return (ctf_add_reftype(fp, flag, name, ref, CTF_K_RESTRICT)); } int ctf_add_enumerator(ctf_file_t *fp, ctf_id_t enid, const char *name, int value) { ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, enid); ctf_dmdef_t *dmd; uint_t kind, vlen, root; char *s; if (name == NULL) return (ctf_set_errno(fp, EINVAL)); if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (dtd == NULL) return (ctf_set_errno(fp, ECTF_BADID)); kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); root = CTF_INFO_ISROOT(dtd->dtd_data.ctt_info); vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); if (kind != CTF_K_ENUM) return (ctf_set_errno(fp, ECTF_NOTENUM)); if (vlen == CTF_MAX_VLEN) return (ctf_set_errno(fp, ECTF_DTFULL)); for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); dmd != NULL; dmd = ctf_list_next(dmd)) { if (strcmp(dmd->dmd_name, name) == 0) { ctf_dprintf("encountered duplicate member %s\n", name); return (ctf_set_errno(fp, ECTF_DUPMEMBER)); } } if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL) return (ctf_set_errno(fp, EAGAIN)); if ((s = ctf_strdup(name)) == NULL) { ctf_free(dmd, sizeof (ctf_dmdef_t)); return (ctf_set_errno(fp, EAGAIN)); } dmd->dmd_name = s; dmd->dmd_type = CTF_ERR; dmd->dmd_offset = 0; dmd->dmd_value = value; dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, root, vlen + 1); ctf_list_append(&dtd->dtd_u.dtu_members, dmd); fp->ctf_dtstrlen += strlen(s) + 1; fp->ctf_flags |= LCTF_DIRTY; return (0); } int ctf_add_member(ctf_file_t *fp, ctf_id_t souid, const char *name, ctf_id_t type, ulong_t offset) { ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, souid); ctf_dmdef_t *dmd; ulong_t mbitsz; ssize_t msize, malign, ssize; uint_t kind, vlen, root; int mkind; char *s = NULL; if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (dtd == NULL) return (ctf_set_errno(fp, ECTF_BADID)); kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); root = CTF_INFO_ISROOT(dtd->dtd_data.ctt_info); vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) return (ctf_set_errno(fp, ECTF_NOTSOU)); if (vlen == CTF_MAX_VLEN) return (ctf_set_errno(fp, ECTF_DTFULL)); /* * Structures may have members which are anonymous. If they have two of * these, then the duplicate member detection would find it due to the * string of "", so we skip it. */ if (name != NULL && *name != '\0') { for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); dmd != NULL; dmd = ctf_list_next(dmd)) { if (dmd->dmd_name != NULL && strcmp(dmd->dmd_name, name) == 0) { return (ctf_set_errno(fp, ECTF_DUPMEMBER)); } } } if ((msize = ctf_type_size(fp, type)) == CTF_ERR || (malign = ctf_type_align(fp, type)) == CTF_ERR || (mkind = ctf_type_kind(fp, type)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ /* * ctf_type_size returns sizes in bytes. However, for bitfields, that * means that it may misrepresent and actually rounds it up to a power * of two and store that in bytes. So instead we have to get the * Integers encoding and rely on that. */ if (mkind == CTF_K_INTEGER) { ctf_encoding_t e; if (ctf_type_encoding(fp, type, &e) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ mbitsz = e.cte_bits; } else if (mkind == CTF_K_FORWARD) { /* * This is a rather rare case. In general one cannot add a * forward to a structure. However, the CTF tools traditionally * tried to add a forward to the struct cpu as the last member. * Therefore, if we find one here, we're going to verify the * size and make sure it's zero. It's certainly odd, but that's * life. * * Further, if it's not an absolute position being specified, * then we refuse to add it. */ if (offset == ULONG_MAX) return (ctf_set_errno(fp, EINVAL)); VERIFY(msize == 0); mbitsz = msize; } else { mbitsz = msize * 8; } if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL) return (ctf_set_errno(fp, EAGAIN)); if (name != NULL && (s = ctf_strdup(name)) == NULL) { ctf_free(dmd, sizeof (ctf_dmdef_t)); return (ctf_set_errno(fp, EAGAIN)); } dmd->dmd_name = s; dmd->dmd_type = type; dmd->dmd_value = -1; if (kind == CTF_K_STRUCT && vlen != 0) { ctf_dmdef_t *lmd = ctf_list_prev(&dtd->dtd_u.dtu_members); ctf_id_t ltype = ctf_type_resolve(fp, lmd->dmd_type); size_t off; if (offset == ULONG_MAX) { ctf_encoding_t linfo; ssize_t lsize; off = lmd->dmd_offset; if (ctf_type_encoding(fp, ltype, &linfo) != CTF_ERR) off += linfo.cte_bits; else if ((lsize = ctf_type_size(fp, ltype)) != CTF_ERR) off += lsize * NBBY; /* * Round up the offset of the end of the last member to * the next byte boundary, convert 'off' to bytes, and * then round it up again to the next multiple of the * alignment required by the new member. Finally, * convert back to bits and store the result in * dmd_offset. Technically we could do more efficient * packing if the new member is a bit-field, but we're * the "compiler" and ANSI says we can do as we choose. */ off = roundup(off, NBBY) / NBBY; off = roundup(off, MAX(malign, 1)); dmd->dmd_offset = off * NBBY; ssize = off + msize; } else { dmd->dmd_offset = offset; ssize = (offset + mbitsz) / NBBY; } } else { dmd->dmd_offset = 0; ssize = ctf_get_ctt_size(fp, &dtd->dtd_data, NULL, NULL); ssize = MAX(ssize, msize); } ctf_set_ctt_size(&dtd->dtd_data, ssize); dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, root, vlen + 1); ctf_list_append(&dtd->dtd_u.dtu_members, dmd); if (s != NULL) fp->ctf_dtstrlen += strlen(s) + 1; ctf_ref_inc(fp, type); fp->ctf_flags |= LCTF_DIRTY; return (0); } /* * This removes a type from the dynamic section. This will fail if the type is * referenced by another type. Note that the CTF ID is never reused currently by * CTF. Note that if this container is a parent container then we just outright * refuse to remove the type. There currently is no notion of searching for the * ctf_dtdef_t in parent containers. If there is, then this constraint could * become finer grained. */ int ctf_delete_type(ctf_file_t *fp, ctf_id_t type) { ctf_file_t *fpd; ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, type); if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); /* * We want to give as useful an errno as possible. That means that we * want to distinguish between a type which does not exist and one for * which the type is not dynamic. */ fpd = fp; if (ctf_lookup_by_id(&fpd, type) == NULL && ctf_dtd_lookup(fp, type) == NULL) return (CTF_ERR); /* errno is set for us */ if (dtd == NULL) return (ctf_set_errno(fp, ECTF_NOTDYN)); if (dtd->dtd_ref != 0 || fp->ctf_refcnt > 1) return (ctf_set_errno(fp, ECTF_REFERENCED)); ctf_dtd_delete(fp, dtd); fp->ctf_flags |= LCTF_DIRTY; return (0); } static int enumcmp(const char *name, int value, void *arg) { ctf_bundle_t *ctb = arg; int bvalue; return (ctf_enum_value(ctb->ctb_file, ctb->ctb_type, name, &bvalue) == CTF_ERR || value != bvalue); } static int enumadd(const char *name, int value, void *arg) { ctf_bundle_t *ctb = arg; return (ctf_add_enumerator(ctb->ctb_file, ctb->ctb_type, name, value) == CTF_ERR); } /*ARGSUSED*/ static int membcmp(const char *name, ctf_id_t type, ulong_t offset, void *arg) { ctf_bundle_t *ctb = arg; ctf_membinfo_t ctm; return (ctf_member_info(ctb->ctb_file, ctb->ctb_type, name, &ctm) == CTF_ERR || ctm.ctm_offset != offset); } static int membadd(const char *name, ctf_id_t type, ulong_t offset, void *arg) { ctf_bundle_t *ctb = arg; ctf_dmdef_t *dmd; char *s = NULL; if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL) return (ctf_set_errno(ctb->ctb_file, EAGAIN)); if (name != NULL && (s = ctf_strdup(name)) == NULL) { ctf_free(dmd, sizeof (ctf_dmdef_t)); return (ctf_set_errno(ctb->ctb_file, EAGAIN)); } /* * For now, dmd_type is copied as the src_fp's type; it is reset to an * equivalent dst_fp type by a final loop in ctf_add_type(), below. */ dmd->dmd_name = s; dmd->dmd_type = type; dmd->dmd_offset = offset; dmd->dmd_value = -1; ctf_list_append(&ctb->ctb_dtd->dtd_u.dtu_members, dmd); if (s != NULL) ctb->ctb_file->ctf_dtstrlen += strlen(s) + 1; ctb->ctb_file->ctf_flags |= LCTF_DIRTY; return (0); } /* * The ctf_add_type routine is used to copy a type from a source CTF container * to a dynamic destination container. This routine operates recursively by * following the source type's links and embedded member types. If the * destination container already contains a named type which has the same * attributes, then we succeed and return this type but no changes occur. */ ctf_id_t ctf_add_type(ctf_file_t *dst_fp, ctf_file_t *src_fp, ctf_id_t src_type) { ctf_id_t dst_type = CTF_ERR; uint_t dst_kind = CTF_K_UNKNOWN; const ctf_type_t *tp; const char *name; uint_t kind, flag, vlen; ctf_bundle_t src, dst; ctf_encoding_t src_en, dst_en; ctf_arinfo_t src_ar, dst_ar; ctf_dtdef_t *dtd; ctf_funcinfo_t ctc; ctf_hash_t *hp; ctf_helem_t *hep; if (dst_fp == src_fp) return (src_type); if (!(dst_fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(dst_fp, ECTF_RDONLY)); if ((tp = ctf_lookup_by_id(&src_fp, src_type)) == NULL) return (ctf_set_errno(dst_fp, ctf_errno(src_fp))); name = ctf_strptr(src_fp, tp->ctt_name); kind = LCTF_INFO_KIND(src_fp, tp->ctt_info); flag = LCTF_INFO_ROOT(src_fp, tp->ctt_info); vlen = LCTF_INFO_VLEN(src_fp, tp->ctt_info); switch (kind) { case CTF_K_STRUCT: hp = &dst_fp->ctf_structs; break; case CTF_K_UNION: hp = &dst_fp->ctf_unions; break; case CTF_K_ENUM: hp = &dst_fp->ctf_enums; break; default: hp = &dst_fp->ctf_names; break; } /* * If the source type has a name and is a root type (visible at the * top-level scope), lookup the name in the destination container and * verify that it is of the same kind before we do anything else. */ if ((flag & CTF_ADD_ROOT) && name[0] != '\0' && (hep = ctf_hash_lookup(hp, dst_fp, name, strlen(name))) != NULL) { dst_type = (ctf_id_t)hep->h_type; dst_kind = ctf_type_kind(dst_fp, dst_type); } /* * If an identically named dst_type exists, fail with ECTF_CONFLICT * unless dst_type is a forward declaration and src_type is a struct, * union, or enum (i.e. the definition of the previous forward decl). */ if (dst_type != CTF_ERR && dst_kind != kind && ( dst_kind != CTF_K_FORWARD || (kind != CTF_K_ENUM && kind != CTF_K_STRUCT && kind != CTF_K_UNION))) return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); /* * If the non-empty name was not found in the appropriate hash, search * the list of pending dynamic definitions that are not yet committed. * If a matching name and kind are found, assume this is the type that * we are looking for. This is necessary to permit ctf_add_type() to * operate recursively on entities such as a struct that contains a * pointer member that refers to the same struct type. */ if (dst_type == CTF_ERR && name[0] != '\0') { for (dtd = ctf_list_prev(&dst_fp->ctf_dtdefs); dtd != NULL && dtd->dtd_type > dst_fp->ctf_dtoldid; dtd = ctf_list_prev(dtd)) { if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) == kind && dtd->dtd_name != NULL && strcmp(dtd->dtd_name, name) == 0) return (dtd->dtd_type); } } src.ctb_file = src_fp; src.ctb_type = src_type; src.ctb_dtd = NULL; dst.ctb_file = dst_fp; dst.ctb_type = dst_type; dst.ctb_dtd = NULL; /* * Now perform kind-specific processing. If dst_type is CTF_ERR, then * we add a new type with the same properties as src_type to dst_fp. * If dst_type is not CTF_ERR, then we verify that dst_type has the * same attributes as src_type. We recurse for embedded references. */ switch (kind) { case CTF_K_INTEGER: case CTF_K_FLOAT: if (ctf_type_encoding(src_fp, src_type, &src_en) != 0) return (ctf_set_errno(dst_fp, ctf_errno(src_fp))); if (dst_type != CTF_ERR) { if (ctf_type_encoding(dst_fp, dst_type, &dst_en) != 0) return (CTF_ERR); /* errno is set for us */ if (bcmp(&src_en, &dst_en, sizeof (ctf_encoding_t))) return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); } else if (kind == CTF_K_INTEGER) { dst_type = ctf_add_integer(dst_fp, flag, name, &src_en); } else dst_type = ctf_add_float(dst_fp, flag, name, &src_en); break; case CTF_K_POINTER: case CTF_K_VOLATILE: case CTF_K_CONST: case CTF_K_RESTRICT: src_type = ctf_type_reference(src_fp, src_type); src_type = ctf_add_type(dst_fp, src_fp, src_type); if (src_type == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dst_type = ctf_add_reftype(dst_fp, flag, NULL, src_type, kind); break; case CTF_K_ARRAY: if (ctf_array_info(src_fp, src_type, &src_ar) == CTF_ERR) return (ctf_set_errno(dst_fp, ctf_errno(src_fp))); src_ar.ctr_contents = ctf_add_type(dst_fp, src_fp, src_ar.ctr_contents); src_ar.ctr_index = ctf_add_type(dst_fp, src_fp, src_ar.ctr_index); src_ar.ctr_nelems = src_ar.ctr_nelems; if (src_ar.ctr_contents == CTF_ERR || src_ar.ctr_index == CTF_ERR) return (CTF_ERR); /* errno is set for us */ if (dst_type != CTF_ERR) { if (ctf_array_info(dst_fp, dst_type, &dst_ar) != 0) return (CTF_ERR); /* errno is set for us */ if (bcmp(&src_ar, &dst_ar, sizeof (ctf_arinfo_t))) return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); } else dst_type = ctf_add_array(dst_fp, flag, &src_ar); break; case CTF_K_FUNCTION: ctc.ctc_return = ctf_add_type(dst_fp, src_fp, tp->ctt_type); ctc.ctc_argc = 0; ctc.ctc_flags = 0; if (ctc.ctc_return == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dst_type = ctf_add_funcptr(dst_fp, flag, &ctc, NULL); break; case CTF_K_STRUCT: case CTF_K_UNION: { ctf_dmdef_t *dmd; int errs = 0; /* * Technically to match a struct or union we need to check both * ways (src members vs. dst, dst members vs. src) but we make * this more optimal by only checking src vs. dst and comparing * the total size of the structure (which we must do anyway) * which covers the possibility of dst members not in src. * This optimization can be defeated for unions, but is so * pathological as to render it irrelevant for our purposes. */ if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) { if (ctf_type_size(src_fp, src_type) != ctf_type_size(dst_fp, dst_type)) return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); if (ctf_member_iter(src_fp, src_type, membcmp, &dst)) return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); break; } /* * Unlike the other cases, copying structs and unions is done * manually so as to avoid repeated lookups in ctf_add_member * and to ensure the exact same member offsets as in src_type. */ dst_type = ctf_add_generic(dst_fp, flag, name, &dtd); if (dst_type == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dst.ctb_type = dst_type; dst.ctb_dtd = dtd; if (ctf_member_iter(src_fp, src_type, membadd, &dst) != 0) errs++; /* increment errs and fail at bottom of case */ ctf_set_ctt_size(&dtd->dtd_data, ctf_type_size(src_fp, src_type)); dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, vlen); /* * Make a final pass through the members changing each dmd_type * (a src_fp type) to an equivalent type in dst_fp. We pass * through all members, leaving any that fail set to CTF_ERR. */ for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); dmd != NULL; dmd = ctf_list_next(dmd)) { if ((dmd->dmd_type = ctf_add_type(dst_fp, src_fp, dmd->dmd_type)) == CTF_ERR) errs++; } if (errs) return (CTF_ERR); /* errno is set for us */ /* * Now that we know that we can't fail, we go through and bump * all the reference counts on the member types. */ for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); dmd != NULL; dmd = ctf_list_next(dmd)) ctf_ref_inc(dst_fp, dmd->dmd_type); break; } case CTF_K_ENUM: if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) { if (ctf_enum_iter(src_fp, src_type, enumcmp, &dst) || ctf_enum_iter(dst_fp, dst_type, enumcmp, &src)) return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); } else { ssize_t size = ctf_type_size(src_fp, src_type); if (size == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dst_type = ctf_add_enum(dst_fp, flag, name, size); if ((dst.ctb_type = dst_type) == CTF_ERR || ctf_enum_iter(src_fp, src_type, enumadd, &dst)) return (CTF_ERR); /* errno is set for us */ } break; case CTF_K_FORWARD: if (dst_type == CTF_ERR) { dst_type = ctf_add_forward(dst_fp, flag, name, CTF_K_STRUCT); /* assume STRUCT */ } break; case CTF_K_TYPEDEF: src_type = ctf_type_reference(src_fp, src_type); src_type = ctf_add_type(dst_fp, src_fp, src_type); if (src_type == CTF_ERR) return (CTF_ERR); /* errno is set for us */ /* * If dst_type is not CTF_ERR at this point, we should check if * ctf_type_reference(dst_fp, dst_type) != src_type and if so * fail with ECTF_CONFLICT. However, this causes problems with * typedefs that vary based on things like if * _ILP32x then pid_t is int otherwise long. We therefore omit * this check and assume that if the identically named typedef * already exists in dst_fp, it is correct or equivalent. */ if (dst_type == CTF_ERR) { dst_type = ctf_add_typedef(dst_fp, flag, name, src_type); } break; default: return (ctf_set_errno(dst_fp, ECTF_CORRUPT)); } return (dst_type); } int ctf_add_function(ctf_file_t *fp, ulong_t idx, const ctf_funcinfo_t *fip, const ctf_id_t *argc) { int i; ctf_dsdef_t *dsd; ctf_file_t *afp; uintptr_t symbase = (uintptr_t)fp->ctf_symtab.cts_data; if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (ctf_dsd_lookup(fp, idx) != NULL) return (ctf_set_errno(fp, ECTF_CONFLICT)); if (symbase == (uintptr_t)NULL) return (ctf_set_errno(fp, ECTF_STRTAB)); if (idx > fp->ctf_nsyms) return (ctf_set_errno(fp, ECTF_NOTDATA)); if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) { const Elf32_Sym *symp = (Elf32_Sym *)symbase + idx; if (ELF32_ST_TYPE(symp->st_info) != STT_FUNC) return (ctf_set_errno(fp, ECTF_NOTFUNC)); } else { const Elf64_Sym *symp = (Elf64_Sym *)symbase + idx; if (ELF64_ST_TYPE(symp->st_info) != STT_FUNC) return (ctf_set_errno(fp, ECTF_NOTFUNC)); } afp = fp; if (ctf_lookup_by_id(&afp, fip->ctc_return) == NULL) return (CTF_ERR); /* errno is set for us */ for (i = 0; i < fip->ctc_argc; i++) { afp = fp; if (ctf_lookup_by_id(&afp, argc[i]) == NULL) return (CTF_ERR); /* errno is set for us */ } dsd = ctf_alloc(sizeof (ctf_dsdef_t)); if (dsd == NULL) return (ctf_set_errno(fp, ENOMEM)); dsd->dsd_nargs = fip->ctc_argc; if (fip->ctc_flags & CTF_FUNC_VARARG) dsd->dsd_nargs++; if (dsd->dsd_nargs != 0) { dsd->dsd_argc = ctf_alloc(sizeof (ctf_id_t) * dsd->dsd_nargs); if (dsd->dsd_argc == NULL) { ctf_free(dsd, sizeof (ctf_dsdef_t)); return (ctf_set_errno(fp, ENOMEM)); } bcopy(argc, dsd->dsd_argc, sizeof (ctf_id_t) * fip->ctc_argc); if (fip->ctc_flags & CTF_FUNC_VARARG) dsd->dsd_argc[fip->ctc_argc] = 0; } dsd->dsd_symidx = idx; dsd->dsd_tid = fip->ctc_return; ctf_dsd_insert(fp, dsd); fp->ctf_flags |= LCTF_DIRTY; return (0); } int ctf_add_object(ctf_file_t *fp, ulong_t idx, ctf_id_t type) { ctf_dsdef_t *dsd; ctf_file_t *afp; uintptr_t symbase = (uintptr_t)fp->ctf_symtab.cts_data; if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (ctf_dsd_lookup(fp, idx) != NULL) return (ctf_set_errno(fp, ECTF_CONFLICT)); if (symbase == (uintptr_t)NULL) return (ctf_set_errno(fp, ECTF_STRTAB)); if (idx > fp->ctf_nsyms) return (ctf_set_errno(fp, ECTF_NOTDATA)); if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) { const Elf32_Sym *symp = (Elf32_Sym *)symbase + idx; if (ELF32_ST_TYPE(symp->st_info) != STT_OBJECT) return (ctf_set_errno(fp, ECTF_NOTDATA)); } else { const Elf64_Sym *symp = (Elf64_Sym *)symbase + idx; if (ELF64_ST_TYPE(symp->st_info) != STT_OBJECT) return (ctf_set_errno(fp, ECTF_NOTDATA)); } afp = fp; if (ctf_lookup_by_id(&afp, type) == NULL) return (CTF_ERR); /* errno is set for us */ dsd = ctf_alloc(sizeof (ctf_dsdef_t)); if (dsd == NULL) return (ctf_set_errno(fp, ENOMEM)); dsd->dsd_symidx = idx; dsd->dsd_tid = type; dsd->dsd_argc = NULL; ctf_dsd_insert(fp, dsd); fp->ctf_flags |= LCTF_DIRTY; return (0); } void ctf_dataptr(ctf_file_t *fp, const void **addrp, size_t *sizep) { if (addrp != NULL) *addrp = fp->ctf_base; if (sizep != NULL) *sizep = fp->ctf_size; } int ctf_add_label(ctf_file_t *fp, const char *name, ctf_id_t type, uint_t position) { ctf_file_t *fpd; ctf_dldef_t *dld; if (name == NULL) return (ctf_set_errno(fp, EINVAL)); if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); fpd = fp; if (type != 0 && ctf_lookup_by_id(&fpd, type) == NULL) return (CTF_ERR); /* errno is set for us */ if (type != 0 && (fp->ctf_flags & LCTF_CHILD) && CTF_TYPE_ISPARENT(type)) return (ctf_set_errno(fp, ECTF_NOPARENT)); if (ctf_dld_lookup(fp, name) != NULL) return (ctf_set_errno(fp, ECTF_LABELEXISTS)); if ((dld = ctf_alloc(sizeof (ctf_dldef_t))) == NULL) return (ctf_set_errno(fp, EAGAIN)); if ((dld->dld_name = ctf_strdup(name)) == NULL) { ctf_free(dld, sizeof (ctf_dldef_t)); return (ctf_set_errno(fp, EAGAIN)); } ctf_dprintf("adding label %s, %ld\n", name, type); dld->dld_type = type; fp->ctf_dtstrlen += strlen(name) + 1; ctf_dld_insert(fp, dld, position); fp->ctf_flags |= LCTF_DIRTY; return (0); } /* * Update the size of a structure or union. Note that we don't allow this to * shrink the size of a struct or union, only to increase it. This is useful for * cases when you have a structure whose actual size is larger than the sum of * its members due to padding for natural alignment. */ int ctf_set_size(ctf_file_t *fp, ctf_id_t id, const ulong_t newsz) { ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, id); uint_t kind; size_t oldsz; if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (dtd == NULL) return (ctf_set_errno(fp, ECTF_BADID)); kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) return (ctf_set_errno(fp, ECTF_NOTSOU)); if ((oldsz = dtd->dtd_data.ctt_size) == CTF_LSIZE_SENT) oldsz = CTF_TYPE_LSIZE(&dtd->dtd_data); if (newsz < oldsz) return (ctf_set_errno(fp, EINVAL)); ctf_set_ctt_size(&dtd->dtd_data, newsz); fp->ctf_flags |= LCTF_DIRTY; return (0); } int ctf_set_root(ctf_file_t *fp, ctf_id_t id, const boolean_t vis) { ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, id); uint_t kind, vlen; if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (dtd == NULL) return (ctf_set_errno(fp, ECTF_BADID)); kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, vis, vlen); return (0); }