/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * If compiled without -DRF_INLINE_MACROS then needs -lm at link time * If compiled with -DRF_INLINE_MACROS then needs conv.il at compile time * (i.e. cc -DRF_INLINE_MACROS conv.il mont_mulf.c ) */ #include #include static const double TwoTo16 = 65536.0; static const double TwoToMinus16 = 1.0/65536.0; static const double Zero = 0.0; static const double TwoTo32 = 65536.0 * 65536.0; static const double TwoToMinus32 = 1.0 / (65536.0 * 65536.0); #ifdef RF_INLINE_MACROS double upper32(double); double lower32(double, double); double mod(double, double, double); #else static double upper32(double x) { return (floor(x * TwoToMinus32)); } static double lower32(double x, double y) { return (x - TwoTo32 * floor(x * TwoToMinus32)); } static double mod(double x, double oneoverm, double m) { return (x - m * floor(x * oneoverm)); } #endif static void cleanup(double *dt, int from, int tlen) { int i; double tmp, tmp1, x, x1; tmp = tmp1 = Zero; for (i = 2 * from; i < 2 * tlen; i += 2) { x = dt[i]; x1 = dt[i + 1]; dt[i] = lower32(x, Zero) + tmp; dt[i + 1] = lower32(x1, Zero) + tmp1; tmp = upper32(x); tmp1 = upper32(x1); } } void conv_d16_to_i32(uint32_t *i32, double *d16, int64_t *tmp, int ilen) { int i; int64_t t, t1, /* Using int64_t and not uint64_t */ a, b, c, d; /* because more efficient code is */ /* generated this way, and there */ /* is no overflow. */ t1 = 0; a = (int64_t)d16[0]; b = (int64_t)d16[1]; for (i = 0; i < ilen - 1; i++) { c = (int64_t)d16[2 * i + 2]; t1 += a & 0xffffffff; t = (a >> 32); d = (int64_t)d16[2 * i + 3]; t1 += (b & 0xffff) << 16; t += (b >> 16) + (t1 >> 32); i32[i] = t1 & 0xffffffff; t1 = t; a = c; b = d; } t1 += a & 0xffffffff; t = (a >> 32); t1 += (b & 0xffff) << 16; i32[i] = t1 & 0xffffffff; } void conv_i32_to_d32(double *d32, uint32_t *i32, int len) { int i; #pragma pipeloop(0) for (i = 0; i < len; i++) d32[i] = (double)(i32[i]); } void conv_i32_to_d16(double *d16, uint32_t *i32, int len) { int i; uint32_t a; #pragma pipeloop(0) for (i = 0; i < len; i++) { a = i32[i]; d16[2 * i] = (double)(a & 0xffff); d16[2 * i + 1] = (double)(a >> 16); } } #ifdef RF_INLINE_MACROS void i16_to_d16_and_d32x4(const double *, /* 1/(2^16) */ const double *, /* 2^16 */ const double *, /* 0 */ double *, /* result16 */ double *, /* result32 */ float *); /* source - should be unsigned int* */ /* converted to float* */ #else static void i16_to_d16_and_d32x4(const double *dummy1, /* 1/(2^16) */ const double *dummy2, /* 2^16 */ const double *dummy3, /* 0 */ double *result16, double *result32, float *src) /* source - should be unsigned int* */ /* converted to float* */ { uint32_t *i32; uint32_t a, b, c, d; i32 = (uint32_t *)src; a = i32[0]; b = i32[1]; c = i32[2]; d = i32[3]; result16[0] = (double)(a & 0xffff); result16[1] = (double)(a >> 16); result32[0] = (double)a; result16[2] = (double)(b & 0xffff); result16[3] = (double)(b >> 16); result32[1] = (double)b; result16[4] = (double)(c & 0xffff); result16[5] = (double)(c >> 16); result32[2] = (double)c; result16[6] = (double)(d & 0xffff); result16[7] = (double)(d >> 16); result32[3] = (double)d; } #endif void conv_i32_to_d32_and_d16(double *d32, double *d16, uint32_t *i32, int len) { int i; uint32_t a; #pragma pipeloop(0) for (i = 0; i < len - 3; i += 4) { i16_to_d16_and_d32x4(&TwoToMinus16, &TwoTo16, &Zero, &(d16[2*i]), &(d32[i]), (float *)(&(i32[i]))); } for (; i < len; i++) { a = i32[i]; d32[i] = (double)(i32[i]); d16[2 * i] = (double)(a & 0xffff); d16[2 * i + 1] = (double)(a >> 16); } } static void adjust_montf_result(uint32_t *i32, uint32_t *nint, int len) { int64_t acc; int i; if (i32[len] > 0) i = -1; else { for (i = len - 1; i >= 0; i--) { if (i32[i] != nint[i]) break; } } if ((i < 0) || (i32[i] > nint[i])) { acc = 0; for (i = 0; i < len; i++) { acc = acc + (uint64_t)(i32[i]) - (uint64_t)(nint[i]); i32[i] = acc & 0xffffffff; acc = acc >> 32; } } } /* * the lengths of the input arrays should be at least the following: * result[nlen+1], dm1[nlen], dm2[2*nlen+1], dt[4*nlen+2], dn[nlen], nint[nlen] * all of them should be different from one another */ void mont_mulf_noconv(uint32_t *result, double *dm1, double *dm2, double *dt, double *dn, uint32_t *nint, int nlen, double dn0) { int i, j, jj; double digit, m2j, a, b; double *pdm1, *pdm2, *pdn, *pdtj, pdn_0, pdm1_0; pdm1 = &(dm1[0]); pdm2 = &(dm2[0]); pdn = &(dn[0]); pdm2[2 * nlen] = Zero; if (nlen != 16) { for (i = 0; i < 4 * nlen + 2; i++) dt[i] = Zero; a = dt[0] = pdm1[0] * pdm2[0]; digit = mod(lower32(a, Zero) * dn0, TwoToMinus16, TwoTo16); pdtj = &(dt[0]); for (j = jj = 0; j < 2 * nlen; j++, jj++, pdtj++) { m2j = pdm2[j]; a = pdtj[0] + pdn[0] * digit; b = pdtj[1] + pdm1[0] * pdm2[j + 1] + a * TwoToMinus16; pdtj[1] = b; #pragma pipeloop(0) for (i = 1; i < nlen; i++) { pdtj[2 * i] += pdm1[i] * m2j + pdn[i] * digit; } if (jj == 30) { cleanup(dt, j / 2 + 1, 2 * nlen + 1); jj = 0; } digit = mod(lower32(b, Zero) * dn0, TwoToMinus16, TwoTo16); } } else { a = dt[0] = pdm1[0] * pdm2[0]; dt[65] = dt[64] = dt[63] = dt[62] = dt[61] = dt[60] = dt[59] = dt[58] = dt[57] = dt[56] = dt[55] = dt[54] = dt[53] = dt[52] = dt[51] = dt[50] = dt[49] = dt[48] = dt[47] = dt[46] = dt[45] = dt[44] = dt[43] = dt[42] = dt[41] = dt[40] = dt[39] = dt[38] = dt[37] = dt[36] = dt[35] = dt[34] = dt[33] = dt[32] = dt[31] = dt[30] = dt[29] = dt[28] = dt[27] = dt[26] = dt[25] = dt[24] = dt[23] = dt[22] = dt[21] = dt[20] = dt[19] = dt[18] = dt[17] = dt[16] = dt[15] = dt[14] = dt[13] = dt[12] = dt[11] = dt[10] = dt[9] = dt[8] = dt[7] = dt[6] = dt[5] = dt[4] = dt[3] = dt[2] = dt[1] = Zero; pdn_0 = pdn[0]; pdm1_0 = pdm1[0]; digit = mod(lower32(a, Zero) * dn0, TwoToMinus16, TwoTo16); pdtj = &(dt[0]); for (j = 0; j < 32; j++, pdtj++) { m2j = pdm2[j]; a = pdtj[0] + pdn_0 * digit; b = pdtj[1] + pdm1_0 * pdm2[j + 1] + a * TwoToMinus16; pdtj[1] = b; pdtj[2] += pdm1[1] *m2j + pdn[1] * digit; pdtj[4] += pdm1[2] *m2j + pdn[2] * digit; pdtj[6] += pdm1[3] *m2j + pdn[3] * digit; pdtj[8] += pdm1[4] *m2j + pdn[4] * digit; pdtj[10] += pdm1[5] *m2j + pdn[5] * digit; pdtj[12] += pdm1[6] *m2j + pdn[6] * digit; pdtj[14] += pdm1[7] *m2j + pdn[7] * digit; pdtj[16] += pdm1[8] *m2j + pdn[8] * digit; pdtj[18] += pdm1[9] *m2j + pdn[9] * digit; pdtj[20] += pdm1[10] *m2j + pdn[10] * digit; pdtj[22] += pdm1[11] *m2j + pdn[11] * digit; pdtj[24] += pdm1[12] *m2j + pdn[12] * digit; pdtj[26] += pdm1[13] *m2j + pdn[13] * digit; pdtj[28] += pdm1[14] *m2j + pdn[14] * digit; pdtj[30] += pdm1[15] *m2j + pdn[15] * digit; /* no need for cleanup, cannot overflow */ digit = mod(lower32(b, Zero) * dn0, TwoToMinus16, TwoTo16); } } conv_d16_to_i32(result, dt + 2 * nlen, (int64_t *)dt, nlen + 1); adjust_montf_result(result, nint, nlen); }