/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * Copyright 2018 Joyent, Inc. * Copyright 2024 Oxide Computer Company */ /* * Libkvm Kernel Target Intel 64-bit component * * This file provides the ISA-dependent portion of the libkvm kernel target. * For more details on the implementation refer to mdb_kvm.c. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*ARGSUSED*/ int kt_regs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { mdb_amd64_printregs((const mdb_tgt_gregset_t *)addr); return (DCMD_OK); } static int kt_stack_common(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv, mdb_tgt_stack_f *func) { kt_data_t *kt = mdb.m_target->t_data; void *arg = (void *)(uintptr_t)mdb.m_nargs; mdb_tgt_gregset_t gregs, *grp; if (flags & DCMD_ADDRSPEC) { bzero(&gregs, sizeof (gregs)); gregs.kregs[KREG_RBP] = addr; grp = &gregs; } else grp = kt->k_regs; if (argc != 0) { if (argv->a_type == MDB_TYPE_CHAR || argc > 1) return (DCMD_USAGE); if (argv->a_type == MDB_TYPE_STRING) arg = (void *)mdb_strtoull(argv->a_un.a_str); else arg = (void *)argv->a_un.a_val; } (void) mdb_amd64_kvm_stack_iter(mdb.m_target, grp, func, arg); return (DCMD_OK); } int kt_stack(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { return (kt_stack_common(addr, flags, argc, argv, mdb_amd64_kvm_frame)); } int kt_stackv(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { return (kt_stack_common(addr, flags, argc, argv, mdb_amd64_kvm_framev)); } const mdb_tgt_ops_t kt_amd64_ops = { .t_setflags = kt_setflags, .t_setcontext = kt_setcontext, .t_activate = kt_activate, .t_deactivate = kt_deactivate, .t_periodic = (void (*)())(uintptr_t)mdb_tgt_nop, .t_destroy = kt_destroy, .t_name = kt_name, .t_isa = (const char *(*)())mdb_conf_isa, .t_platform = kt_platform, .t_uname = kt_uname, .t_dmodel = kt_dmodel, .t_aread = kt_aread, .t_awrite = kt_awrite, .t_vread = kt_vread, .t_vwrite = kt_vwrite, .t_pread = kt_pread, .t_pwrite = kt_pwrite, .t_fread = kt_fread, .t_fwrite = kt_fwrite, .t_ioread = (ssize_t (*)())mdb_tgt_notsup, .t_iowrite = (ssize_t (*)())mdb_tgt_notsup, .t_vtop = kt_vtop, .t_lookup_by_name = kt_lookup_by_name, .t_lookup_by_addr = kt_lookup_by_addr, .t_symbol_iter = kt_symbol_iter, .t_mapping_iter = kt_mapping_iter, .t_object_iter = kt_object_iter, .t_addr_to_map = kt_addr_to_map, .t_name_to_map = kt_name_to_map, .t_addr_to_ctf = kt_addr_to_ctf, .t_name_to_ctf = kt_name_to_ctf, .t_status = kt_status, .t_run = (int (*)())(uintptr_t)mdb_tgt_notsup, .t_step = (int (*)())(uintptr_t)mdb_tgt_notsup, .t_step_out = (int (*)())(uintptr_t)mdb_tgt_notsup, .t_next = (int (*)())(uintptr_t)mdb_tgt_notsup, .t_cont = (int (*)())(uintptr_t)mdb_tgt_notsup, .t_signal = (int (*)())(uintptr_t)mdb_tgt_notsup, .t_add_vbrkpt = (int (*)())(uintptr_t)mdb_tgt_null, .t_add_sbrkpt = (int (*)())(uintptr_t)mdb_tgt_null, .t_add_pwapt = (int (*)())(uintptr_t)mdb_tgt_null, .t_add_vwapt = (int (*)())(uintptr_t)mdb_tgt_null, .t_add_iowapt = (int (*)())(uintptr_t)mdb_tgt_null, .t_add_sysenter = (int (*)())(uintptr_t)mdb_tgt_null, .t_add_sysexit = (int (*)())(uintptr_t)mdb_tgt_null, .t_add_signal = (int (*)())(uintptr_t)mdb_tgt_null, .t_add_fault = (int (*)())(uintptr_t)mdb_tgt_null, .t_getareg = kt_getareg, .t_putareg = kt_putareg, .t_stack_iter = mdb_amd64_kvm_stack_iter, .t_auxv = (int (*)())(uintptr_t)mdb_tgt_notsup, .t_thread_name = (int (*)())(uintptr_t)mdb_tgt_notsup, }; void kt_regs_to_kregs(struct regs *regs, mdb_tgt_gregset_t *gregs) { gregs->kregs[KREG_SAVFP] = regs->r_savfp; gregs->kregs[KREG_SAVPC] = regs->r_savpc; gregs->kregs[KREG_RDI] = regs->r_rdi; gregs->kregs[KREG_RSI] = regs->r_rsi; gregs->kregs[KREG_RDX] = regs->r_rdx; gregs->kregs[KREG_RCX] = regs->r_rcx; gregs->kregs[KREG_R8] = regs->r_r8; gregs->kregs[KREG_R9] = regs->r_r9; gregs->kregs[KREG_RAX] = regs->r_rax; gregs->kregs[KREG_RBX] = regs->r_rbx; gregs->kregs[KREG_RBP] = regs->r_rbp; gregs->kregs[KREG_R10] = regs->r_r10; gregs->kregs[KREG_R11] = regs->r_r11; gregs->kregs[KREG_R12] = regs->r_r12; gregs->kregs[KREG_R13] = regs->r_r13; gregs->kregs[KREG_R14] = regs->r_r14; gregs->kregs[KREG_R15] = regs->r_r15; gregs->kregs[KREG_DS] = regs->r_ds; gregs->kregs[KREG_ES] = regs->r_es; gregs->kregs[KREG_FS] = regs->r_fs; gregs->kregs[KREG_GS] = regs->r_gs; gregs->kregs[KREG_TRAPNO] = regs->r_trapno; gregs->kregs[KREG_ERR] = regs->r_err; gregs->kregs[KREG_RIP] = regs->r_rip; gregs->kregs[KREG_CS] = regs->r_cs; gregs->kregs[KREG_RFLAGS] = regs->r_rfl; gregs->kregs[KREG_RSP] = regs->r_rsp; gregs->kregs[KREG_SS] = regs->r_ss; } void kt_amd64_init(mdb_tgt_t *t) { kt_data_t *kt = t->t_data; panic_data_t pd; struct regs regs; uintptr_t addr; /* * Initialize the machine-dependent parts of the kernel target * structure. Once this is complete and we fill in the ops * vector, the target is now fully constructed and we can use * the target API itself to perform the rest of our initialization. */ kt->k_rds = mdb_amd64_kregs; kt->k_regs = mdb_zalloc(sizeof (mdb_tgt_gregset_t), UM_SLEEP); kt->k_regsize = sizeof (mdb_tgt_gregset_t); kt->k_dcmd_regs = kt_regs; kt->k_dcmd_stack = kt_stack; kt->k_dcmd_stackv = kt_stackv; kt->k_dcmd_stackr = kt_stackv; kt->k_dcmd_cpustack = kt_cpustack; kt->k_dcmd_cpuregs = kt_cpuregs; t->t_ops = &kt_amd64_ops; (void) mdb_dis_select("amd64"); /* * Lookup the symbols corresponding to subroutines in locore.s where * we expect a saved regs structure to be pushed on the stack. When * performing stack tracebacks we will attempt to detect interrupt * frames by comparing the %eip value to these symbols. */ (void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC, "cmnint", &kt->k_intr_sym, NULL); (void) mdb_tgt_lookup_by_name(t, MDB_TGT_OBJ_EXEC, "cmntrap", &kt->k_trap_sym, NULL); /* * Don't attempt to load any thread or register information if * we're examining the live operating system. */ if (kt->k_symfile != NULL && strcmp(kt->k_symfile, "/dev/ksyms") == 0) return; /* * If the panicbuf symbol is present and we can consume a panicbuf * header of the appropriate version from this address, then we can * initialize our current register set based on its contents. * Prior to the re-structuring of panicbuf, our only register data * was the panic_regs label_t, into which a setjmp() was performed, * or the panic_reg register pointer, which was only non-zero if * the system panicked as a result of a trap calling die(). */ if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &pd, sizeof (pd), MDB_TGT_OBJ_EXEC, "panicbuf") == sizeof (pd) && pd.pd_version == PANICBUFVERS) { size_t pd_size = MIN(PANICBUFSIZE, pd.pd_msgoff); panic_data_t *pdp = mdb_zalloc(pd_size, UM_SLEEP); uint_t i, n; (void) mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, pdp, pd_size, MDB_TGT_OBJ_EXEC, "panicbuf"); n = (pd_size - (sizeof (panic_data_t) - sizeof (panic_nv_t))) / sizeof (panic_nv_t); for (i = 0; i < n; i++) { (void) kt_putareg(t, kt->k_tid, pdp->pd_nvdata[i].pnv_name, pdp->pd_nvdata[i].pnv_value); } mdb_free(pdp, pd_size); return; }; if (mdb_tgt_readsym(t, MDB_TGT_AS_VIRT, &addr, sizeof (addr), MDB_TGT_OBJ_EXEC, "panic_reg") == sizeof (addr) && addr != 0 && mdb_tgt_vread(t, ®s, sizeof (regs), addr) == sizeof (regs)) { kt_regs_to_kregs(®s, kt->k_regs); return; } /* * If we can't read any panic regs, then our final try is for any CPU * context that may have been stored (for example, in Xen core dumps). */ if (kt_kvmregs(t, 0, kt->k_regs) == 0) return; warn("failed to read panicbuf and panic_reg -- " "current register set will be unavailable\n"); }