/*- * See the file LICENSE for redistribution information. * * Copyright (c) 1996, 1997, 1998 * Sleepycat Software. All rights reserved. * * @(#)db_page.h 10.18 (Sleepycat) 12/2/98 */ #ifndef _DB_PAGE_H_ #define _DB_PAGE_H_ /* * DB page formats. * * This implementation requires that values within the following structures * NOT be padded -- note, ANSI C permits random padding within structures. * If your compiler pads randomly you can just forget ever making DB run on * your system. In addition, no data type can require larger alignment than * its own size, e.g., a 4-byte data element may not require 8-byte alignment. * * Note that key/data lengths are often stored in db_indx_t's -- this is * not accidental, nor does it limit the key/data size. If the key/data * item fits on a page, it's guaranteed to be small enough to fit into a * db_indx_t, and storing it in one saves space. */ #define PGNO_METADATA 0 /* Metadata page number. */ #define PGNO_INVALID 0 /* Metadata page number, therefore illegal. */ #define PGNO_ROOT 1 /* Root is page #1. */ /* * When we create pages in mpool, we ask mpool to clear some number of bytes * in the header. This number must be at least as big as the regular page * headers and cover enough of the btree and hash meta-data pages to obliterate * the magic and version numbers. */ #define DB_PAGE_CLEAR_LEN 32 /************************************************************************ BTREE METADATA PAGE LAYOUT ************************************************************************/ /* * Btree metadata page layout: */ typedef struct _btmeta { DB_LSN lsn; /* 00-07: LSN. */ db_pgno_t pgno; /* 08-11: Current page number. */ u_int32_t magic; /* 12-15: Magic number. */ u_int32_t version; /* 16-19: Version. */ u_int32_t pagesize; /* 20-23: Pagesize. */ u_int32_t maxkey; /* 24-27: Btree: Maxkey. */ u_int32_t minkey; /* 28-31: Btree: Minkey. */ u_int32_t free; /* 32-35: Free list page number. */ #define BTM_DUP 0x001 /* Duplicates. */ #define BTM_RECNO 0x002 /* Recno tree. */ #define BTM_RECNUM 0x004 /* Btree: maintain record count. */ #define BTM_FIXEDLEN 0x008 /* Recno: fixed length records. */ #define BTM_RENUMBER 0x010 /* Recno: renumber on insert/delete. */ #define BTM_MASK 0x01f u_int32_t flags; /* 36-39: Flags. */ u_int32_t re_len; /* 40-43: Recno: fixed-length record length. */ u_int32_t re_pad; /* 44-47: Recno: fixed-length record pad. */ /* 48-67: Unique file ID. */ u_int8_t uid[DB_FILE_ID_LEN]; } BTMETA; /************************************************************************ HASH METADATA PAGE LAYOUT ************************************************************************/ /* * Hash metadata page layout: */ /* Hash Table Information */ typedef struct hashhdr { /* Disk resident portion */ DB_LSN lsn; /* 00-07: LSN of the header page */ db_pgno_t pgno; /* 08-11: Page number (btree compatibility). */ u_int32_t magic; /* 12-15: Magic NO for hash tables */ u_int32_t version; /* 16-19: Version ID */ u_int32_t pagesize; /* 20-23: Bucket/Page Size */ u_int32_t ovfl_point; /* 24-27: Overflow page allocation location */ u_int32_t last_freed; /* 28-31: Last freed overflow page pgno */ u_int32_t max_bucket; /* 32-35: ID of Maximum bucket in use */ u_int32_t high_mask; /* 36-39: Modulo mask into table */ u_int32_t low_mask; /* 40-43: Modulo mask into table lower half */ u_int32_t ffactor; /* 44-47: Fill factor */ u_int32_t nelem; /* 48-51: Number of keys in hash table */ u_int32_t h_charkey; /* 52-55: Value of hash(CHARKEY) */ #define DB_HASH_DUP 0x01 u_int32_t flags; /* 56-59: Allow duplicates. */ #define NCACHED 32 /* number of spare points */ /* 60-187: Spare pages for overflow */ u_int32_t spares[NCACHED]; /* 188-207: Unique file ID. */ u_int8_t uid[DB_FILE_ID_LEN]; /* * Minimum page size is 256. */ } HASHHDR; /************************************************************************ MAIN PAGE LAYOUT ************************************************************************/ /* * +-----------------------------------+ * | lsn | pgno | prev pgno | * +-----------------------------------+ * | next pgno | entries | hf offset | * +-----------------------------------+ * | level | type | index | * +-----------------------------------+ * | index | free --> | * +-----------+-----------------------+ * | F R E E A R E A | * +-----------------------------------+ * | <-- free | item | * +-----------------------------------+ * | item | item | item | * +-----------------------------------+ * * sizeof(PAGE) == 26 bytes, and the following indices are guaranteed to be * two-byte aligned. * * For hash and btree leaf pages, index items are paired, e.g., inp[0] is the * key for inp[1]'s data. All other types of pages only contain single items. */ typedef struct _db_page { DB_LSN lsn; /* 00-07: Log sequence number. */ db_pgno_t pgno; /* 08-11: Current page number. */ db_pgno_t prev_pgno; /* 12-15: Previous page number. */ db_pgno_t next_pgno; /* 16-19: Next page number. */ db_indx_t entries; /* 20-21: Number of item pairs on the page. */ db_indx_t hf_offset; /* 22-23: High free byte page offset. */ /* * The btree levels are numbered from the leaf to the root, starting * with 1, so the leaf is level 1, its parent is level 2, and so on. * We maintain this level on all btree pages, but the only place that * we actually need it is on the root page. It would not be difficult * to hide the byte on the root page once it becomes an internal page, * so we could get this byte back if we needed it for something else. */ #define LEAFLEVEL 1 #define MAXBTREELEVEL 255 u_int8_t level; /* 24: Btree tree level. */ #define P_INVALID 0 /* Invalid page type. */ #define P_DUPLICATE 1 /* Duplicate. */ #define P_HASH 2 /* Hash. */ #define P_IBTREE 3 /* Btree internal. */ #define P_IRECNO 4 /* Recno internal. */ #define P_LBTREE 5 /* Btree leaf. */ #define P_LRECNO 6 /* Recno leaf. */ #define P_OVERFLOW 7 /* Overflow. */ u_int8_t type; /* 25: Page type. */ db_indx_t inp[1]; /* Variable length index of items. */ } PAGE; /* Element macros. */ #define LSN(p) (((PAGE *)p)->lsn) #define PGNO(p) (((PAGE *)p)->pgno) #define PREV_PGNO(p) (((PAGE *)p)->prev_pgno) #define NEXT_PGNO(p) (((PAGE *)p)->next_pgno) #define NUM_ENT(p) (((PAGE *)p)->entries) #define HOFFSET(p) (((PAGE *)p)->hf_offset) #define LEVEL(p) (((PAGE *)p)->level) #define TYPE(p) (((PAGE *)p)->type) /* * !!! * The next_pgno and prev_pgno fields are not maintained for btree and recno * internal pages. It's a minor performance improvement, and more, it's * hard to do when deleting internal pages, and it decreases the chance of * deadlock during deletes and splits. * * !!! * The btree/recno access method needs db_recno_t bytes of space on the root * page to specify how many records are stored in the tree. (The alternative * is to store the number of records in the meta-data page, which will create * a second hot spot in trees being actively modified, or recalculate it from * the BINTERNAL fields on each access.) Overload the prev_pgno field. */ #define RE_NREC(p) \ (TYPE(p) == P_LBTREE ? NUM_ENT(p) / 2 : \ TYPE(p) == P_LRECNO ? NUM_ENT(p) : PREV_PGNO(p)) #define RE_NREC_ADJ(p, adj) \ PREV_PGNO(p) += adj; #define RE_NREC_SET(p, num) \ PREV_PGNO(p) = num; /* * Initialize a page. * * !!! * Don't modify the page's LSN, code depends on it being unchanged after a * P_INIT call. */ #define P_INIT(pg, pg_size, n, pg_prev, pg_next, btl, pg_type) do { \ PGNO(pg) = n; \ PREV_PGNO(pg) = pg_prev; \ NEXT_PGNO(pg) = pg_next; \ NUM_ENT(pg) = 0; \ HOFFSET(pg) = pg_size; \ LEVEL(pg) = btl; \ TYPE(pg) = pg_type; \ } while (0) /* Page header length (offset to first index). */ #define P_OVERHEAD (SSZA(PAGE, inp)) /* First free byte. */ #define LOFFSET(pg) (P_OVERHEAD + NUM_ENT(pg) * sizeof(db_indx_t)) /* Free space on the page. */ #define P_FREESPACE(pg) (HOFFSET(pg) - LOFFSET(pg)) /* Get a pointer to the bytes at a specific index. */ #define P_ENTRY(pg, indx) ((u_int8_t *)pg + ((PAGE *)pg)->inp[indx]) /************************************************************************ OVERFLOW PAGE LAYOUT ************************************************************************/ /* * Overflow items are referenced by HOFFPAGE and BOVERFLOW structures, which * store a page number (the first page of the overflow item) and a length * (the total length of the overflow item). The overflow item consists of * some number of overflow pages, linked by the next_pgno field of the page. * A next_pgno field of PGNO_INVALID flags the end of the overflow item. * * Overflow page overloads: * The amount of overflow data stored on each page is stored in the * hf_offset field. * * The implementation reference counts overflow items as it's possible * for them to be promoted onto btree internal pages. The reference * count is stored in the entries field. */ #define OV_LEN(p) (((PAGE *)p)->hf_offset) #define OV_REF(p) (((PAGE *)p)->entries) /* Maximum number of bytes that you can put on an overflow page. */ #define P_MAXSPACE(psize) ((psize) - P_OVERHEAD) /************************************************************************ HASH PAGE LAYOUT ************************************************************************/ /* Each index references a group of bytes on the page. */ #define H_KEYDATA 1 /* Key/data item. */ #define H_DUPLICATE 2 /* Duplicate key/data item. */ #define H_OFFPAGE 3 /* Overflow key/data item. */ #define H_OFFDUP 4 /* Overflow page of duplicates. */ /* * !!! * Items on hash pages are (potentially) unaligned, so we can never cast the * (page + offset) pointer to an HKEYDATA, HOFFPAGE or HOFFDUP structure, as * we do with B+tree on-page structures. Because we frequently want the type * field, it requires no alignment, and it's in the same location in all three * structures, there's a pair of macros. */ #define HPAGE_PTYPE(p) (*(u_int8_t *)p) #define HPAGE_TYPE(pg, indx) (*P_ENTRY(pg, indx)) /* * The first and second types are H_KEYDATA and H_DUPLICATE, represented * by the HKEYDATA structure: * * +-----------------------------------+ * | type | key/data ... | * +-----------------------------------+ * * For duplicates, the data field encodes duplicate elements in the data * field: * * +---------------------------------------------------------------+ * | type | len1 | element1 | len1 | len2 | element2 | len2 | * +---------------------------------------------------------------+ * * Thus, by keeping track of the offset in the element, we can do both * backward and forward traversal. */ typedef struct _hkeydata { u_int8_t type; /* 00: Page type. */ u_int8_t data[1]; /* Variable length key/data item. */ } HKEYDATA; #define HKEYDATA_DATA(p) (((u_int8_t *)p) + SSZA(HKEYDATA, data)) /* * The length of any HKEYDATA item. Note that indx is an element index, * not a PAIR index. */ #define LEN_HITEM(pg, pgsize, indx) \ (((indx) == 0 ? pgsize : pg->inp[indx - 1]) - pg->inp[indx]) #define LEN_HKEYDATA(pg, psize, indx) \ (((indx) == 0 ? psize : pg->inp[indx - 1]) - \ pg->inp[indx] - HKEYDATA_SIZE(0)) /* * Page space required to add a new HKEYDATA item to the page, with and * without the index value. */ #define HKEYDATA_SIZE(len) \ ((len) + SSZA(HKEYDATA, data)) #define HKEYDATA_PSIZE(len) \ (HKEYDATA_SIZE(len) + sizeof(db_indx_t)) /* Put a HKEYDATA item at the location referenced by a page entry. */ #define PUT_HKEYDATA(pe, kd, len, type) { \ ((HKEYDATA *)pe)->type = type; \ memcpy((u_int8_t *)pe + sizeof(u_int8_t), kd, len); \ } /* * Macros the describe the page layout in terms of key-data pairs. * The use of "pindex" indicates that the argument is the index * expressed in pairs instead of individual elements. */ #define H_NUMPAIRS(pg) (NUM_ENT(pg) / 2) #define H_KEYINDEX(pindx) (2 * (pindx)) #define H_DATAINDEX(pindx) ((2 * (pindx)) + 1) #define H_PAIRKEY(pg, pindx) P_ENTRY(pg, H_KEYINDEX(pindx)) #define H_PAIRDATA(pg, pindx) P_ENTRY(pg, H_DATAINDEX(pindx)) #define H_PAIRSIZE(pg, psize, pindx) \ (LEN_HITEM(pg, psize, H_KEYINDEX(pindx)) + \ LEN_HITEM(pg, psize, H_DATAINDEX(pindx))) #define LEN_HDATA(p, psize, pindx) LEN_HKEYDATA(p, psize, H_DATAINDEX(pindx)) #define LEN_HKEY(p, psize, pindx) LEN_HKEYDATA(p, psize, H_KEYINDEX(pindx)) /* * The third type is the H_OFFPAGE, represented by the HOFFPAGE structure: */ typedef struct _hoffpage { u_int8_t type; /* 00: Page type and delete flag. */ u_int8_t unused[3]; /* 01-03: Padding, unused. */ db_pgno_t pgno; /* 04-07: Offpage page number. */ u_int32_t tlen; /* 08-11: Total length of item. */ } HOFFPAGE; #define HOFFPAGE_PGNO(p) (((u_int8_t *)p) + SSZ(HOFFPAGE, pgno)) #define HOFFPAGE_TLEN(p) (((u_int8_t *)p) + SSZ(HOFFPAGE, tlen)) /* * Page space required to add a new HOFFPAGE item to the page, with and * without the index value. */ #define HOFFPAGE_SIZE (sizeof(HOFFPAGE)) #define HOFFPAGE_PSIZE (HOFFPAGE_SIZE + sizeof(db_indx_t)) /* * The fourth type is H_OFFDUP represented by the HOFFDUP structure: */ typedef struct _hoffdup { u_int8_t type; /* 00: Page type and delete flag. */ u_int8_t unused[3]; /* 01-03: Padding, unused. */ db_pgno_t pgno; /* 04-07: Offpage page number. */ } HOFFDUP; #define HOFFDUP_PGNO(p) (((u_int8_t *)p) + SSZ(HOFFDUP, pgno)) /* * Page space required to add a new HOFFDUP item to the page, with and * without the index value. */ #define HOFFDUP_SIZE (sizeof(HOFFDUP)) #define HOFFDUP_PSIZE (HOFFDUP_SIZE + sizeof(db_indx_t)) /************************************************************************ BTREE PAGE LAYOUT ************************************************************************/ /* Each index references a group of bytes on the page. */ #define B_KEYDATA 1 /* Key/data item. */ #define B_DUPLICATE 2 /* Duplicate key/data item. */ #define B_OVERFLOW 3 /* Overflow key/data item. */ /* * We have to store a deleted entry flag in the page. The reason is complex, * but the simple version is that we can't delete on-page items referenced by * a cursor -- the return order of subsequent insertions might be wrong. The * delete flag is an overload of the top bit of the type byte. */ #define B_DELETE (0x80) #define B_DCLR(t) (t) &= ~B_DELETE #define B_DSET(t) (t) |= B_DELETE #define B_DISSET(t) ((t) & B_DELETE) #define B_TYPE(t) ((t) & ~B_DELETE) #define B_TSET(t, type, deleted) { \ (t) = (type); \ if (deleted) \ B_DSET(t); \ } /* * The first type is B_KEYDATA, represented by the BKEYDATA structure: */ typedef struct _bkeydata { db_indx_t len; /* 00-01: Key/data item length. */ u_int8_t type; /* 02: Page type AND DELETE FLAG. */ u_int8_t data[1]; /* Variable length key/data item. */ } BKEYDATA; /* Get a BKEYDATA item for a specific index. */ #define GET_BKEYDATA(pg, indx) \ ((BKEYDATA *)P_ENTRY(pg, indx)) /* * Page space required to add a new BKEYDATA item to the page, with and * without the index value. */ #define BKEYDATA_SIZE(len) \ ALIGN((len) + SSZA(BKEYDATA, data), 4) #define BKEYDATA_PSIZE(len) \ (BKEYDATA_SIZE(len) + sizeof(db_indx_t)) /* * The second and third types are B_DUPLICATE and B_OVERFLOW, represented * by the BOVERFLOW structure. */ typedef struct _boverflow { db_indx_t unused1; /* 00-01: Padding, unused. */ u_int8_t type; /* 02: Page type AND DELETE FLAG. */ u_int8_t unused2; /* 03: Padding, unused. */ db_pgno_t pgno; /* 04-07: Next page number. */ u_int32_t tlen; /* 08-11: Total length of item. */ } BOVERFLOW; /* Get a BOVERFLOW item for a specific index. */ #define GET_BOVERFLOW(pg, indx) \ ((BOVERFLOW *)P_ENTRY(pg, indx)) /* * Page space required to add a new BOVERFLOW item to the page, with and * without the index value. */ #define BOVERFLOW_SIZE \ ALIGN(sizeof(BOVERFLOW), 4) #define BOVERFLOW_PSIZE \ (BOVERFLOW_SIZE + sizeof(db_indx_t)) /* * Btree leaf and hash page layouts group indices in sets of two, one * for the key and one for the data. Everything else does it in sets * of one to save space. I use the following macros so that it's real * obvious what's going on... */ #define O_INDX 1 #define P_INDX 2 /************************************************************************ BTREE INTERNAL PAGE LAYOUT ************************************************************************/ /* * Btree internal entry. */ typedef struct _binternal { db_indx_t len; /* 00-01: Key/data item length. */ u_int8_t type; /* 02: Page type AND DELETE FLAG. */ u_int8_t unused; /* 03: Padding, unused. */ db_pgno_t pgno; /* 04-07: Page number of referenced page. */ db_recno_t nrecs; /* 08-11: Subtree record count. */ u_int8_t data[1]; /* Variable length key item. */ } BINTERNAL; /* Get a BINTERNAL item for a specific index. */ #define GET_BINTERNAL(pg, indx) \ ((BINTERNAL *)P_ENTRY(pg, indx)) /* * Page space required to add a new BINTERNAL item to the page, with and * without the index value. */ #define BINTERNAL_SIZE(len) \ ALIGN((len) + SSZA(BINTERNAL, data), 4) #define BINTERNAL_PSIZE(len) \ (BINTERNAL_SIZE(len) + sizeof(db_indx_t)) /************************************************************************ RECNO INTERNAL PAGE LAYOUT ************************************************************************/ /* * The recno internal entry. * * XXX * Why not fold this into the db_indx_t structure, it's fixed length? */ typedef struct _rinternal { db_pgno_t pgno; /* 00-03: Page number of referenced page. */ db_recno_t nrecs; /* 04-07: Subtree record count. */ } RINTERNAL; /* Get a RINTERNAL item for a specific index. */ #define GET_RINTERNAL(pg, indx) \ ((RINTERNAL *)P_ENTRY(pg, indx)) /* * Page space required to add a new RINTERNAL item to the page, with and * without the index value. */ #define RINTERNAL_SIZE \ ALIGN(sizeof(RINTERNAL), 4) #define RINTERNAL_PSIZE \ (RINTERNAL_SIZE + sizeof(db_indx_t)) #endif /* _DB_PAGE_H_ */