/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include "umem.h" #include #include #include #include #include #include #include #include "leaky_impl.h" #include "misc.h" #include "proc_kludges.h" #include "umem_pagesize.h" /* * This file defines the libumem target for ../genunix/leaky.c. * * See ../genunix/leaky_impl.h for the target interface definition. */ /* * leaky_subr_dump_start()/_end() depend on the ordering of TYPE_VMEM, * TYPE_MMAP and TYPE_SBRK. */ #define TYPE_MMAP 0 /* lkb_data is the size */ #define TYPE_SBRK 1 /* lkb_data is the size */ #define TYPE_VMEM 2 /* lkb_data is the vmem_seg's size */ #define TYPE_CACHE 3 /* lkb_cid is the bufctl's cache */ #define TYPE_UMEM 4 /* lkb_cid is the bufctl's cache */ #define LKM_CTL_BUFCTL 0 /* normal allocation, PTR is bufctl */ #define LKM_CTL_VMSEG 1 /* oversize allocation, PTR is vmem_seg_t */ #define LKM_CTL_MEMORY 2 /* non-umem mmap or brk, PTR is region start */ #define LKM_CTL_CACHE 3 /* normal alloc, non-debug, PTR is cache */ #define LKM_CTL_MASK 3L /* * create a lkm_bufctl from a pointer and a type */ #define LKM_CTL(ptr, type) (LKM_CTLPTR(ptr) | (type)) #define LKM_CTLPTR(ctl) ((uintptr_t)(ctl) & ~(LKM_CTL_MASK)) #define LKM_CTLTYPE(ctl) ((uintptr_t)(ctl) & (LKM_CTL_MASK)) static uintptr_t leak_brkbase; static uintptr_t leak_brksize; #define LEAKY_INBRK(ptr) \ (((uintptr_t)(ptr) - leak_brkbase) < leak_brksize) typedef struct leaky_seg_info { uintptr_t ls_start; uintptr_t ls_end; } leaky_seg_info_t; typedef struct leaky_maps { leaky_seg_info_t *lm_segs; uintptr_t lm_seg_count; uintptr_t lm_seg_max; pstatus_t *lm_pstatus; leak_mtab_t **lm_lmp; } leaky_maps_t; /*ARGSUSED*/ static int leaky_mtab(uintptr_t addr, const umem_bufctl_audit_t *bcp, leak_mtab_t **lmp) { leak_mtab_t *lm = (*lmp)++; lm->lkm_base = (uintptr_t)bcp->bc_addr; lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_BUFCTL); return (WALK_NEXT); } /*ARGSUSED*/ static int leaky_mtab_addr(uintptr_t addr, void *ignored, leak_mtab_t **lmp) { leak_mtab_t *lm = (*lmp)++; lm->lkm_base = addr; return (WALK_NEXT); } static int leaky_seg(uintptr_t addr, const vmem_seg_t *seg, leak_mtab_t **lmp) { leak_mtab_t *lm = (*lmp)++; lm->lkm_base = seg->vs_start; lm->lkm_limit = seg->vs_end; lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_VMSEG); return (WALK_NEXT); } static int leaky_vmem(uintptr_t addr, const vmem_t *vmem, leak_mtab_t **lmp) { if (strcmp(vmem->vm_name, "umem_oversize") != 0 && strcmp(vmem->vm_name, "umem_memalign") != 0) return (WALK_NEXT); if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_seg, lmp, addr) == -1) mdb_warn("can't walk vmem_alloc for %s (%p)", vmem->vm_name, addr); return (WALK_NEXT); } /*ARGSUSED*/ static int leaky_estimate_vmem(uintptr_t addr, const vmem_t *vmem, size_t *est) { if (strcmp(vmem->vm_name, "umem_oversize") != 0 && strcmp(vmem->vm_name, "umem_memalign") != 0) return (WALK_NEXT); *est += (int)(vmem->vm_kstat.vk_alloc - vmem->vm_kstat.vk_free); return (WALK_NEXT); } static int leaky_seg_cmp(const void *l, const void *r) { const leaky_seg_info_t *lhs = (const leaky_seg_info_t *)l; const leaky_seg_info_t *rhs = (const leaky_seg_info_t *)r; if (lhs->ls_start < rhs->ls_start) return (-1); if (lhs->ls_start > rhs->ls_start) return (1); return (0); } static ssize_t leaky_seg_search(uintptr_t addr, leaky_seg_info_t *listp, unsigned count) { ssize_t left = 0, right = count - 1, guess; while (right >= left) { guess = (right + left) >> 1; if (addr < listp[guess].ls_start) { right = guess - 1; continue; } if (addr >= listp[guess].ls_end) { left = guess + 1; continue; } return (guess); } return (-1); } /*ARGSUSED*/ static int leaky_count(uintptr_t addr, void *unused, size_t *total) { ++*total; return (WALK_NEXT); } /*ARGSUSED*/ static int leaky_read_segs(uintptr_t addr, const vmem_seg_t *seg, leaky_maps_t *lmp) { leaky_seg_info_t *my_si = lmp->lm_segs + lmp->lm_seg_count; if (seg->vs_start == seg->vs_end && seg->vs_start == 0) return (WALK_NEXT); if (lmp->lm_seg_count++ >= lmp->lm_seg_max) return (WALK_ERR); my_si->ls_start = seg->vs_start; my_si->ls_end = seg->vs_end; return (WALK_NEXT); } /* ARGSUSED */ static int leaky_process_anon_mappings(uintptr_t ignored, const prmap_t *pmp, leaky_maps_t *lmp) { uintptr_t start = pmp->pr_vaddr; uintptr_t end = pmp->pr_vaddr + pmp->pr_size; leak_mtab_t *lm; pstatus_t *Psp = lmp->lm_pstatus; uintptr_t brk_start = Psp->pr_brkbase; uintptr_t brk_end = Psp->pr_brkbase + Psp->pr_brksize; int has_brk = 0; int in_vmem = 0; /* * This checks if there is any overlap between the segment and the brk. */ if (end > brk_start && start < brk_end) has_brk = 1; if (leaky_seg_search(start, lmp->lm_segs, lmp->lm_seg_count) != -1) in_vmem = 1; /* * We only want anonymous, mmaped memory. That means: * * 1. Must be read-write * 2. Cannot be shared * 3. Cannot have backing * 4. Cannot be in the brk * 5. Cannot be part of the vmem heap. */ if ((pmp->pr_mflags & (MA_READ | MA_WRITE)) == (MA_READ | MA_WRITE) && (pmp->pr_mflags & MA_SHARED) == 0 && (pmp->pr_mapname[0] == 0) && !has_brk && !in_vmem) { dprintf(("mmaped region: [%p, %p)\n", start, end)); lm = (*lmp->lm_lmp)++; lm->lkm_base = start; lm->lkm_limit = end; lm->lkm_bufctl = LKM_CTL(pmp->pr_vaddr, LKM_CTL_MEMORY); } return (WALK_NEXT); } static void leaky_handle_sbrk(leaky_maps_t *lmp) { uintptr_t brkbase = lmp->lm_pstatus->pr_brkbase; uintptr_t brkend = brkbase + lmp->lm_pstatus->pr_brksize; leak_mtab_t *lm; leaky_seg_info_t *segs = lmp->lm_segs; int x, first = -1, last = -1; dprintf(("brk: [%p, %p)\n", brkbase, brkend)); for (x = 0; x < lmp->lm_seg_count; x++) { if (segs[x].ls_start >= brkbase && segs[x].ls_end <= brkend) { if (first == -1) first = x; last = x; } } if (brkbase == brkend) { dprintf(("empty brk -- do nothing\n")); } else if (first == -1) { dprintf(("adding [%p, %p) whole brk\n", brkbase, brkend)); lm = (*lmp->lm_lmp)++; lm->lkm_base = brkbase; lm->lkm_limit = brkend; lm->lkm_bufctl = LKM_CTL(brkbase, LKM_CTL_MEMORY); } else { uintptr_t curbrk = P2ROUNDUP(brkbase, umem_pagesize); if (curbrk != segs[first].ls_start) { dprintf(("adding [%p, %p) in brk, before first seg\n", brkbase, segs[first].ls_start)); lm = (*lmp->lm_lmp)++; lm->lkm_base = brkbase; lm->lkm_limit = segs[first].ls_start; lm->lkm_bufctl = LKM_CTL(brkbase, LKM_CTL_MEMORY); curbrk = segs[first].ls_start; } else if (curbrk != brkbase) { dprintf(("ignore [%p, %p) -- realign\n", brkbase, curbrk)); } for (x = first; x <= last; x++) { if (curbrk < segs[x].ls_start) { dprintf(("adding [%p, %p) in brk\n", curbrk, segs[x].ls_start)); lm = (*lmp->lm_lmp)++; lm->lkm_base = curbrk; lm->lkm_limit = segs[x].ls_start; lm->lkm_bufctl = LKM_CTL(curbrk, LKM_CTL_MEMORY); } curbrk = segs[x].ls_end; } if (curbrk < brkend) { dprintf(("adding [%p, %p) in brk, after last seg\n", curbrk, brkend)); lm = (*lmp->lm_lmp)++; lm->lkm_base = curbrk; lm->lkm_limit = brkend; lm->lkm_bufctl = LKM_CTL(curbrk, LKM_CTL_MEMORY); } } } static int leaky_handle_anon_mappings(leak_mtab_t **lmp) { leaky_maps_t lm; vmem_t *heap_arena; vmem_t *vm_next; vmem_t *heap_top; vmem_t vmem; pstatus_t Ps; if (mdb_get_xdata("pstatus", &Ps, sizeof (Ps)) == -1) { mdb_warn("couldn't read pstatus xdata"); return (DCMD_ERR); } lm.lm_pstatus = &Ps; leak_brkbase = Ps.pr_brkbase; leak_brksize = Ps.pr_brksize; if (umem_readvar(&heap_arena, "heap_arena") == -1) { mdb_warn("couldn't read heap_arena"); return (DCMD_ERR); } if (heap_arena == NULL) { mdb_warn("heap_arena is NULL.\n"); return (DCMD_ERR); } for (vm_next = heap_arena; vm_next != NULL; vm_next = vmem.vm_source) { if (mdb_vread(&vmem, sizeof (vmem), (uintptr_t)vm_next) == -1) { mdb_warn("couldn't read vmem at %p", vm_next); return (DCMD_ERR); } heap_top = vm_next; } lm.lm_seg_count = 0; lm.lm_seg_max = 0; if (mdb_pwalk("vmem_span", (mdb_walk_cb_t)leaky_count, &lm.lm_seg_max, (uintptr_t)heap_top) == -1) { mdb_warn("couldn't walk vmem_span for vmem %p", heap_top); return (DCMD_ERR); } lm.lm_segs = mdb_alloc(lm.lm_seg_max * sizeof (*lm.lm_segs), UM_SLEEP | UM_GC); if (mdb_pwalk("vmem_span", (mdb_walk_cb_t)leaky_read_segs, &lm, (uintptr_t)heap_top) == -1) { mdb_warn("couldn't walk vmem_span for vmem %p", heap_top); return (DCMD_ERR); } if (lm.lm_seg_count > lm.lm_seg_max) { mdb_warn("segment list for vmem %p grew\n", heap_top); return (DCMD_ERR); } qsort(lm.lm_segs, lm.lm_seg_count, sizeof (*lm.lm_segs), leaky_seg_cmp); lm.lm_lmp = lmp; prockludge_add_walkers(); if (mdb_walk(KLUDGE_MAPWALK_NAME, (mdb_walk_cb_t)leaky_process_anon_mappings, &lm) == -1) { mdb_warn("Couldn't walk "KLUDGE_MAPWALK_NAME); prockludge_remove_walkers(); return (DCMD_ERR); } prockludge_remove_walkers(); leaky_handle_sbrk(&lm); return (DCMD_OK); } static int leaky_interested(const umem_cache_t *c) { vmem_t vmem; if (mdb_vread(&vmem, sizeof (vmem), (uintptr_t)c->cache_arena) == -1) { mdb_warn("cannot read arena %p for cache '%s'", (uintptr_t)c->cache_arena, c->cache_name); return (0); } /* * If this cache isn't allocating from either the umem_default or * umem_firewall vmem arena, we're not interested. */ if (strcmp(vmem.vm_name, "umem_default") != 0 && strcmp(vmem.vm_name, "umem_firewall") != 0) { dprintf(("Skipping cache '%s' with arena '%s'\n", c->cache_name, vmem.vm_name)); return (0); } return (1); } /*ARGSUSED*/ static int leaky_estimate(uintptr_t addr, const umem_cache_t *c, size_t *est) { if (!leaky_interested(c)) return (WALK_NEXT); *est += umem_estimate_allocated(addr, c); return (WALK_NEXT); } /*ARGSUSED*/ static int leaky_cache(uintptr_t addr, const umem_cache_t *c, leak_mtab_t **lmp) { leak_mtab_t *lm = *lmp; mdb_walk_cb_t cb; const char *walk; int audit = (c->cache_flags & UMF_AUDIT); if (!leaky_interested(c)) return (WALK_NEXT); if (audit) { walk = "bufctl"; cb = (mdb_walk_cb_t)leaky_mtab; } else { walk = "umem"; cb = (mdb_walk_cb_t)leaky_mtab_addr; } if (mdb_pwalk(walk, cb, lmp, addr) == -1) { mdb_warn("can't walk umem for cache %p (%s)", addr, c->cache_name); return (WALK_DONE); } for (; lm < *lmp; lm++) { lm->lkm_limit = lm->lkm_base + c->cache_bufsize; if (!audit) lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_CACHE); } return (WALK_NEXT); } static char *map_head = "%-?s %?s %-10s used reason\n"; static char *map_fmt = "[%?p,%?p) %-10s "; #define BACKING_LEN 10 /* must match the third field's width in map_fmt */ static void leaky_mappings_header(void) { dprintf((map_head, "mapping", "", "backing")); } /* ARGSUSED */ static int leaky_grep_mappings(uintptr_t ignored, const prmap_t *pmp, const pstatus_t *Psp) { const char *map_libname_ptr; char db_mp_name[BACKING_LEN+1]; map_libname_ptr = strrchr(pmp->pr_mapname, '/'); if (map_libname_ptr != NULL) map_libname_ptr++; else map_libname_ptr = pmp->pr_mapname; strlcpy(db_mp_name, map_libname_ptr, sizeof (db_mp_name)); dprintf((map_fmt, pmp->pr_vaddr, (char *)pmp->pr_vaddr + pmp->pr_size, db_mp_name)); #define USE(rsn) dprintf_cont(("yes %s\n", (rsn))) #define IGNORE(rsn) dprintf_cont(("no %s\n", (rsn))) if (!(pmp->pr_mflags & MA_WRITE) || !(pmp->pr_mflags & MA_READ)) { IGNORE("read-only"); } else if (pmp->pr_vaddr <= Psp->pr_brkbase && pmp->pr_vaddr + pmp->pr_size > Psp->pr_brkbase) { USE("bss"); /* grab up to brkbase */ leaky_grep(pmp->pr_vaddr, Psp->pr_brkbase - pmp->pr_vaddr); } else if (pmp->pr_vaddr >= Psp->pr_brkbase && pmp->pr_vaddr < Psp->pr_brkbase + Psp->pr_brksize) { IGNORE("in brk"); } else if (pmp->pr_vaddr == Psp->pr_stkbase && pmp->pr_size == Psp->pr_stksize) { IGNORE("stack"); } else if (0 == strcmp(map_libname_ptr, "a.out")) { USE("a.out data"); leaky_grep(pmp->pr_vaddr, pmp->pr_size); } else if (0 == strncmp(map_libname_ptr, "libumem.so", 10)) { IGNORE("part of umem"); } else if (pmp->pr_mapname[0] != 0) { USE("lib data"); /* library data/bss */ leaky_grep(pmp->pr_vaddr, pmp->pr_size); } else if ((pmp->pr_mflags & MA_ANON) && pmp->pr_mapname[0] == 0) { IGNORE("anon"); } else { IGNORE(""); /* default to ignoring */ } #undef USE #undef IGNORE return (WALK_NEXT); } /*ARGSUSED*/ static int leaky_mark_lwp(void *ignored, const lwpstatus_t *lwp) { leaky_mark_ptr(lwp->pr_reg[R_SP] + STACK_BIAS); return (0); } /*ARGSUSED*/ static int leaky_process_lwp(void *ignored, const lwpstatus_t *lwp) { const uintptr_t *regs = (const uintptr_t *)&lwp->pr_reg; int i; uintptr_t sp; uintptr_t addr; size_t size; for (i = 0; i < R_SP; i++) leaky_grep_ptr(regs[i]); sp = regs[i++] + STACK_BIAS; if (leaky_lookup_marked(sp, &addr, &size)) leaky_grep(sp, size - (sp - addr)); for (; i < NPRGREG; i++) leaky_grep_ptr(regs[i]); return (0); } /* * Handles processing various proc-related things: * 1. calls leaky_process_lwp on each the LWP * 2. leaky_greps the bss/data of libraries and a.out, and the a.out stack. */ static int leaky_process_proc(void) { pstatus_t Ps; struct ps_prochandle *Pr; if (mdb_get_xdata("pstatus", &Ps, sizeof (Ps)) == -1) { mdb_warn("couldn't read pstatus xdata"); return (DCMD_ERR); } dprintf(("pstatus says:\n")); dprintf(("\tbrk: base %p size %p\n", Ps.pr_brkbase, Ps.pr_brksize)); dprintf(("\tstk: base %p size %p\n", Ps.pr_stkbase, Ps.pr_stksize)); if (mdb_get_xdata("pshandle", &Pr, sizeof (Pr)) == -1) { mdb_warn("couldn't read pshandle xdata"); return (DCMD_ERR); } if (Plwp_iter(Pr, leaky_mark_lwp, NULL) != 0) { mdb_warn("findleaks: Failed to iterate lwps\n"); return (DCMD_ERR); } if (Plwp_iter(Pr, leaky_process_lwp, NULL) != 0) { mdb_warn("findleaks: Failed to iterate lwps\n"); return (DCMD_ERR); } prockludge_add_walkers(); leaky_mappings_header(); if (mdb_walk(KLUDGE_MAPWALK_NAME, (mdb_walk_cb_t)leaky_grep_mappings, &Ps) == -1) { mdb_warn("Couldn't walk "KLUDGE_MAPWALK_NAME); prockludge_remove_walkers(); return (-1); } prockludge_remove_walkers(); return (0); } static void leaky_subr_caller(const uintptr_t *stack, uint_t depth, char *buf, uintptr_t *pcp) { int i; GElf_Sym sym; uintptr_t pc = 0; buf[0] = 0; for (i = 0; i < depth; i++) { pc = stack[i]; if (mdb_lookup_by_addr(pc, MDB_SYM_FUZZY, buf, MDB_SYM_NAMLEN, &sym) == -1) continue; if (strncmp(buf, "libumem.so", 10) == 0) continue; *pcp = pc; return; } /* * We're only here if the entire call chain is in libumem.so; * this shouldn't happen, but we'll just use the last caller. */ *pcp = pc; } int leaky_subr_bufctl_cmp(const leak_bufctl_t *lhs, const leak_bufctl_t *rhs) { char lbuf[MDB_SYM_NAMLEN], rbuf[MDB_SYM_NAMLEN]; uintptr_t lcaller, rcaller; int rval; leaky_subr_caller(lhs->lkb_stack, lhs->lkb_depth, lbuf, &lcaller); leaky_subr_caller(rhs->lkb_stack, lhs->lkb_depth, rbuf, &rcaller); if (rval = strcmp(lbuf, rbuf)) return (rval); if (lcaller < rcaller) return (-1); if (lcaller > rcaller) return (1); if (lhs->lkb_data < rhs->lkb_data) return (-1); if (lhs->lkb_data > rhs->lkb_data) return (1); return (0); } /*ARGSUSED*/ int leaky_subr_estimate(size_t *estp) { if (umem_ready == 0) { mdb_warn( "findleaks: umem is not loaded in the address space\n"); return (DCMD_ERR); } if (umem_ready == UMEM_READY_INIT_FAILED) { mdb_warn("findleaks: umem initialization failed -- no " "possible leaks.\n"); return (DCMD_ERR); } if (umem_ready != UMEM_READY) { mdb_warn("findleaks: No allocations have occured -- no " "possible leaks.\n"); return (DCMD_ERR); } if (mdb_walk("umem_cache", (mdb_walk_cb_t)leaky_estimate, estp) == -1) { mdb_warn("couldn't walk 'umem_cache'"); return (DCMD_ERR); } if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_estimate_vmem, estp) == -1) { mdb_warn("couldn't walk 'vmem'"); return (DCMD_ERR); } if (*estp == 0) { mdb_warn("findleaks: No allocated buffers found.\n"); return (DCMD_ERR); } prockludge_add_walkers(); if (mdb_walk(KLUDGE_MAPWALK_NAME, (mdb_walk_cb_t)leaky_count, estp) == -1) { mdb_warn("Couldn't walk "KLUDGE_MAPWALK_NAME); prockludge_remove_walkers(); return (DCMD_ERR); } prockludge_remove_walkers(); return (DCMD_OK); } int leaky_subr_fill(leak_mtab_t **lmpp) { if (leaky_handle_anon_mappings(lmpp) != DCMD_OK) { mdb_warn("unable to process mappings\n"); return (DCMD_ERR); } if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_vmem, lmpp) == -1) { mdb_warn("couldn't walk 'vmem'"); return (DCMD_ERR); } if (mdb_walk("umem_cache", (mdb_walk_cb_t)leaky_cache, lmpp) == -1) { mdb_warn("couldn't walk 'umem_cache'"); return (DCMD_ERR); } return (DCMD_OK); } int leaky_subr_run(void) { if (leaky_process_proc() == DCMD_ERR) { mdb_warn("failed to process proc"); return (DCMD_ERR); } return (DCMD_OK); } void leaky_subr_add_leak(leak_mtab_t *lmp) { uintptr_t addr = LKM_CTLPTR(lmp->lkm_bufctl); uint_t depth; vmem_seg_t vs; umem_bufctl_audit_t *bcp; UMEM_LOCAL_BUFCTL_AUDIT(&bcp); switch (LKM_CTLTYPE(lmp->lkm_bufctl)) { case LKM_CTL_BUFCTL: if (mdb_vread(bcp, UMEM_BUFCTL_AUDIT_SIZE, addr) == -1) { mdb_warn("couldn't read leaked bufctl at addr %p", addr); return; } depth = MIN(bcp->bc_depth, umem_stack_depth); /* * The top of the stack will be in umem_cache_alloc(). * Since the offset in umem_cache_alloc() isn't interesting * we skip that frame for the purposes of uniquifying stacks. * * Also, we use the cache pointer as the leaks's cid, to * prevent the coalescing of leaks from different caches. */ if (depth > 0) depth--; leaky_add_leak(TYPE_UMEM, addr, (uintptr_t)bcp->bc_addr, bcp->bc_timestamp, bcp->bc_stack + 1, depth, (uintptr_t)bcp->bc_cache, (uintptr_t)bcp->bc_cache); break; case LKM_CTL_VMSEG: if (mdb_vread(&vs, sizeof (vs), addr) == -1) { mdb_warn("couldn't read leaked vmem_seg at addr %p", addr); return; } depth = MIN(vs.vs_depth, VMEM_STACK_DEPTH); leaky_add_leak(TYPE_VMEM, addr, vs.vs_start, vs.vs_timestamp, vs.vs_stack, depth, 0, (vs.vs_end - vs.vs_start)); break; case LKM_CTL_MEMORY: if (LEAKY_INBRK(addr)) leaky_add_leak(TYPE_SBRK, addr, addr, 0, NULL, 0, 0, lmp->lkm_limit - addr); else leaky_add_leak(TYPE_MMAP, addr, addr, 0, NULL, 0, 0, lmp->lkm_limit - addr); break; case LKM_CTL_CACHE: leaky_add_leak(TYPE_CACHE, lmp->lkm_base, lmp->lkm_base, 0, NULL, 0, addr, addr); break; default: mdb_warn("internal error: invalid leak_bufctl_t\n"); break; } } static int lk_vmem_seen; static int lk_cache_seen; static int lk_umem_seen; static size_t lk_ttl; static size_t lk_bytes; void leaky_subr_dump_start(int type) { switch (type) { case TYPE_MMAP: lk_vmem_seen = 0; break; case TYPE_SBRK: case TYPE_VMEM: return; /* don't zero counts */ case TYPE_CACHE: lk_cache_seen = 0; break; case TYPE_UMEM: lk_umem_seen = 0; break; default: break; } lk_ttl = 0; lk_bytes = 0; } void leaky_subr_dump(const leak_bufctl_t *lkb, int verbose) { const leak_bufctl_t *cur; umem_cache_t cache; size_t min, max, size; char sz[30]; char c[MDB_SYM_NAMLEN]; uintptr_t caller; const char *nm, *nm_lc; uint8_t type = lkb->lkb_type; if (verbose) { lk_ttl = 0; lk_bytes = 0; } else if (!lk_vmem_seen && (type == TYPE_VMEM || type == TYPE_MMAP || type == TYPE_SBRK)) { lk_vmem_seen = 1; mdb_printf("%-16s %7s %?s %s\n", "BYTES", "LEAKED", "VMEM_SEG", "CALLER"); } switch (lkb->lkb_type) { case TYPE_MMAP: case TYPE_SBRK: nm = (lkb->lkb_type == TYPE_MMAP) ? "MMAP" : "SBRK"; nm_lc = (lkb->lkb_type == TYPE_MMAP) ? "mmap(2)" : "sbrk(2)"; for (; lkb != NULL; lkb = lkb->lkb_next) { if (!verbose) mdb_printf("%-16d %7d %?p %s\n", lkb->lkb_data, lkb->lkb_dups + 1, lkb->lkb_addr, nm); else mdb_printf("%s leak: [%p, %p), %ld bytes\n", nm_lc, lkb->lkb_addr, lkb->lkb_addr + lkb->lkb_data, lkb->lkb_data); lk_ttl++; lk_bytes += lkb->lkb_data; } return; case TYPE_VMEM: min = max = lkb->lkb_data; for (cur = lkb; cur != NULL; cur = cur->lkb_next) { size = cur->lkb_data; if (size < min) min = size; if (size > max) max = size; lk_ttl++; lk_bytes += size; } if (min == max) (void) mdb_snprintf(sz, sizeof (sz), "%ld", min); else (void) mdb_snprintf(sz, sizeof (sz), "%ld-%ld", min, max); if (!verbose) { leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth, c, &caller); mdb_printf("%-16s %7d %?p %a\n", sz, lkb->lkb_dups + 1, lkb->lkb_addr, caller); } else { mdb_arg_t v; if (lk_ttl == 1) mdb_printf("umem_oversize leak: 1 vmem_seg, " "%ld bytes\n", lk_bytes); else mdb_printf("umem_oversize leak: %d vmem_segs, " "%s bytes each, %ld bytes total\n", lk_ttl, sz, lk_bytes); v.a_type = MDB_TYPE_STRING; v.a_un.a_str = "-v"; if (mdb_call_dcmd("vmem_seg", lkb->lkb_addr, DCMD_ADDRSPEC, 1, &v) == -1) { mdb_warn("'%p::vmem_seg -v' failed", lkb->lkb_addr); } } return; case TYPE_CACHE: if (!lk_cache_seen) { lk_cache_seen = 1; if (lk_vmem_seen) mdb_printf("\n"); mdb_printf("%-?s %7s %?s %s\n", "CACHE", "LEAKED", "BUFFER", "CALLER"); } if (mdb_vread(&cache, sizeof (cache), lkb->lkb_data) == -1) { /* * This _really_ shouldn't happen; we shouldn't * have been able to get this far if this * cache wasn't readable. */ mdb_warn("can't read cache %p for leaked " "buffer %p", lkb->lkb_data, lkb->lkb_addr); return; } lk_ttl += lkb->lkb_dups + 1; lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize; caller = (lkb->lkb_depth == 0) ? 0 : lkb->lkb_stack[0]; if (caller != 0) { (void) mdb_snprintf(c, sizeof (c), "%a", caller); } else { (void) mdb_snprintf(c, sizeof (c), "%s", (verbose) ? "" : "?"); } if (!verbose) { mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid, lkb->lkb_dups + 1, lkb->lkb_addr, c); } else { if (lk_ttl == 1) mdb_printf("%s leak: 1 buffer, %ld bytes,\n", cache.cache_name, lk_bytes); else mdb_printf("%s leak: %d buffers, " "%ld bytes each, %ld bytes total,\n", cache.cache_name, lk_ttl, cache.cache_bufsize, lk_bytes); mdb_printf(" %s%s%ssample addr %p\n", (caller == 0) ? "" : "caller ", c, (caller == 0) ? "" : ", ", lkb->lkb_addr); } return; case TYPE_UMEM: if (!lk_umem_seen) { lk_umem_seen = 1; if (lk_vmem_seen || lk_cache_seen) mdb_printf("\n"); mdb_printf("%-?s %7s %?s %s\n", "CACHE", "LEAKED", "BUFCTL", "CALLER"); } if (mdb_vread(&cache, sizeof (cache), lkb->lkb_data) == -1) { /* * This _really_ shouldn't happen; we shouldn't * have been able to get this far if this * cache wasn't readable. */ mdb_warn("can't read cache %p for leaked " "bufctl %p", lkb->lkb_data, lkb->lkb_addr); return; } lk_ttl += lkb->lkb_dups + 1; lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize; if (!verbose) { leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth, c, &caller); mdb_printf("%0?p %7d %0?p %a\n", lkb->lkb_data, lkb->lkb_dups + 1, lkb->lkb_addr, caller); } else { mdb_arg_t v; if (lk_ttl == 1) mdb_printf("%s leak: 1 buffer, %ld bytes\n", cache.cache_name, lk_bytes); else mdb_printf("%s leak: %d buffers, " "%ld bytes each, %ld bytes total\n", cache.cache_name, lk_ttl, cache.cache_bufsize, lk_bytes); v.a_type = MDB_TYPE_STRING; v.a_un.a_str = "-v"; if (mdb_call_dcmd("bufctl", lkb->lkb_addr, DCMD_ADDRSPEC, 1, &v) == -1) { mdb_warn("'%p::bufctl -v' failed", lkb->lkb_addr); } } return; default: return; } } void leaky_subr_dump_end(int type) { int i; int width; const char *leak; switch (type) { case TYPE_VMEM: if (!lk_vmem_seen) return; width = 16; leak = "oversized leak"; break; case TYPE_CACHE: if (!lk_cache_seen) return; width = sizeof (uintptr_t) * 2; leak = "buffer"; break; case TYPE_UMEM: if (!lk_umem_seen) return; width = sizeof (uintptr_t) * 2; leak = "buffer"; break; default: return; } for (i = 0; i < 72; i++) mdb_printf("-"); mdb_printf("\n%*s %7ld %s%s, %ld byte%s\n", width, "Total", lk_ttl, leak, (lk_ttl == 1) ? "" : "s", lk_bytes, (lk_bytes == 1) ? "" : "s"); } int leaky_subr_invoke_callback(const leak_bufctl_t *lkb, mdb_walk_cb_t cb, void *cbdata) { vmem_seg_t vs; umem_bufctl_audit_t *bcp; UMEM_LOCAL_BUFCTL_AUDIT(&bcp); switch (lkb->lkb_type) { case TYPE_VMEM: if (mdb_vread(&vs, sizeof (vs), lkb->lkb_addr) == -1) { mdb_warn("unable to read vmem_seg at %p", lkb->lkb_addr); return (WALK_NEXT); } return (cb(lkb->lkb_addr, &vs, cbdata)); case TYPE_UMEM: if (mdb_vread(bcp, UMEM_BUFCTL_AUDIT_SIZE, lkb->lkb_addr) == -1) { mdb_warn("unable to read bufctl at %p", lkb->lkb_addr); return (WALK_NEXT); } return (cb(lkb->lkb_addr, bcp, cbdata)); default: return (cb(lkb->lkb_addr, NULL, cbdata)); } }