/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 by Delphix. All rights reserved. * Copyright 2020 Joyent, Inc. */ #include #include #include #include #include #include #include #include "findstack.h" #include "thread.h" #include "sobj.h" #define TOO_BIG_FOR_A_STACK (1024 * 1024) #define KTOU(p) ((p) - kbase + ubase) #define UTOK(p) ((p) - ubase + kbase) #define CRAWL_FOUNDALL (-1) #if defined(__i386) || defined(__amd64) struct rwindow { uintptr_t rw_fp; uintptr_t rw_rtn; }; #endif #ifndef STACK_BIAS #define STACK_BIAS 0 #endif /* * Given a stack pointer, try to crawl down it to the bottom. * "frame" is a VA in MDB's address space. * * Returns the number of frames successfully crawled down, or * CRAWL_FOUNDALL if it got to the bottom of the stack. */ static int crawl(uintptr_t frame, uintptr_t kbase, uintptr_t ktop, uintptr_t ubase, int kill_fp, findstack_info_t *fsip) { int levels = 0; fsip->fsi_depth = 0; fsip->fsi_overflow = 0; fs_dprintf(("<0> frame = %p, kbase = %p, ktop = %p, ubase = %p\n", frame, kbase, ktop, ubase)); for (;;) { uintptr_t fp; long *fpp = (long *)&((struct rwindow *)frame)->rw_fp; fs_dprintf(("<1> fpp = %p, frame = %p\n", fpp, frame)); if ((frame & (STACK_ALIGN - 1)) != 0) break; fp = ((struct rwindow *)frame)->rw_fp + STACK_BIAS; if (fsip->fsi_depth < fsip->fsi_max_depth) fsip->fsi_stack[fsip->fsi_depth++] = ((struct rwindow *)frame)->rw_rtn; else fsip->fsi_overflow = 1; fs_dprintf(("<2> fp = %p\n", fp)); if (fp == ktop) return (CRAWL_FOUNDALL); fs_dprintf(("<3> not at base\n")); #if defined(__i386) || defined(__amd64) if (ktop - fp == sizeof (struct rwindow)) { fs_dprintf(("<4> found base\n")); return (CRAWL_FOUNDALL); } #endif fs_dprintf(("<5> fp = %p, kbase = %p, ktop - size = %p\n", fp, kbase, ktop - sizeof (struct rwindow))); if (fp < kbase || fp >= (ktop - sizeof (struct rwindow))) break; frame = KTOU(fp); fs_dprintf(("<6> frame = %p\n", frame)); /* * NULL out the old %fp so we don't go down this stack * more than once. */ if (kill_fp) { fs_dprintf(("<7> fpp = %p\n", fpp)); *fpp = 0; } fs_dprintf(("<8> levels = %d\n", levels)); levels++; } return (levels); } typedef struct mdb_findstack_kthread { struct _sobj_ops *t_sobj_ops; uint_t t_state; uint_t t_flag; ushort_t t_schedflag; caddr_t t_stk; caddr_t t_stkbase; label_t t_pcb; } mdb_findstack_kthread_t; /*ARGSUSED*/ int stacks_findstack(uintptr_t addr, findstack_info_t *fsip, uint_t print_warnings) { mdb_findstack_kthread_t thr; size_t stksz; uintptr_t ubase, utop; uintptr_t kbase, ktop; uintptr_t win, sp; fsip->fsi_failed = 0; fsip->fsi_pc = 0; fsip->fsi_sp = 0; fsip->fsi_depth = 0; fsip->fsi_overflow = 0; if (mdb_ctf_vread(&thr, "kthread_t", "mdb_findstack_kthread_t", addr, print_warnings ? 0 : MDB_CTF_VREAD_QUIET) == -1) { fsip->fsi_failed = FSI_FAIL_BADTHREAD; return (DCMD_ERR); } fsip->fsi_sobj_ops = (uintptr_t)thr.t_sobj_ops; fsip->fsi_tstate = thr.t_state; fsip->fsi_panic = !!(thr.t_flag & T_PANIC); if ((thr.t_schedflag & TS_LOAD) == 0) { if (print_warnings) mdb_warn("thread %p isn't in memory\n", addr); fsip->fsi_failed = FSI_FAIL_NOTINMEMORY; return (DCMD_ERR); } if (thr.t_stk < thr.t_stkbase) { if (print_warnings) mdb_warn( "stack base or stack top corrupt for thread %p\n", addr); fsip->fsi_failed = FSI_FAIL_THREADCORRUPT; return (DCMD_ERR); } kbase = (uintptr_t)thr.t_stkbase; ktop = (uintptr_t)thr.t_stk; stksz = ktop - kbase; #ifdef __amd64 /* * The stack on amd64 is intentionally misaligned, so ignore the top * half-frame. See thread_stk_init(). When handling traps, the frame * is automatically aligned by the hardware, so we only alter ktop if * needed. */ if ((ktop & (STACK_ALIGN - 1)) != 0) ktop -= STACK_ENTRY_ALIGN; #endif /* * If the stack size is larger than a meg, assume that it's bogus. */ if (stksz > TOO_BIG_FOR_A_STACK) { if (print_warnings) mdb_warn("stack size for thread %p is too big to be " "reasonable\n", addr); fsip->fsi_failed = FSI_FAIL_THREADCORRUPT; return (DCMD_ERR); } /* * This could be (and was) a UM_GC allocation. Unfortunately, * stksz tends to be very large. As currently implemented, dcmds * invoked as part of pipelines don't have their UM_GC-allocated * memory freed until the pipeline completes. With stksz in the * neighborhood of 20k, the popular ::walk thread |::findstack * pipeline can easily run memory-constrained debuggers (kmdb) out * of memory. This can be changed back to a gc-able allocation when * the debugger is changed to free UM_GC memory more promptly. */ ubase = (uintptr_t)mdb_alloc(stksz, UM_SLEEP); utop = ubase + stksz; if (mdb_vread((caddr_t)ubase, stksz, kbase) != stksz) { mdb_free((void *)ubase, stksz); if (print_warnings) mdb_warn("couldn't read entire stack for thread %p\n", addr); fsip->fsi_failed = FSI_FAIL_THREADCORRUPT; return (DCMD_ERR); } /* * Try the saved %sp first, if it looks reasonable. */ sp = KTOU((uintptr_t)thr.t_sp + STACK_BIAS); if (sp >= ubase && sp <= utop) { if (crawl(sp, kbase, ktop, ubase, 0, fsip) == CRAWL_FOUNDALL) { fsip->fsi_sp = (uintptr_t)thr.t_sp; #if !defined(__i386) fsip->fsi_pc = (uintptr_t)thr.t_pc; #endif goto found; } } /* * Now walk through the whole stack, starting at the base, * trying every possible "window". */ for (win = ubase; win + sizeof (struct rwindow) <= utop; win += sizeof (struct rwindow *)) { if (crawl(win, kbase, ktop, ubase, 1, fsip) == CRAWL_FOUNDALL) { fsip->fsi_sp = UTOK(win) - STACK_BIAS; goto found; } } /* * We didn't conclusively find the stack. So we'll take another lap, * and print out anything that looks possible. */ if (print_warnings) mdb_printf("Possible stack pointers for thread %p:\n", addr); (void) mdb_vread((caddr_t)ubase, stksz, kbase); for (win = ubase; win + sizeof (struct rwindow) <= utop; win += sizeof (struct rwindow *)) { uintptr_t fp = ((struct rwindow *)win)->rw_fp; int levels; if ((levels = crawl(win, kbase, ktop, ubase, 1, fsip)) > 1) { if (print_warnings) mdb_printf(" %p (%d)\n", fp, levels); } else if (levels == CRAWL_FOUNDALL) { /* * If this is a live system, the stack could change * between the two mdb_vread(ubase, utop, kbase)'s, * and we could have a fully valid stack here. */ fsip->fsi_sp = UTOK(win) - STACK_BIAS; goto found; } } fsip->fsi_depth = 0; fsip->fsi_overflow = 0; fsip->fsi_failed = FSI_FAIL_STACKNOTFOUND; mdb_free((void *)ubase, stksz); return (DCMD_ERR); found: mdb_free((void *)ubase, stksz); return (DCMD_OK); } void stacks_findstack_cleanup() {} /*ARGSUSED*/ int stacks_module_cb(uintptr_t addr, const modctl_t *mp, stacks_module_t *smp) { char mod_modname[MODMAXNAMELEN + 1]; if (!mp->mod_modname) return (WALK_NEXT); if (mdb_readstr(mod_modname, sizeof (mod_modname), (uintptr_t)mp->mod_modname) == -1) { mdb_warn("failed to read mod_modname in \"modctl\" walk"); return (WALK_ERR); } if (strcmp(smp->sm_name, mod_modname)) return (WALK_NEXT); smp->sm_text = (uintptr_t)mp->mod_text; smp->sm_size = mp->mod_text_size; return (WALK_DONE); } int stacks_module(stacks_module_t *smp) { if (mdb_walk("modctl", (mdb_walk_cb_t)stacks_module_cb, smp) != 0) { mdb_warn("cannot walk \"modctl\""); return (-1); } return (0); } /*ARGSUSED*/ static void print_sobj_help(int type, const char *name, const char *ops_name, void *ign) { mdb_printf(" %s", name); } /*ARGSUSED*/ static void print_tstate_help(uint_t state, const char *name, void *ignored) { mdb_printf(" %s", name); } void stacks_help(void) { mdb_printf( "::stacks processes all of the thread stacks on the system, grouping\n" "together threads which have the same:\n" "\n" " * Thread state,\n" " * Sync object type, and\n" " * PCs in their stack trace.\n" "\n" "The default output (no address or options) is just a dump of the thread\n" "groups in the system. For a view of active threads, use \"::stacks -i\",\n" "which filters out FREE threads (interrupt threads which are currently\n" "inactive) and threads sleeping on a CV. (Note that those threads may still\n" "be noteworthy; this is just for a first glance.) More general filtering\n" "options are described below, in the \"FILTERS\" section.\n" "\n" "::stacks can be used in a pipeline. The input to ::stacks is one or more\n" "thread pointers. For example, to get a summary of threads in a process,\n" "you can do:\n" "\n" " %procp%::walk thread | ::stacks\n" "\n" "When output into a pipe, ::stacks prints all of the threads input,\n" "filtered by the given filtering options. This means that multiple\n" "::stacks invocations can be piped together to achieve more complicated\n" "filters. For example, to get threads which have both 'fop_read' and\n" "'cv_wait_sig_swap' in their stack trace, you could do:\n" "\n" " ::stacks -c fop_read | ::stacks -c cv_wait_sig_swap_core\n" "\n" "To get the full list of threads in each group, use the '-a' flag:\n" "\n" " ::stacks -a\n" "\n"); mdb_dec_indent(2); mdb_printf("%OPTIONS%\n"); mdb_inc_indent(2); mdb_printf("%s", " -a Print all of the grouped threads, instead of just a count.\n" " -f Force a re-run of the thread stack gathering.\n" " -v Be verbose about thread stack gathering.\n" "\n"); mdb_dec_indent(2); mdb_printf("%FILTERS%\n"); mdb_inc_indent(2); mdb_printf("%s", " -i Show active threads; equivalent to '-S CV -T FREE'.\n" " -c func[+offset]\n" " Only print threads whose stacks contain func/func+offset.\n" " -C func[+offset]\n" " Only print threads whose stacks do not contain func/func+offset.\n" " -m module\n" " Only print threads whose stacks contain functions from module.\n" " -M module\n" " Only print threads whose stacks do not contain functions from\n" " module.\n" " -s {type | ALL}\n" " Only print threads which are on a 'type' synchronization object\n" " (SOBJ).\n" " -S {type | ALL}\n" " Only print threads which are not on a 'type' SOBJ.\n" " -t tstate\n" " Only print threads which are in thread state 'tstate'.\n" " -T tstate\n" " Only print threads which are not in thread state 'tstate'.\n" "\n"); mdb_printf(" SOBJ types:"); sobj_type_walk(print_sobj_help, NULL); mdb_printf("\n"); mdb_printf("Thread states:"); thread_walk_states(print_tstate_help, NULL); mdb_printf(" panic\n"); }