/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. * Copyright 2019 Joyent, Inc. * Copyright 2022 Racktop Systems, Inc. */ /* * explicitly define DTRACE_ERRDEBUG to pull in definition of dtrace_errhash_t * explicitly define _STDARG_H to avoid stdarg.h/varargs.h u/k defn conflict */ #define DTRACE_ERRDEBUG #define _STDARG_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*ARGSUSED*/ int id2probe(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { uintptr_t probe = 0; uintptr_t probes; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (addr == DTRACE_IDNONE || addr > UINT32_MAX) goto out; if (mdb_readvar(&probes, "dtrace_probes") == -1) { mdb_warn("failed to read 'dtrace_probes'"); return (DCMD_ERR); } probes += (addr - 1) * sizeof (dtrace_probe_t *); if (mdb_vread(&probe, sizeof (uintptr_t), probes) == -1) { mdb_warn("failed to read dtrace_probes[%d]", addr - 1); return (DCMD_ERR); } out: mdb_printf("%p\n", probe); return (DCMD_OK); } void dtrace_help(void) { mdb_printf("Given a dtrace_state_t structure that represents a " "DTrace consumer, prints\n" "dtrace(8)-like output for in-kernel DTrace data. (The " "dtrace_state_t\n" "structures for all DTrace consumers may be obtained by running " "the \n" "::dtrace_state dcmd.) When data is present on multiple CPUs, " "data are\n" "presented in CPU order, with records within each CPU ordered " "oldest to \n" "youngest. Options:\n\n" "-c cpu Only provide output for specified CPU.\n"); } static int dtracemdb_eprobe(dtrace_state_t *state, dtrace_eprobedesc_t *epd) { dtrace_epid_t epid = epd->dtepd_epid; dtrace_probe_t probe; dtrace_ecb_t ecb; uintptr_t addr, paddr, ap; dtrace_action_t act; int nactions, nrecs; addr = (uintptr_t)state->dts_ecbs + (epid - 1) * sizeof (dtrace_ecb_t *); if (mdb_vread(&addr, sizeof (addr), addr) == -1) { mdb_warn("failed to read ecb for epid %d", epid); return (-1); } if (addr == 0) { mdb_warn("epid %d doesn't match an ecb\n", epid); return (-1); } if (mdb_vread(&ecb, sizeof (ecb), addr) == -1) { mdb_warn("failed to read ecb at %p", addr); return (-1); } paddr = (uintptr_t)ecb.dte_probe; if (mdb_vread(&probe, sizeof (probe), paddr) == -1) { mdb_warn("failed to read probe for ecb %p", addr); return (-1); } /* * This is a little painful: in order to find the number of actions, * we need to first walk through them. */ for (ap = (uintptr_t)ecb.dte_action, nactions = 0; ap != 0; ) { if (mdb_vread(&act, sizeof (act), ap) == -1) { mdb_warn("failed to read action %p on ecb %p", ap, addr); return (-1); } if (!DTRACEACT_ISAGG(act.dta_kind) && !act.dta_intuple) nactions++; ap = (uintptr_t)act.dta_next; } nrecs = epd->dtepd_nrecs; epd->dtepd_nrecs = nactions; epd->dtepd_probeid = probe.dtpr_id; epd->dtepd_uarg = ecb.dte_uarg; epd->dtepd_size = ecb.dte_size; for (ap = (uintptr_t)ecb.dte_action, nactions = 0; ap != 0; ) { if (mdb_vread(&act, sizeof (act), ap) == -1) { mdb_warn("failed to read action %p on ecb %p", ap, addr); return (-1); } if (!DTRACEACT_ISAGG(act.dta_kind) && !act.dta_intuple) { if (nrecs-- == 0) break; epd->dtepd_rec[nactions++] = act.dta_rec; } ap = (uintptr_t)act.dta_next; } return (0); } /*ARGSUSED*/ static int dtracemdb_probe(dtrace_state_t *state, dtrace_probedesc_t *pd) { uintptr_t base, addr, paddr, praddr; int nprobes, i; dtrace_probe_t probe; dtrace_provider_t prov; if (pd->dtpd_id == DTRACE_IDNONE) pd->dtpd_id++; if (mdb_readvar(&base, "dtrace_probes") == -1) { mdb_warn("failed to read 'dtrace_probes'"); return (-1); } if (mdb_readvar(&nprobes, "dtrace_nprobes") == -1) { mdb_warn("failed to read 'dtrace_nprobes'"); return (-1); } for (i = pd->dtpd_id; i <= nprobes; i++) { addr = base + (i - 1) * sizeof (dtrace_probe_t *); if (mdb_vread(&paddr, sizeof (paddr), addr) == -1) { mdb_warn("couldn't read probe pointer at %p", addr); return (-1); } if (paddr != 0) break; } if (paddr == 0) { errno = ESRCH; return (-1); } if (mdb_vread(&probe, sizeof (probe), paddr) == -1) { mdb_warn("couldn't read probe at %p", paddr); return (-1); } pd->dtpd_id = probe.dtpr_id; if (mdb_vread(pd->dtpd_name, DTRACE_NAMELEN, (uintptr_t)probe.dtpr_name) == -1) { mdb_warn("failed to read probe name for probe %p", paddr); return (-1); } if (mdb_vread(pd->dtpd_func, DTRACE_FUNCNAMELEN, (uintptr_t)probe.dtpr_func) == -1) { mdb_warn("failed to read function name for probe %p", paddr); return (-1); } if (mdb_vread(pd->dtpd_mod, DTRACE_MODNAMELEN, (uintptr_t)probe.dtpr_mod) == -1) { mdb_warn("failed to read module name for probe %p", paddr); return (-1); } praddr = (uintptr_t)probe.dtpr_provider; if (mdb_vread(&prov, sizeof (prov), praddr) == -1) { mdb_warn("failed to read provider for probe %p", paddr); return (-1); } if (mdb_vread(pd->dtpd_provider, DTRACE_PROVNAMELEN, (uintptr_t)prov.dtpv_name) == -1) { mdb_warn("failed to read provider name for probe %p", paddr); return (-1); } return (0); } /*ARGSUSED*/ static int dtracemdb_aggdesc(dtrace_state_t *state, dtrace_aggdesc_t *agd) { dtrace_aggid_t aggid = agd->dtagd_id; dtrace_aggregation_t agg; dtrace_ecb_t ecb; uintptr_t addr, eaddr, ap, last; dtrace_action_t act; dtrace_recdesc_t *lrec; int nactions, nrecs; addr = (uintptr_t)state->dts_aggregations + (aggid - 1) * sizeof (dtrace_aggregation_t *); if (mdb_vread(&addr, sizeof (addr), addr) == -1) { mdb_warn("failed to read aggregation for aggid %d", aggid); return (-1); } if (addr == 0) { mdb_warn("aggid %d doesn't match an aggregation\n", aggid); return (-1); } if (mdb_vread(&agg, sizeof (agg), addr) == -1) { mdb_warn("failed to read aggregation at %p", addr); return (-1); } eaddr = (uintptr_t)agg.dtag_ecb; if (mdb_vread(&ecb, sizeof (ecb), eaddr) == -1) { mdb_warn("failed to read ecb for aggregation %p", addr); return (-1); } last = (uintptr_t)addr + offsetof(dtrace_aggregation_t, dtag_action); /* * This is a little painful: in order to find the number of actions, * we need to first walk through them. */ ap = (uintptr_t)agg.dtag_first; nactions = 0; for (;;) { if (mdb_vread(&act, sizeof (act), ap) == -1) { mdb_warn("failed to read action %p on aggregation %p", ap, addr); return (-1); } nactions++; if (ap == last) break; ap = (uintptr_t)act.dta_next; } lrec = &act.dta_rec; agd->dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - agg.dtag_base; nrecs = agd->dtagd_nrecs; agd->dtagd_nrecs = nactions; agd->dtagd_epid = ecb.dte_epid; ap = (uintptr_t)agg.dtag_first; nactions = 0; for (;;) { dtrace_recdesc_t rec; if (mdb_vread(&act, sizeof (act), ap) == -1) { mdb_warn("failed to read action %p on aggregation %p", ap, addr); return (-1); } if (nrecs-- == 0) break; rec = act.dta_rec; rec.dtrd_offset -= agg.dtag_base; rec.dtrd_uarg = 0; agd->dtagd_rec[nactions++] = rec; if (ap == last) break; ap = (uintptr_t)act.dta_next; } return (0); } static int dtracemdb_bufsnap(dtrace_buffer_t *which, dtrace_bufdesc_t *desc) { static hrtime_t hr_offset = 0; static boolean_t offset_set = B_FALSE; uintptr_t addr; size_t bufsize; dtrace_buffer_t buf; caddr_t data = desc->dtbd_data; processorid_t max_cpuid, cpu = desc->dtbd_cpu; if (mdb_readvar(&max_cpuid, "max_cpuid") == -1) { mdb_warn("failed to read 'max_cpuid'"); errno = EIO; return (-1); } if (cpu < 0 || cpu > max_cpuid) { errno = EINVAL; return (-1); } addr = (uintptr_t)which + cpu * sizeof (dtrace_buffer_t); if (mdb_vread(&buf, sizeof (buf), addr) == -1) { mdb_warn("failed to read buffer description at %p", addr); errno = EIO; return (-1); } if (buf.dtb_tomax == NULL) { errno = ENOENT; return (-1); } if (buf.dtb_flags & DTRACEBUF_WRAPPED) { bufsize = buf.dtb_size; } else { bufsize = buf.dtb_offset; } if (mdb_vread(data, bufsize, (uintptr_t)buf.dtb_tomax) == -1) { mdb_warn("couldn't read buffer for CPU %d", cpu); errno = EIO; return (-1); } if (buf.dtb_offset > buf.dtb_size) { mdb_warn("buffer for CPU %d has corrupt offset\n", cpu); errno = EIO; return (-1); } if (buf.dtb_flags & DTRACEBUF_WRAPPED) { if (buf.dtb_xamot_offset > buf.dtb_size) { mdb_warn("ringbuffer for CPU %d has corrupt " "wrapped offset\n", cpu); errno = EIO; return (-1); } /* * If the ring buffer has wrapped, it needs to be polished. * See the comment in dtrace_buffer_polish() for details. */ if (buf.dtb_offset < buf.dtb_xamot_offset) { bzero(data + buf.dtb_offset, buf.dtb_xamot_offset - buf.dtb_offset); } if (buf.dtb_offset > buf.dtb_xamot_offset) { bzero(data + buf.dtb_offset, buf.dtb_size - buf.dtb_offset); bzero(data, buf.dtb_xamot_offset); } desc->dtbd_oldest = buf.dtb_xamot_offset; } else { desc->dtbd_oldest = 0; } /* * On a live system, dtbd_timestamp is set to gethrtime() when the * DTRACEIOC_BUFSNAP ioctl is called. The effect of this is that the * timestamps of all the enabled probe records in the buf will always * be less than dtbd_timestamp. dtrace_consume() relies on this * invariant to determine when it needs to retrieve more dtrace bufs * from the kernel. * * However when mdb is reading a crash dump, the value of * gethrtime() on the system running mdb may smaller than the * enabled probe records in the crash dump, violating the invariant * dtrace_consume() is relying on. This can cause dtrace_consume() * to prematurely stop processing records. * * To preserve the invariant dtrace_consume() requires, we simply * add the value of panic_hrtime to gethrtime() when setting * dtdb_timestamp. On a live system, panic_hrtime will be 0, and * the invariant will be preserved by virtue of being running on * a live system. On a crash dump, no valid probe record can have a * timestamp greater than panic_hrtime, so adding this to the value * of gethrtime() will guarantee the invariant expected by * dtrace_consume() is preserved. */ if (!offset_set) { hrtime_t panic_hrtime; /* * We could be slightly more clever and only set hr_offset * if gethrtime() in mdb is < panic_hrtime, but it doesn't * seem necessary. If for some reason, we cannot read * panic_hrtime, we'll try to continue -- ::dtrace may * still succeed, so we just warn and continue. */ if (mdb_readvar(&panic_hrtime, "panic_hrtime") == -1) { mdb_warn("failed to read 'panic_hrtime' -- " "some dtrace data may not be displayed"); } else { hr_offset = panic_hrtime; } offset_set = B_TRUE; } desc->dtbd_size = bufsize; desc->dtbd_drops = buf.dtb_drops; desc->dtbd_errors = buf.dtb_errors; desc->dtbd_timestamp = gethrtime() + hr_offset; return (0); } /* * This is essentially identical to its cousin in the kernel -- with the * notable exception that we automatically set DTRACEOPT_GRABANON if this * state is an anonymous enabling. */ static dof_hdr_t * dtracemdb_dof_create(dtrace_state_t *state, int isanon) { dof_hdr_t *dof; dof_sec_t *sec; dof_optdesc_t *opt; int i, len = sizeof (dof_hdr_t) + roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + sizeof (dof_optdesc_t) * DTRACEOPT_MAX; dof = mdb_zalloc(len, UM_SLEEP); dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; dof->dofh_flags = 0; dof->dofh_hdrsize = sizeof (dof_hdr_t); dof->dofh_secsize = sizeof (dof_sec_t); dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ dof->dofh_secoff = sizeof (dof_hdr_t); dof->dofh_loadsz = len; dof->dofh_filesz = len; dof->dofh_pad = 0; /* * Fill in the option section header... */ sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); sec->dofs_type = DOF_SECT_OPTDESC; sec->dofs_align = sizeof (uint64_t); sec->dofs_flags = DOF_SECF_LOAD; sec->dofs_entsize = sizeof (dof_optdesc_t); opt = (dof_optdesc_t *)((uintptr_t)sec + roundup(sizeof (dof_sec_t), sizeof (uint64_t))); sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; for (i = 0; i < DTRACEOPT_MAX; i++) { opt[i].dofo_option = i; opt[i].dofo_strtab = DOF_SECIDX_NONE; opt[i].dofo_value = state->dts_options[i]; } if (isanon) opt[DTRACEOPT_GRABANON].dofo_value = 1; return (dof); } static int dtracemdb_format(dtrace_state_t *state, dtrace_fmtdesc_t *desc) { uintptr_t addr, faddr; char c; int len = 0; if (desc->dtfd_format == 0 || desc->dtfd_format > state->dts_nformats) { errno = EINVAL; return (-1); } faddr = (uintptr_t)state->dts_formats + (desc->dtfd_format - 1) * sizeof (char *); if (mdb_vread(&addr, sizeof (addr), faddr) == -1) { mdb_warn("failed to read format string pointer at %p", faddr); return (-1); } do { if (mdb_vread(&c, sizeof (c), addr + len++) == -1) { mdb_warn("failed to read format string at %p", addr); return (-1); } } while (c != '\0'); if (len > desc->dtfd_length) { desc->dtfd_length = len; return (0); } if (mdb_vread(desc->dtfd_string, len, addr) == -1) { mdb_warn("failed to reread format string at %p", addr); return (-1); } return (0); } static int dtracemdb_status(dtrace_state_t *state, dtrace_status_t *status) { dtrace_dstate_t *dstate; int i, j; uint64_t nerrs; uintptr_t addr; int ncpu; if (mdb_readvar(&ncpu, "_ncpu") == -1) { mdb_warn("failed to read '_ncpu'"); return (DCMD_ERR); } bzero(status, sizeof (dtrace_status_t)); if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { errno = ENOENT; return (-1); } /* * For the MDB backend, we never set dtst_exiting or dtst_filled. This * is by design: we don't want the library to try to stop tracing, * because it doesn't particularly mean anything. */ nerrs = state->dts_errors; dstate = &state->dts_vstate.dtvs_dynvars; for (i = 0; i < ncpu; i++) { dtrace_dstate_percpu_t dcpu; dtrace_buffer_t buf; addr = (uintptr_t)&dstate->dtds_percpu[i]; if (mdb_vread(&dcpu, sizeof (dcpu), addr) == -1) { mdb_warn("failed to read per-CPU dstate at %p", addr); return (-1); } status->dtst_dyndrops += dcpu.dtdsc_drops; status->dtst_dyndrops_dirty += dcpu.dtdsc_dirty_drops; status->dtst_dyndrops_rinsing += dcpu.dtdsc_rinsing_drops; addr = (uintptr_t)&state->dts_buffer[i]; if (mdb_vread(&buf, sizeof (buf), addr) == -1) { mdb_warn("failed to read per-CPU buffer at %p", addr); return (-1); } nerrs += buf.dtb_errors; for (j = 0; j < state->dts_nspeculations; j++) { dtrace_speculation_t spec; addr = (uintptr_t)&state->dts_speculations[j]; if (mdb_vread(&spec, sizeof (spec), addr) == -1) { mdb_warn("failed to read " "speculation at %p", addr); return (-1); } addr = (uintptr_t)&spec.dtsp_buffer[i]; if (mdb_vread(&buf, sizeof (buf), addr) == -1) { mdb_warn("failed to read " "speculative buffer at %p", addr); return (-1); } status->dtst_specdrops += buf.dtb_xamot_drops; } } status->dtst_specdrops_busy = state->dts_speculations_busy; status->dtst_specdrops_unavail = state->dts_speculations_unavail; status->dtst_errors = nerrs; return (0); } typedef struct dtracemdb_data { dtrace_state_t *dtmd_state; char *dtmd_symstr; char *dtmd_modstr; uintptr_t dtmd_addr; int dtmd_isanon; } dtracemdb_data_t; static int dtracemdb_ioctl(void *varg, int cmd, void *arg) { dtracemdb_data_t *data = varg; dtrace_state_t *state = data->dtmd_state; switch (cmd) { case DTRACEIOC_CONF: { dtrace_conf_t *conf = arg; bzero(conf, sizeof (conf)); conf->dtc_difversion = DIF_VERSION; conf->dtc_difintregs = DIF_DIR_NREGS; conf->dtc_diftupregs = DIF_DTR_NREGS; conf->dtc_ctfmodel = CTF_MODEL_NATIVE; return (0); } case DTRACEIOC_DOFGET: { dof_hdr_t *hdr = arg, *dof; dof = dtracemdb_dof_create(state, data->dtmd_isanon); bcopy(dof, hdr, MIN(hdr->dofh_loadsz, dof->dofh_loadsz)); mdb_free(dof, dof->dofh_loadsz); return (0); } case DTRACEIOC_BUFSNAP: return (dtracemdb_bufsnap(state->dts_buffer, arg)); case DTRACEIOC_AGGSNAP: return (dtracemdb_bufsnap(state->dts_aggbuffer, arg)); case DTRACEIOC_AGGDESC: return (dtracemdb_aggdesc(state, arg)); case DTRACEIOC_EPROBE: return (dtracemdb_eprobe(state, arg)); case DTRACEIOC_PROBES: return (dtracemdb_probe(state, arg)); case DTRACEIOC_FORMAT: return (dtracemdb_format(state, arg)); case DTRACEIOC_STATUS: return (dtracemdb_status(state, arg)); case DTRACEIOC_GO: *(processorid_t *)arg = -1; return (0); case DTRACEIOC_ENABLE: errno = ENOTTY; /* see dt_open.c:dtrace_go() */ return (-1); case DTRACEIOC_PROVIDER: case DTRACEIOC_PROBEMATCH: errno = ESRCH; return (-1); default: mdb_warn("unexpected ioctl 0x%x (%s)\n", cmd, cmd == DTRACEIOC_PROVIDER ? "DTRACEIOC_PROVIDER" : cmd == DTRACEIOC_PROBES ? "DTRACEIOC_PROBES" : cmd == DTRACEIOC_BUFSNAP ? "DTRACEIOC_BUFSNAP" : cmd == DTRACEIOC_PROBEMATCH ? "DTRACEIOC_PROBEMATCH" : cmd == DTRACEIOC_ENABLE ? "DTRACEIOC_ENABLE" : cmd == DTRACEIOC_AGGSNAP ? "DTRACEIOC_AGGSNAP" : cmd == DTRACEIOC_EPROBE ? "DTRACEIOC_EPROBE" : cmd == DTRACEIOC_PROBEARG ? "DTRACEIOC_PROBEARG" : cmd == DTRACEIOC_CONF ? "DTRACEIOC_CONF" : cmd == DTRACEIOC_STATUS ? "DTRACEIOC_STATUS" : cmd == DTRACEIOC_GO ? "DTRACEIOC_GO" : cmd == DTRACEIOC_STOP ? "DTRACEIOC_STOP" : cmd == DTRACEIOC_AGGDESC ? "DTRACEIOC_AGGDESC" : cmd == DTRACEIOC_FORMAT ? "DTRACEIOC_FORMAT" : cmd == DTRACEIOC_DOFGET ? "DTRACEIOC_DOFGET" : cmd == DTRACEIOC_REPLICATE ? "DTRACEIOC_REPLICATE" : "???"); errno = ENXIO; return (-1); } } static int dtracemdb_modctl(uintptr_t addr, const struct modctl *m, dtracemdb_data_t *data) { struct module mod; if (m->mod_mp == NULL) return (WALK_NEXT); if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) { mdb_warn("couldn't read modctl %p's module", addr); return (WALK_NEXT); } if ((uintptr_t)mod.text > data->dtmd_addr) return (WALK_NEXT); if ((uintptr_t)mod.text + mod.text_size <= data->dtmd_addr) return (WALK_NEXT); if (mdb_readstr(data->dtmd_modstr, MDB_SYM_NAMLEN, (uintptr_t)m->mod_modname) == -1) return (WALK_ERR); return (WALK_DONE); } static int dtracemdb_lookup_by_addr(void *varg, GElf_Addr addr, GElf_Sym *symp, dtrace_syminfo_t *sip) { dtracemdb_data_t *data = varg; if (data->dtmd_symstr == NULL) { data->dtmd_symstr = mdb_zalloc(MDB_SYM_NAMLEN, UM_SLEEP | UM_GC); } if (data->dtmd_modstr == NULL) { data->dtmd_modstr = mdb_zalloc(MDB_SYM_NAMLEN, UM_SLEEP | UM_GC); } if (symp != NULL) { if (mdb_lookup_by_addr(addr, MDB_SYM_FUZZY, data->dtmd_symstr, MDB_SYM_NAMLEN, symp) == -1) return (-1); } if (sip != NULL) { data->dtmd_addr = addr; (void) strcpy(data->dtmd_modstr, "???"); if (mdb_walk("modctl", (mdb_walk_cb_t)dtracemdb_modctl, varg) == -1) { mdb_warn("couldn't walk 'modctl'"); return (-1); } sip->dts_object = data->dtmd_modstr; sip->dts_id = 0; sip->dts_name = symp != NULL ? data->dtmd_symstr : NULL; } return (0); } /*ARGSUSED*/ static int dtracemdb_stat(void *varg, processorid_t cpu) { GElf_Sym sym; cpu_t c; uintptr_t caddr, addr; if (mdb_lookup_by_name("cpu", &sym) == -1) { mdb_warn("failed to find symbol for 'cpu'"); return (-1); } if (cpu * sizeof (uintptr_t) > sym.st_size) return (-1); addr = (uintptr_t)sym.st_value + cpu * sizeof (uintptr_t); if (mdb_vread(&caddr, sizeof (caddr), addr) == -1) { mdb_warn("failed to read cpu[%d]", cpu); return (-1); } if (caddr == 0) return (-1); if (mdb_vread(&c, sizeof (c), caddr) == -1) { mdb_warn("failed to read cpu at %p", caddr); return (-1); } if (c.cpu_flags & CPU_POWEROFF) { return (P_POWEROFF); } else if (c.cpu_flags & CPU_SPARE) { return (P_SPARE); } else if (c.cpu_flags & CPU_FAULTED) { return (P_FAULTED); } else if (c.cpu_flags & CPU_DISABLED) { return (P_DISABLED); } else if ((c.cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) { return (P_OFFLINE); } else if (c.cpu_flags & CPU_ENABLE) { return (P_ONLINE); } else { return (P_NOINTR); } } /*ARGSUSED*/ static long dtracemdb_sysconf(void *varg, int name) { int max_ncpus; processorid_t max_cpuid; switch (name) { case _SC_CPUID_MAX: if (mdb_readvar(&max_cpuid, "max_cpuid") == -1) { mdb_warn("failed to read 'max_cpuid'"); return (-1); } return (max_cpuid); case _SC_NPROCESSORS_MAX: if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { mdb_warn("failed to read 'max_ncpus'"); return (-1); } return (max_ncpus); default: mdb_warn("unexpected sysconf code %d\n", name); return (-1); } } const dtrace_vector_t dtrace_mdbops = { dtracemdb_ioctl, dtracemdb_lookup_by_addr, dtracemdb_stat, dtracemdb_sysconf }; typedef struct dtrace_dcmddata { dtrace_hdl_t *dtdd_dtp; int dtdd_cpu; int dtdd_quiet; int dtdd_flowindent; int dtdd_heading; FILE *dtdd_output; } dtrace_dcmddata_t; /* * Helper to grab all the content from a file, spit it into a string, and erase * and reset the file. */ static void print_and_truncate_file(FILE *fp) { long len; char *out; /* flush, find length of file, seek to beginning, initialize buffer */ if (fflush(fp) || (len = ftell(fp)) < 0 || fseek(fp, 0, SEEK_SET) < 0) { mdb_warn("couldn't prepare DTrace output file: %d\n", errno); return; } out = mdb_alloc(len + 1, UM_SLEEP); out[len] = '\0'; /* read file into buffer, truncate file, and seek to beginning */ if ((fread(out, len + 1, sizeof (char), fp) == 0 && ferror(fp)) || ftruncate(fileno(fp), 0) < 0 || fseek(fp, 0, SEEK_SET) < 0) { mdb_warn("couldn't read DTrace output file: %d\n", errno); mdb_free(out, len + 1); return; } mdb_printf("%s", out); mdb_free(out, len + 1); } /*ARGSUSED*/ static int dtrace_dcmdrec(const dtrace_probedata_t *data, const dtrace_recdesc_t *rec, void *arg) { dtrace_dcmddata_t *dd = arg; print_and_truncate_file(dd->dtdd_output); if (rec == NULL) { /* * We have processed the final record; output the newline if * we're not in quiet mode. */ if (!dd->dtdd_quiet) mdb_printf("\n"); return (DTRACE_CONSUME_NEXT); } return (DTRACE_CONSUME_THIS); } /*ARGSUSED*/ static int dtrace_dcmdprobe(const dtrace_probedata_t *data, void *arg) { dtrace_probedesc_t *pd = data->dtpda_pdesc; processorid_t cpu = data->dtpda_cpu; dtrace_dcmddata_t *dd = arg; char name[DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 2]; if (dd->dtdd_cpu != -1UL && dd->dtdd_cpu != cpu) return (DTRACE_CONSUME_NEXT); if (dd->dtdd_heading == 0) { if (!dd->dtdd_flowindent) { if (!dd->dtdd_quiet) { mdb_printf("%3s %6s %32s\n", "CPU", "ID", "FUNCTION:NAME"); } } else { mdb_printf("%3s %-41s\n", "CPU", "FUNCTION"); } dd->dtdd_heading = 1; } if (!dd->dtdd_flowindent) { if (!dd->dtdd_quiet) { (void) mdb_snprintf(name, sizeof (name), "%s:%s", pd->dtpd_func, pd->dtpd_name); mdb_printf("%3d %6d %32s ", cpu, pd->dtpd_id, name); } } else { int indent = data->dtpda_indent; if (data->dtpda_flow == DTRACEFLOW_NONE) { (void) mdb_snprintf(name, sizeof (name), "%*s%s%s:%s", indent, "", data->dtpda_prefix, pd->dtpd_func, pd->dtpd_name); } else { (void) mdb_snprintf(name, sizeof (name), "%*s%s%s", indent, "", data->dtpda_prefix, pd->dtpd_func); } mdb_printf("%3d %-41s ", cpu, name); } return (DTRACE_CONSUME_THIS); } /*ARGSUSED*/ static int dtrace_dcmderr(const dtrace_errdata_t *data, void *arg) { mdb_warn(data->dteda_msg); return (DTRACE_HANDLE_OK); } /*ARGSUSED*/ static int dtrace_dcmddrop(const dtrace_dropdata_t *data, void *arg) { mdb_warn(data->dtdda_msg); return (DTRACE_HANDLE_OK); } /*ARGSUSED*/ static int dtrace_dcmdbuffered(const dtrace_bufdata_t *bufdata, void *arg) { mdb_printf("%s", bufdata->dtbda_buffered); return (DTRACE_HANDLE_OK); } /*ARGSUSED*/ int dtrace(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { dtrace_state_t state; dtrace_hdl_t *dtp; int ncpu, err; uintptr_t c = -1UL; dtrace_dcmddata_t dd; dtrace_optval_t val; dtracemdb_data_t md; int rval = DCMD_ERR; dtrace_anon_t anon; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (mdb_getopts(argc, argv, 'c', MDB_OPT_UINTPTR, &c, NULL) != argc) return (DCMD_USAGE); if (mdb_readvar(&ncpu, "_ncpu") == -1) { mdb_warn("failed to read '_ncpu'"); return (DCMD_ERR); } if (mdb_vread(&state, sizeof (state), addr) == -1) { mdb_warn("couldn't read dtrace_state_t at %p", addr); return (DCMD_ERR); } if (state.dts_anon != NULL) { addr = (uintptr_t)state.dts_anon; if (mdb_vread(&state, sizeof (state), addr) == -1) { mdb_warn("couldn't read anonymous state at %p", addr); return (DCMD_ERR); } } bzero(&md, sizeof (md)); md.dtmd_state = &state; if ((dtp = dtrace_vopen(DTRACE_VERSION, DTRACE_O_NOSYS, &err, &dtrace_mdbops, &md)) == NULL) { mdb_warn("failed to initialize dtrace: %s\n", dtrace_errmsg(NULL, err)); return (DCMD_ERR); } /* * If this is the anonymous enabling, we need to set a bit indicating * that DTRACEOPT_GRABANON should be set. */ if (mdb_readvar(&anon, "dtrace_anon") == -1) { mdb_warn("failed to read 'dtrace_anon'"); return (DCMD_ERR); } md.dtmd_isanon = ((uintptr_t)anon.dta_state == addr); if (dtrace_go(dtp) != 0) { mdb_warn("failed to initialize dtrace: %s\n", dtrace_errmsg(dtp, dtrace_errno(dtp))); goto err; } bzero(&dd, sizeof (dd)); dd.dtdd_dtp = dtp; dd.dtdd_cpu = c; if (dtrace_getopt(dtp, "flowindent", &val) == -1) { mdb_warn("couldn't get 'flowindent' option: %s\n", dtrace_errmsg(dtp, dtrace_errno(dtp))); goto err; } dd.dtdd_flowindent = (val != DTRACEOPT_UNSET); if (dtrace_getopt(dtp, "quiet", &val) == -1) { mdb_warn("couldn't get 'quiet' option: %s\n", dtrace_errmsg(dtp, dtrace_errno(dtp))); goto err; } dd.dtdd_quiet = (val != DTRACEOPT_UNSET); if (dtrace_handle_err(dtp, dtrace_dcmderr, NULL) == -1) { mdb_warn("couldn't add err handler: %s\n", dtrace_errmsg(dtp, dtrace_errno(dtp))); goto err; } if (dtrace_handle_drop(dtp, dtrace_dcmddrop, NULL) == -1) { mdb_warn("couldn't add drop handler: %s\n", dtrace_errmsg(dtp, dtrace_errno(dtp))); goto err; } if (dtrace_handle_buffered(dtp, dtrace_dcmdbuffered, NULL) == -1) { mdb_warn("couldn't add buffered handler: %s\n", dtrace_errmsg(dtp, dtrace_errno(dtp))); goto err; } if (dtrace_status(dtp) == -1) { mdb_warn("couldn't get status: %s\n", dtrace_errmsg(dtp, dtrace_errno(dtp))); goto err; } if (dtrace_aggregate_snap(dtp) == -1) { mdb_warn("couldn't snapshot aggregation: %s\n", dtrace_errmsg(dtp, dtrace_errno(dtp))); goto err; } if ((dd.dtdd_output = tmpfile()) == NULL) { mdb_warn("couldn't open DTrace output file: %d\n", errno); goto err; } if (dtrace_consume(dtp, dd.dtdd_output, dtrace_dcmdprobe, dtrace_dcmdrec, &dd) == -1) { mdb_warn("couldn't consume DTrace buffers: %s\n", dtrace_errmsg(dtp, dtrace_errno(dtp))); } if (dtrace_aggregate_print(dtp, NULL, NULL) == -1) { mdb_warn("couldn't print aggregation: %s\n", dtrace_errmsg(dtp, dtrace_errno(dtp))); goto err; } rval = DCMD_OK; err: dtrace_close(dtp); fclose(dd.dtdd_output); return (rval); } static int dtrace_errhash_cmp(const void *l, const void *r) { uintptr_t lhs = *((uintptr_t *)l); uintptr_t rhs = *((uintptr_t *)r); dtrace_errhash_t lerr, rerr; char lmsg[256], rmsg[256]; (void) mdb_vread(&lerr, sizeof (lerr), lhs); (void) mdb_vread(&rerr, sizeof (rerr), rhs); if (lerr.dter_msg == NULL) return (-1); if (rerr.dter_msg == NULL) return (1); (void) mdb_readstr(lmsg, sizeof (lmsg), (uintptr_t)lerr.dter_msg); (void) mdb_readstr(rmsg, sizeof (rmsg), (uintptr_t)rerr.dter_msg); return (strcmp(lmsg, rmsg)); } int dtrace_errhash_init(mdb_walk_state_t *wsp) { GElf_Sym sym; uintptr_t *hash, addr; int i; if (wsp->walk_addr != 0) { mdb_warn("dtrace_errhash walk only supports global walks\n"); return (WALK_ERR); } if (mdb_lookup_by_name("dtrace_errhash", &sym) == -1) { mdb_warn("couldn't find 'dtrace_errhash' (non-DEBUG kernel?)"); return (WALK_ERR); } addr = (uintptr_t)sym.st_value; hash = mdb_alloc(DTRACE_ERRHASHSZ * sizeof (uintptr_t), UM_SLEEP | UM_GC); for (i = 0; i < DTRACE_ERRHASHSZ; i++) hash[i] = addr + i * sizeof (dtrace_errhash_t); qsort(hash, DTRACE_ERRHASHSZ, sizeof (uintptr_t), dtrace_errhash_cmp); wsp->walk_addr = 0; wsp->walk_data = hash; return (WALK_NEXT); } int dtrace_errhash_step(mdb_walk_state_t *wsp) { int ndx = (int)wsp->walk_addr; uintptr_t *hash = wsp->walk_data; dtrace_errhash_t err; uintptr_t addr; if (ndx >= DTRACE_ERRHASHSZ) return (WALK_DONE); wsp->walk_addr = ndx + 1; addr = hash[ndx]; if (mdb_vread(&err, sizeof (err), addr) == -1) { mdb_warn("failed to read dtrace_errhash_t at %p", addr); return (WALK_DONE); } if (err.dter_msg == NULL) return (WALK_NEXT); return (wsp->walk_callback(addr, &err, wsp->walk_cbdata)); } /*ARGSUSED*/ int dtrace_errhash(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { dtrace_errhash_t err; char msg[256]; if (!(flags & DCMD_ADDRSPEC)) { if (mdb_walk_dcmd("dtrace_errhash", "dtrace_errhash", argc, argv) == -1) { mdb_warn("can't walk 'dtrace_errhash'"); return (DCMD_ERR); } return (DCMD_OK); } if (DCMD_HDRSPEC(flags)) mdb_printf("%8s %s\n", "COUNT", "ERROR"); if (mdb_vread(&err, sizeof (err), addr) == -1) { mdb_warn("failed to read dtrace_errhash_t at %p", addr); return (DCMD_ERR); } addr = (uintptr_t)err.dter_msg; if (mdb_readstr(msg, sizeof (msg), addr) == -1) { mdb_warn("failed to read error msg at %p", addr); return (DCMD_ERR); } mdb_printf("%8d %s", err.dter_count, msg); /* * Some error messages include a newline -- only print the newline * if the message doesn't have one. */ if (msg[strlen(msg) - 1] != '\n') mdb_printf("\n"); return (DCMD_OK); } int dtrace_helptrace_init(mdb_walk_state_t *wsp) { uint32_t next; uintptr_t buffer; if (wsp->walk_addr != 0) { mdb_warn("dtrace_helptrace only supports global walks\n"); return (WALK_ERR); } if (mdb_readvar(&buffer, "dtrace_helptrace_buffer") == -1) { mdb_warn("couldn't read 'dtrace_helptrace_buffer'"); return (WALK_ERR); } if (buffer == 0) { mdb_warn("helper tracing is not enabled\n"); return (WALK_ERR); } if (mdb_readvar(&next, "dtrace_helptrace_next") == -1) { mdb_warn("couldn't read 'dtrace_helptrace_next'"); return (WALK_ERR); } wsp->walk_addr = next; return (WALK_NEXT); } int dtrace_helptrace_step(mdb_walk_state_t *wsp) { uint32_t next, size, nlocals, bufsize; uintptr_t buffer, addr; dtrace_helptrace_t *ht; int rval; if (mdb_readvar(&next, "dtrace_helptrace_next") == -1) { mdb_warn("couldn't read 'dtrace_helptrace_next'"); return (WALK_ERR); } if (mdb_readvar(&bufsize, "dtrace_helptrace_bufsize") == -1) { mdb_warn("couldn't read 'dtrace_helptrace_bufsize'"); return (WALK_ERR); } if (mdb_readvar(&buffer, "dtrace_helptrace_buffer") == -1) { mdb_warn("couldn't read 'dtrace_helptrace_buffer'"); return (WALK_ERR); } if (mdb_readvar(&nlocals, "dtrace_helptrace_nlocals") == -1) { mdb_warn("couldn't read 'dtrace_helptrace_nlocals'"); return (WALK_ERR); } size = sizeof (dtrace_helptrace_t) + nlocals * sizeof (uint64_t) - sizeof (uint64_t); if (wsp->walk_addr + size > bufsize) { if (next == 0) return (WALK_DONE); wsp->walk_addr = 0; } addr = buffer + wsp->walk_addr; ht = alloca(size); if (mdb_vread(ht, size, addr) == -1) { mdb_warn("couldn't read entry at %p", addr); return (WALK_ERR); } if (ht->dtht_helper != NULL) { rval = wsp->walk_callback(addr, ht, wsp->walk_cbdata); if (rval != WALK_NEXT) return (rval); } if (wsp->walk_addr < next && wsp->walk_addr + size >= next) return (WALK_DONE); wsp->walk_addr += size; return (WALK_NEXT); } int dtrace_helptrace(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { dtrace_helptrace_t help; dtrace_helper_action_t helper; char where[30]; uint_t opt_v = FALSE; uintptr_t haddr; if (!(flags & DCMD_ADDRSPEC)) { if (mdb_walk_dcmd("dtrace_helptrace", "dtrace_helptrace", argc, argv) == -1) { mdb_warn("can't walk 'dtrace_helptrace'"); return (DCMD_ERR); } return (DCMD_OK); } if (mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL) != argc) return (DCMD_USAGE); if (DCMD_HDRSPEC(flags)) { mdb_printf(" %?s %?s %12s %s\n", "ADDR", "HELPER", "WHERE", "DIFO"); } if (mdb_vread(&help, sizeof (help), addr) == -1) { mdb_warn("failed to read dtrace_helptrace_t at %p", addr); return (DCMD_ERR); } switch (help.dtht_where) { case 0: (void) mdb_snprintf(where, sizeof (where), "predicate"); break; case DTRACE_HELPTRACE_NEXT: (void) mdb_snprintf(where, sizeof (where), "next"); break; case DTRACE_HELPTRACE_DONE: (void) mdb_snprintf(where, sizeof (where), "done"); break; case DTRACE_HELPTRACE_ERR: (void) mdb_snprintf(where, sizeof (where), "err"); break; default: (void) mdb_snprintf(where, sizeof (where), "action #%d", help.dtht_where); break; } mdb_printf(" %?p %?p %12s ", addr, help.dtht_helper, where); haddr = (uintptr_t)help.dtht_helper; if (mdb_vread(&helper, sizeof (helper), haddr) == -1) { /* * We're not going to warn in this case -- we're just not going * to print anything exciting. */ mdb_printf("???\n"); } else { switch (help.dtht_where) { case 0: mdb_printf("%p\n", helper.dtha_predicate); break; case DTRACE_HELPTRACE_NEXT: case DTRACE_HELPTRACE_DONE: case DTRACE_HELPTRACE_ERR: mdb_printf("-\n"); break; default: haddr = (uintptr_t)helper.dtha_actions + (help.dtht_where - 1) * sizeof (uintptr_t); if (mdb_vread(&haddr, sizeof (haddr), haddr) == -1) { mdb_printf("???\n"); } else { mdb_printf("%p\n", haddr); } } } if (opt_v) { int i; if (help.dtht_where == DTRACE_HELPTRACE_ERR) { int f = help.dtht_fault; mdb_printf("%?s| %?s %10s |\n", "", "", ""); mdb_printf("%?s| %?s %10s +-> fault: %s\n", "", "", "", f == DTRACEFLT_BADADDR ? "BADADDR" : f == DTRACEFLT_BADALIGN ? "BADALIGN" : f == DTRACEFLT_ILLOP ? "ILLOP" : f == DTRACEFLT_DIVZERO ? "DIVZERO" : f == DTRACEFLT_NOSCRATCH ? "NOSCRATCH" : f == DTRACEFLT_KPRIV ? "KPRIV" : f == DTRACEFLT_UPRIV ? "UPRIV" : f == DTRACEFLT_TUPOFLOW ? "TUPOFLOW" : f == DTRACEFLT_BADSTACK ? "BADSTACK" : "DTRACEFLT_UNKNOWN"); mdb_printf("%?s| %?s %12s addr: 0x%x\n", "", "", "", help.dtht_illval); mdb_printf("%?s| %?s %12s offset: %d\n", "", "", "", help.dtht_fltoffs); } mdb_printf("%?s|\n%?s+--> %?s %4s %s\n", "", "", "ADDR", "NDX", "VALUE"); addr += sizeof (help) - sizeof (uint64_t); for (i = 0; i < help.dtht_nlocals; i++) { uint64_t val; if (mdb_vread(&val, sizeof (val), addr) == -1) { mdb_warn("couldn't read local at %p", addr); continue; } mdb_printf("%?s %?p %4d %p\n", "", addr, i, val); addr += sizeof (uint64_t); } mdb_printf("\n"); } return (DCMD_OK); } /*ARGSUSED*/ static int dtrace_state_walk(uintptr_t addr, const vmem_seg_t *seg, minor_t *highest) { if (seg->vs_end > *highest) *highest = seg->vs_end; return (WALK_NEXT); } typedef struct dtrace_state_walk { uintptr_t dtsw_softstate; minor_t dtsw_max; minor_t dtsw_current; } dtrace_state_walk_t; int dtrace_state_init(mdb_walk_state_t *wsp) { uintptr_t dtrace_minor; minor_t max = 0; dtrace_state_walk_t *dw; if (wsp->walk_addr != 0) { mdb_warn("dtrace_state only supports global walks\n"); return (WALK_ERR); } /* * Find the dtrace_minor vmem arena and walk it to get the maximum * minor number. */ if (mdb_readvar(&dtrace_minor, "dtrace_minor") == -1) { mdb_warn("failed to read 'dtrace_minor'"); return (WALK_ERR); } if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)dtrace_state_walk, &max, dtrace_minor) == -1) { mdb_warn("couldn't walk 'vmem_alloc'"); return (WALK_ERR); } dw = mdb_zalloc(sizeof (dtrace_state_walk_t), UM_SLEEP | UM_GC); dw->dtsw_current = 0; dw->dtsw_max = max; if (mdb_readvar(&dw->dtsw_softstate, "dtrace_softstate") == -1) { mdb_warn("failed to read 'dtrace_softstate'"); return (DCMD_ERR); } wsp->walk_data = dw; return (WALK_NEXT); } int dtrace_state_step(mdb_walk_state_t *wsp) { dtrace_state_walk_t *dw = wsp->walk_data; uintptr_t statep; dtrace_state_t state; int rval; while (mdb_get_soft_state_byaddr(dw->dtsw_softstate, dw->dtsw_current, &statep, NULL, 0) == -1) { if (dw->dtsw_current >= dw->dtsw_max) return (WALK_DONE); dw->dtsw_current++; } if (mdb_vread(&state, sizeof (state), statep) == -1) { mdb_warn("couldn't read dtrace_state_t at %p", statep); return (WALK_NEXT); } rval = wsp->walk_callback(statep, &state, wsp->walk_cbdata); dw->dtsw_current++; return (rval); } typedef struct dtrace_state_data { int dtsd_major; uintptr_t dtsd_proc; uintptr_t dtsd_softstate; uintptr_t dtsd_state; } dtrace_state_data_t; static int dtrace_state_file(uintptr_t addr, struct file *f, dtrace_state_data_t *data) { vnode_t vnode; proc_t proc; minor_t minor; uintptr_t statep; if (mdb_vread(&vnode, sizeof (vnode), (uintptr_t)f->f_vnode) == -1) { mdb_warn("couldn't read vnode at %p", (uintptr_t)f->f_vnode); return (WALK_NEXT); } if (getmajor(vnode.v_rdev) != data->dtsd_major) return (WALK_NEXT); minor = getminor(vnode.v_rdev); if (mdb_vread(&proc, sizeof (proc), data->dtsd_proc) == -1) { mdb_warn("failed to read proc at %p", data->dtsd_proc); return (WALK_NEXT); } if (mdb_get_soft_state_byaddr(data->dtsd_softstate, minor, &statep, NULL, 0) == -1) { mdb_warn("failed to read softstate for minor %d", minor); return (WALK_NEXT); } if (statep != data->dtsd_state) return (WALK_NEXT); mdb_printf("%?p %5d %?p %-*s %?p\n", statep, minor, data->dtsd_proc, MAXCOMLEN, proc.p_user.u_comm, addr); return (WALK_NEXT); } /*ARGSUSED*/ static int dtrace_state_proc(uintptr_t addr, void *ignored, dtrace_state_data_t *data) { data->dtsd_proc = addr; if (mdb_pwalk("file", (mdb_walk_cb_t)dtrace_state_file, data, addr) == -1) { mdb_warn("couldn't walk 'file' for proc %p", addr); return (WALK_ERR); } return (WALK_NEXT); } void dtrace_state_help(void) { mdb_printf("Given a dtrace_state_t structure, displays all " /*CSTYLED*/ "consumers, or \"\"\nif the consumer is anonymous. If " "no state structure is provided, iterates\nover all state " "structures.\n\n" "Addresses in ADDR column may be provided to ::dtrace to obtain\n" "dtrace(8)-like output for in-kernel DTrace data.\n"); } int dtrace_state(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { uintptr_t devi; struct dev_info info; dtrace_state_data_t data; dtrace_anon_t anon; dtrace_state_t state; if (!(flags & DCMD_ADDRSPEC)) { if (mdb_walk_dcmd("dtrace_state", "dtrace_state", argc, argv) == -1) { mdb_warn("can't walk dtrace_state"); return (DCMD_ERR); } return (DCMD_OK); } if (DCMD_HDRSPEC(flags)) { mdb_printf("%?s %5s %?s %-*s %?s\n", "ADDR", "MINOR", "PROC", MAXCOMLEN, "NAME", "FILE"); } /* * First determine if this is anonymous state. */ if (mdb_readvar(&anon, "dtrace_anon") == -1) { mdb_warn("failed to read 'dtrace_anon'"); return (DCMD_ERR); } if ((uintptr_t)anon.dta_state == addr) { if (mdb_vread(&state, sizeof (state), addr) == -1) { mdb_warn("failed to read anon at %p", addr); return (DCMD_ERR); } mdb_printf("%?p %5d %?s %-*s %?s\n", addr, getminor(state.dts_dev), "-", MAXCOMLEN, "", "-"); return (DCMD_OK); } if (mdb_readvar(&devi, "dtrace_devi") == -1) { mdb_warn("failed to read 'dtrace_devi'"); return (DCMD_ERR); } if (mdb_vread(&info, sizeof (struct dev_info), devi) == -1) { mdb_warn("failed to read 'dev_info'"); return (DCMD_ERR); } data.dtsd_major = info.devi_major; if (mdb_readvar(&data.dtsd_softstate, "dtrace_softstate") == -1) { mdb_warn("failed to read 'dtrace_softstate'"); return (DCMD_ERR); } data.dtsd_state = addr; /* * Walk through all processes and all open files looking for this * state. It must be open somewhere... */ if (mdb_walk("proc", (mdb_walk_cb_t)dtrace_state_proc, &data) == -1) { mdb_warn("couldn't walk 'proc'"); return (DCMD_ERR); } return (DCMD_OK); } typedef struct dtrace_aggkey_data { uintptr_t *dtakd_hash; uintptr_t dtakd_hashsize; uintptr_t dtakd_next; uintptr_t dtakd_ndx; } dtrace_aggkey_data_t; int dtrace_aggkey_init(mdb_walk_state_t *wsp) { dtrace_buffer_t buf; uintptr_t addr; dtrace_aggbuffer_t agb; dtrace_aggkey_data_t *data; size_t hsize; if ((addr = wsp->walk_addr) == 0) { mdb_warn("dtrace_aggkey walk needs aggregation buffer\n"); return (WALK_ERR); } if (mdb_vread(&buf, sizeof (buf), addr) == -1) { mdb_warn("failed to read aggregation buffer at %p", addr); return (WALK_ERR); } addr = (uintptr_t)buf.dtb_tomax + buf.dtb_size - sizeof (dtrace_aggbuffer_t); if (mdb_vread(&agb, sizeof (agb), addr) == -1) { mdb_warn("failed to read dtrace_aggbuffer_t at %p", addr); return (WALK_ERR); } data = mdb_zalloc(sizeof (dtrace_aggkey_data_t), UM_SLEEP); data->dtakd_hashsize = agb.dtagb_hashsize; hsize = agb.dtagb_hashsize * sizeof (dtrace_aggkey_t *); data->dtakd_hash = mdb_alloc(hsize, UM_SLEEP); if (mdb_vread(data->dtakd_hash, hsize, (uintptr_t)agb.dtagb_hash) == -1) { mdb_warn("failed to read hash at %p", (uintptr_t)agb.dtagb_hash); mdb_free(data->dtakd_hash, hsize); mdb_free(data, sizeof (dtrace_aggkey_data_t)); return (WALK_ERR); } wsp->walk_data = data; return (WALK_NEXT); } int dtrace_aggkey_step(mdb_walk_state_t *wsp) { dtrace_aggkey_data_t *data = wsp->walk_data; dtrace_aggkey_t key; uintptr_t addr; while ((addr = data->dtakd_next) == 0) { if (data->dtakd_ndx == data->dtakd_hashsize) return (WALK_DONE); data->dtakd_next = data->dtakd_hash[data->dtakd_ndx++]; } if (mdb_vread(&key, sizeof (key), addr) == -1) { mdb_warn("failed to read dtrace_aggkey_t at %p", addr); return (WALK_ERR); } data->dtakd_next = (uintptr_t)key.dtak_next; return (wsp->walk_callback(addr, &key, wsp->walk_cbdata)); } void dtrace_aggkey_fini(mdb_walk_state_t *wsp) { dtrace_aggkey_data_t *data = wsp->walk_data; size_t hsize; hsize = data->dtakd_hashsize * sizeof (dtrace_aggkey_t *); mdb_free(data->dtakd_hash, hsize); mdb_free(data, sizeof (dtrace_aggkey_data_t)); } typedef struct dtrace_dynvar_data { dtrace_dynhash_t *dtdvd_hash; uintptr_t dtdvd_hashsize; uintptr_t dtdvd_next; uintptr_t dtdvd_ndx; uintptr_t dtdvd_sink; } dtrace_dynvar_data_t; int dtrace_dynvar_init(mdb_walk_state_t *wsp) { uintptr_t addr; dtrace_dstate_t dstate; dtrace_dynvar_data_t *data; size_t hsize; GElf_Sym sym; if ((addr = wsp->walk_addr) == 0) { mdb_warn("dtrace_dynvar walk needs dtrace_dstate_t\n"); return (WALK_ERR); } if (mdb_vread(&dstate, sizeof (dstate), addr) == -1) { mdb_warn("failed to read dynamic state at %p", addr); return (WALK_ERR); } if (mdb_lookup_by_name("dtrace_dynhash_sink", &sym) == -1) { mdb_warn("couldn't find 'dtrace_dynhash_sink'"); return (WALK_ERR); } data = mdb_zalloc(sizeof (dtrace_dynvar_data_t), UM_SLEEP); data->dtdvd_hashsize = dstate.dtds_hashsize; hsize = dstate.dtds_hashsize * sizeof (dtrace_dynhash_t); data->dtdvd_hash = mdb_alloc(hsize, UM_SLEEP); data->dtdvd_sink = (uintptr_t)sym.st_value; if (mdb_vread(data->dtdvd_hash, hsize, (uintptr_t)dstate.dtds_hash) == -1) { mdb_warn("failed to read hash at %p", (uintptr_t)dstate.dtds_hash); mdb_free(data->dtdvd_hash, hsize); mdb_free(data, sizeof (dtrace_dynvar_data_t)); return (WALK_ERR); } data->dtdvd_next = (uintptr_t)data->dtdvd_hash[0].dtdh_chain; wsp->walk_data = data; return (WALK_NEXT); } int dtrace_dynvar_step(mdb_walk_state_t *wsp) { dtrace_dynvar_data_t *data = wsp->walk_data; dtrace_dynvar_t dynvar, *dvar; size_t dvarsize; uintptr_t addr; int nkeys; while ((addr = data->dtdvd_next) == data->dtdvd_sink) { if (data->dtdvd_ndx == data->dtdvd_hashsize) return (WALK_DONE); data->dtdvd_next = (uintptr_t)data->dtdvd_hash[data->dtdvd_ndx++].dtdh_chain; } if (mdb_vread(&dynvar, sizeof (dynvar), addr) == -1) { mdb_warn("failed to read dtrace_dynvar_t at %p", addr); return (WALK_ERR); } /* * Now we need to allocate the correct size. */ nkeys = dynvar.dtdv_tuple.dtt_nkeys; dvarsize = (uintptr_t)&dynvar.dtdv_tuple.dtt_key[nkeys] - (uintptr_t)&dynvar; dvar = alloca(dvarsize); if (mdb_vread(dvar, dvarsize, addr) == -1) { mdb_warn("failed to read dtrace_dynvar_t at %p", addr); return (WALK_ERR); } data->dtdvd_next = (uintptr_t)dynvar.dtdv_next; return (wsp->walk_callback(addr, dvar, wsp->walk_cbdata)); } void dtrace_dynvar_fini(mdb_walk_state_t *wsp) { dtrace_dynvar_data_t *data = wsp->walk_data; size_t hsize; hsize = data->dtdvd_hashsize * sizeof (dtrace_dynvar_t *); mdb_free(data->dtdvd_hash, hsize); mdb_free(data, sizeof (dtrace_dynvar_data_t)); } typedef struct dtrace_hashstat_data { size_t *dthsd_counts; size_t dthsd_hashsize; char *dthsd_data; size_t dthsd_size; int dthsd_header; } dtrace_hashstat_data_t; typedef void (*dtrace_hashstat_func_t)(dtrace_hashstat_data_t *); static void dtrace_hashstat_additive(dtrace_hashstat_data_t *data) { int i; int hval = 0; for (i = 0; i < data->dthsd_size; i++) hval += data->dthsd_data[i]; data->dthsd_counts[hval % data->dthsd_hashsize]++; } static void dtrace_hashstat_shifty(dtrace_hashstat_data_t *data) { uint64_t hval = 0; int i; if (data->dthsd_size < sizeof (uint64_t)) { dtrace_hashstat_additive(data); return; } for (i = 0; i < data->dthsd_size; i += sizeof (uint64_t)) { /* LINTED - alignment */ uint64_t val = *((uint64_t *)&data->dthsd_data[i]); hval += (val & ((1 << NBBY) - 1)) + ((val >> NBBY) & ((1 << NBBY) - 1)) + ((val >> (NBBY << 1)) & ((1 << NBBY) - 1)) + ((val >> (NBBY << 2)) & ((1 << NBBY) - 1)) + (val & USHRT_MAX) + (val >> (NBBY << 1) & USHRT_MAX); } data->dthsd_counts[hval % data->dthsd_hashsize]++; } static void dtrace_hashstat_knuth(dtrace_hashstat_data_t *data) { int i; int hval = data->dthsd_size; for (i = 0; i < data->dthsd_size; i++) hval = (hval << 4) ^ (hval >> 28) ^ data->dthsd_data[i]; data->dthsd_counts[hval % data->dthsd_hashsize]++; } static void dtrace_hashstat_oneatatime(dtrace_hashstat_data_t *data) { int i; uint32_t hval = 0; for (i = 0; i < data->dthsd_size; i++) { hval += data->dthsd_data[i]; hval += (hval << 10); hval ^= (hval >> 6); } hval += (hval << 3); hval ^= (hval >> 11); hval += (hval << 15); data->dthsd_counts[hval % data->dthsd_hashsize]++; } static void dtrace_hashstat_fnv(dtrace_hashstat_data_t *data) { static const uint32_t prime = 0x01000193; uint32_t hval = 0; int i; for (i = 0; i < data->dthsd_size; i++) { hval *= prime; hval ^= data->dthsd_data[i]; } data->dthsd_counts[hval % data->dthsd_hashsize]++; } static void dtrace_hashstat_stats(char *name, dtrace_hashstat_data_t *data) { size_t nz = 0, i; int longest = 0; size_t ttl = 0; double sum = 0.0; double avg; uint_t util, stddev; if (!data->dthsd_header) { mdb_printf("%15s %11s %11s %11s %11s %11s\n", "NAME", "HASHSIZE", "%UTIL", "LONGEST", "AVERAGE", "STDDEV"); data->dthsd_header = 1; } for (i = 0; i < data->dthsd_hashsize; i++) { if (data->dthsd_counts[i] != 0) { nz++; if (data->dthsd_counts[i] > longest) longest = data->dthsd_counts[i]; ttl += data->dthsd_counts[i]; } } if (nz == 0) { mdb_printf("%15s %11d %11s %11s %11s %11s\n", name, data->dthsd_hashsize, "-", "-", "-", "-"); return; } avg = (double)ttl / (double)nz; for (i = 0; i < data->dthsd_hashsize; i++) { double delta = (double)data->dthsd_counts[i] - avg; if (data->dthsd_counts[i] == 0) continue; sum += delta * delta; } util = (nz * 1000) / data->dthsd_hashsize; stddev = (uint_t)sqrt(sum / (double)nz) * 10; mdb_printf("%15s %11d %9u.%1u %11d %11d %9u.%1u\n", name, data->dthsd_hashsize, util / 10, util % 10, longest, ttl / nz, stddev / 10, stddev % 10); } static struct dtrace_hashstat { char *dths_name; dtrace_hashstat_func_t dths_func; } _dtrace_hashstat[] = { { "", NULL }, { "additive", dtrace_hashstat_additive }, { "shifty", dtrace_hashstat_shifty }, { "knuth", dtrace_hashstat_knuth }, { "one-at-a-time", dtrace_hashstat_oneatatime }, { "fnv", dtrace_hashstat_fnv }, { NULL, 0 } }; typedef struct dtrace_aggstat_data { dtrace_hashstat_data_t dtagsd_hash; dtrace_hashstat_func_t dtagsd_func; } dtrace_aggstat_data_t; static int dtrace_aggstat_walk(uintptr_t addr, dtrace_aggkey_t *key, dtrace_aggstat_data_t *data) { dtrace_hashstat_data_t *hdata = &data->dtagsd_hash; size_t size; if (data->dtagsd_func == NULL) { size_t bucket = key->dtak_hashval % hdata->dthsd_hashsize; hdata->dthsd_counts[bucket]++; return (WALK_NEXT); } /* * We need to read the data. */ size = key->dtak_size - sizeof (dtrace_aggid_t); addr = (uintptr_t)key->dtak_data + sizeof (dtrace_aggid_t); hdata->dthsd_data = alloca(size); hdata->dthsd_size = size; if (mdb_vread(hdata->dthsd_data, size, addr) == -1) { mdb_warn("couldn't read data at %p", addr); return (WALK_ERR); } data->dtagsd_func(hdata); return (WALK_NEXT); } /*ARGSUSED*/ int dtrace_aggstat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { dtrace_buffer_t buf; uintptr_t aaddr; dtrace_aggbuffer_t agb; size_t hsize, i, actual, prime, evenpow; dtrace_aggstat_data_t data; dtrace_hashstat_data_t *hdata = &data.dtagsd_hash; bzero(&data, sizeof (data)); if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (mdb_vread(&buf, sizeof (buf), addr) == -1) { mdb_warn("failed to read aggregation buffer at %p", addr); return (DCMD_ERR); } aaddr = (uintptr_t)buf.dtb_tomax + buf.dtb_size - sizeof (dtrace_aggbuffer_t); if (mdb_vread(&agb, sizeof (agb), aaddr) == -1) { mdb_warn("failed to read dtrace_aggbuffer_t at %p", aaddr); return (DCMD_ERR); } hsize = (actual = agb.dtagb_hashsize) * sizeof (size_t); hdata->dthsd_counts = mdb_alloc(hsize, UM_SLEEP | UM_GC); /* * Now pick the largest prime smaller than the hash size. (If the * existing size is prime, we'll pick a smaller prime just for the * hell of it.) */ for (prime = agb.dtagb_hashsize - 1; prime > 7; prime--) { size_t limit = prime / 7; for (i = 2; i < limit; i++) { if ((prime % i) == 0) break; } if (i == limit) break; } /* * And now we want to pick the largest power of two smaller than the * hashsize. */ for (i = 0; (1 << i) < agb.dtagb_hashsize; i++) continue; evenpow = (1 << (i - 1)); for (i = 0; _dtrace_hashstat[i].dths_name != NULL; i++) { data.dtagsd_func = _dtrace_hashstat[i].dths_func; hdata->dthsd_hashsize = actual; hsize = hdata->dthsd_hashsize * sizeof (size_t); bzero(hdata->dthsd_counts, hsize); if (mdb_pwalk("dtrace_aggkey", (mdb_walk_cb_t)dtrace_aggstat_walk, &data, addr) == -1) { mdb_warn("failed to walk dtrace_aggkey at %p", addr); return (DCMD_ERR); } dtrace_hashstat_stats(_dtrace_hashstat[i].dths_name, hdata); /* * If we were just printing the actual value, we won't try * any of the sizing experiments. */ if (data.dtagsd_func == NULL) continue; hdata->dthsd_hashsize = prime; hsize = hdata->dthsd_hashsize * sizeof (size_t); bzero(hdata->dthsd_counts, hsize); if (mdb_pwalk("dtrace_aggkey", (mdb_walk_cb_t)dtrace_aggstat_walk, &data, addr) == -1) { mdb_warn("failed to walk dtrace_aggkey at %p", addr); return (DCMD_ERR); } dtrace_hashstat_stats(_dtrace_hashstat[i].dths_name, hdata); hdata->dthsd_hashsize = evenpow; hsize = hdata->dthsd_hashsize * sizeof (size_t); bzero(hdata->dthsd_counts, hsize); if (mdb_pwalk("dtrace_aggkey", (mdb_walk_cb_t)dtrace_aggstat_walk, &data, addr) == -1) { mdb_warn("failed to walk dtrace_aggkey at %p", addr); return (DCMD_ERR); } dtrace_hashstat_stats(_dtrace_hashstat[i].dths_name, hdata); } return (DCMD_OK); } /*ARGSUSED*/ static int dtrace_dynstat_walk(uintptr_t addr, dtrace_dynvar_t *dynvar, dtrace_aggstat_data_t *data) { dtrace_hashstat_data_t *hdata = &data->dtagsd_hash; dtrace_tuple_t *tuple = &dynvar->dtdv_tuple; dtrace_key_t *key = tuple->dtt_key; size_t size = 0, offs = 0; int i, nkeys = tuple->dtt_nkeys; char *buf; if (data->dtagsd_func == NULL) { size_t bucket = dynvar->dtdv_hashval % hdata->dthsd_hashsize; hdata->dthsd_counts[bucket]++; return (WALK_NEXT); } /* * We want to hand the hashing algorithm a contiguous buffer. First * run through the tuple and determine the size. */ for (i = 0; i < nkeys; i++) { if (key[i].dttk_size == 0) { size += sizeof (uint64_t); } else { size += key[i].dttk_size; } } buf = alloca(size); /* * Now go back through the tuple and copy the data into the buffer. */ for (i = 0; i < nkeys; i++) { if (key[i].dttk_size == 0) { bcopy(&key[i].dttk_value, &buf[offs], sizeof (uint64_t)); offs += sizeof (uint64_t); } else { if (mdb_vread(&buf[offs], key[i].dttk_size, key[i].dttk_value) == -1) { mdb_warn("couldn't read tuple data at %p", key[i].dttk_value); return (WALK_ERR); } offs += key[i].dttk_size; } } hdata->dthsd_data = buf; hdata->dthsd_size = size; data->dtagsd_func(hdata); return (WALK_NEXT); } /*ARGSUSED*/ int dtrace_dynstat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { dtrace_dstate_t dstate; size_t hsize, i, actual, prime; dtrace_aggstat_data_t data; dtrace_hashstat_data_t *hdata = &data.dtagsd_hash; bzero(&data, sizeof (data)); if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (mdb_vread(&dstate, sizeof (dstate), addr) == -1) { mdb_warn("failed to read dynamic variable state at %p", addr); return (DCMD_ERR); } hsize = (actual = dstate.dtds_hashsize) * sizeof (size_t); hdata->dthsd_counts = mdb_alloc(hsize, UM_SLEEP | UM_GC); /* * Now pick the largest prime smaller than the hash size. (If the * existing size is prime, we'll pick a smaller prime just for the * hell of it.) */ for (prime = dstate.dtds_hashsize - 1; prime > 7; prime--) { size_t limit = prime / 7; for (i = 2; i < limit; i++) { if ((prime % i) == 0) break; } if (i == limit) break; } for (i = 0; _dtrace_hashstat[i].dths_name != NULL; i++) { data.dtagsd_func = _dtrace_hashstat[i].dths_func; hdata->dthsd_hashsize = actual; hsize = hdata->dthsd_hashsize * sizeof (size_t); bzero(hdata->dthsd_counts, hsize); if (mdb_pwalk("dtrace_dynvar", (mdb_walk_cb_t)dtrace_dynstat_walk, &data, addr) == -1) { mdb_warn("failed to walk dtrace_dynvar at %p", addr); return (DCMD_ERR); } dtrace_hashstat_stats(_dtrace_hashstat[i].dths_name, hdata); /* * If we were just printing the actual value, we won't try * any of the sizing experiments. */ if (data.dtagsd_func == NULL) continue; hdata->dthsd_hashsize = prime; hsize = hdata->dthsd_hashsize * sizeof (size_t); bzero(hdata->dthsd_counts, hsize); if (mdb_pwalk("dtrace_dynvar", (mdb_walk_cb_t)dtrace_dynstat_walk, &data, addr) == -1) { mdb_warn("failed to walk dtrace_aggkey at %p", addr); return (DCMD_ERR); } dtrace_hashstat_stats(_dtrace_hashstat[i].dths_name, hdata); } return (DCMD_OK); } typedef struct dtrace_ecb_walk { dtrace_ecb_t **dtew_ecbs; int dtew_necbs; int dtew_curecb; } dtrace_ecb_walk_t; static int dtrace_ecb_init(mdb_walk_state_t *wsp) { uintptr_t addr; dtrace_state_t state; dtrace_ecb_walk_t *ecbwp; if ((addr = wsp->walk_addr) == 0) { mdb_warn("dtrace_ecb walk needs dtrace_state_t\n"); return (WALK_ERR); } if (mdb_vread(&state, sizeof (state), addr) == -1) { mdb_warn("failed to read dtrace state pointer at %p", addr); return (WALK_ERR); } ecbwp = mdb_zalloc(sizeof (dtrace_ecb_walk_t), UM_SLEEP | UM_GC); ecbwp->dtew_ecbs = state.dts_ecbs; ecbwp->dtew_necbs = state.dts_necbs; ecbwp->dtew_curecb = 0; wsp->walk_data = ecbwp; return (WALK_NEXT); } static int dtrace_ecb_step(mdb_walk_state_t *wsp) { uintptr_t ecbp, addr; dtrace_ecb_walk_t *ecbwp = wsp->walk_data; addr = (uintptr_t)ecbwp->dtew_ecbs + ecbwp->dtew_curecb * sizeof (dtrace_ecb_t *); if (ecbwp->dtew_curecb++ == ecbwp->dtew_necbs) return (WALK_DONE); if (mdb_vread(&ecbp, sizeof (addr), addr) == -1) { mdb_warn("failed to read ecb at entry %d\n", ecbwp->dtew_curecb); return (WALK_ERR); } if (ecbp == 0) return (WALK_NEXT); return (wsp->walk_callback(ecbp, NULL, wsp->walk_cbdata)); } static void dtrace_options_numtostr(uint64_t num, char *buf, size_t len) { uint64_t n = num; int index = 0; char u; while (n >= 1024) { n = (n + (1024 / 2)) / 1024; /* Round up or down */ index++; } u = " KMGTPE"[index]; if (index == 0) { (void) mdb_snprintf(buf, len, "%llu", (u_longlong_t)n); } else if (n < 10 && (num & (num - 1)) != 0) { (void) mdb_snprintf(buf, len, "%.2f%c", (double)num / (1ULL << 10 * index), u); } else if (n < 100 && (num & (num - 1)) != 0) { (void) mdb_snprintf(buf, len, "%.1f%c", (double)num / (1ULL << 10 * index), u); } else { (void) mdb_snprintf(buf, len, "%llu%c", (u_longlong_t)n, u); } } static void dtrace_options_numtohz(uint64_t num, char *buf, size_t len) { (void) mdb_snprintf(buf, len, "%dhz", NANOSEC/num); } static void dtrace_options_numtobufpolicy(uint64_t num, char *buf, size_t len) { char *policy = "unknown"; switch (num) { case DTRACEOPT_BUFPOLICY_RING: policy = "ring"; break; case DTRACEOPT_BUFPOLICY_FILL: policy = "fill"; break; case DTRACEOPT_BUFPOLICY_SWITCH: policy = "switch"; break; } (void) mdb_snprintf(buf, len, "%s", policy); } static void dtrace_options_numtocpu(uint64_t cpu, char *buf, size_t len) { if (cpu == DTRACE_CPUALL) (void) mdb_snprintf(buf, len, "%7s", "unbound"); else (void) mdb_snprintf(buf, len, "%d", cpu); } typedef void (*dtrace_options_func_t)(uint64_t, char *, size_t); static struct dtrace_options { char *dtop_optstr; dtrace_options_func_t dtop_func; } _dtrace_options[] = { { "bufsize", dtrace_options_numtostr }, { "bufpolicy", dtrace_options_numtobufpolicy }, { "dynvarsize", dtrace_options_numtostr }, { "aggsize", dtrace_options_numtostr }, { "specsize", dtrace_options_numtostr }, { "nspec", dtrace_options_numtostr }, { "strsize", dtrace_options_numtostr }, { "cleanrate", dtrace_options_numtohz }, { "cpu", dtrace_options_numtocpu }, { "bufresize", dtrace_options_numtostr }, { "grabanon", dtrace_options_numtostr }, { "flowindent", dtrace_options_numtostr }, { "quiet", dtrace_options_numtostr }, { "stackframes", dtrace_options_numtostr }, { "ustackframes", dtrace_options_numtostr }, { "aggrate", dtrace_options_numtohz }, { "switchrate", dtrace_options_numtohz }, { "statusrate", dtrace_options_numtohz }, { "destructive", dtrace_options_numtostr }, { "stackindent", dtrace_options_numtostr }, { "rawbytes", dtrace_options_numtostr }, { "jstackframes", dtrace_options_numtostr }, { "jstackstrsize", dtrace_options_numtostr }, { "aggsortkey", dtrace_options_numtostr }, { "aggsortrev", dtrace_options_numtostr }, { "aggsortpos", dtrace_options_numtostr }, { "aggsortkeypos", dtrace_options_numtostr }, { "temporal", dtrace_options_numtostr }, { "agghist", dtrace_options_numtostr }, { "aggpack", dtrace_options_numtostr }, { "aggzoom", dtrace_options_numtostr }, { "zone", dtrace_options_numtostr } }; CTASSERT(ARRAY_SIZE(_dtrace_options) == DTRACEOPT_MAX); static void dtrace_options_help(void) { mdb_printf("Given a dtrace_state_t structure, displays the " "current tunable option\nsettings.\n"); } /*ARGSUSED*/ static int dtrace_options(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { dtrace_state_t state; int i = 0; dtrace_optval_t *options; char val[32]; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (mdb_vread(&state, sizeof (dtrace_state_t), (uintptr_t)addr) == -1) { mdb_warn("failed to read state pointer at %p\n", addr); return (DCMD_ERR); } options = &state.dts_options[0]; mdb_printf("%%-25s %s%\n", "OPTION", "VALUE"); for (i = 0; i < DTRACEOPT_MAX; i++) { if (options[i] == DTRACEOPT_UNSET) { mdb_printf("%-25s %s\n", _dtrace_options[i].dtop_optstr, "UNSET"); } else { (void) _dtrace_options[i].dtop_func(options[i], val, 32); mdb_printf("%-25s %s\n", _dtrace_options[i].dtop_optstr, val); } } return (DCMD_OK); } static int pid2state_init(mdb_walk_state_t *wsp) { dtrace_state_data_t *data; uintptr_t devi; uintptr_t proc; struct dev_info info; pid_t pid = (pid_t)wsp->walk_addr; if (wsp->walk_addr == 0) { mdb_warn("pid2state walk requires PID\n"); return (WALK_ERR); } data = mdb_zalloc(sizeof (dtrace_state_data_t), UM_SLEEP | UM_GC); if (mdb_readvar(&data->dtsd_softstate, "dtrace_softstate") == -1) { mdb_warn("failed to read 'dtrace_softstate'"); return (DCMD_ERR); } if ((proc = mdb_pid2proc(pid, NULL)) == 0) { mdb_warn("PID 0t%d not found\n", pid); return (DCMD_ERR); } if (mdb_readvar(&devi, "dtrace_devi") == -1) { mdb_warn("failed to read 'dtrace_devi'"); return (DCMD_ERR); } if (mdb_vread(&info, sizeof (struct dev_info), devi) == -1) { mdb_warn("failed to read 'dev_info'"); return (DCMD_ERR); } data->dtsd_major = info.devi_major; data->dtsd_proc = proc; wsp->walk_data = data; return (WALK_NEXT); } /*ARGSUSED*/ static int pid2state_file(uintptr_t addr, struct file *f, dtrace_state_data_t *data) { vnode_t vnode; minor_t minor; uintptr_t statep; /* Get the vnode for this file */ if (mdb_vread(&vnode, sizeof (vnode), (uintptr_t)f->f_vnode) == -1) { mdb_warn("couldn't read vnode at %p", (uintptr_t)f->f_vnode); return (WALK_NEXT); } /* Is this the dtrace device? */ if (getmajor(vnode.v_rdev) != data->dtsd_major) return (WALK_NEXT); /* Get the minor number for this device entry */ minor = getminor(vnode.v_rdev); if (mdb_get_soft_state_byaddr(data->dtsd_softstate, minor, &statep, NULL, 0) == -1) { mdb_warn("failed to read softstate for minor %d", minor); return (WALK_NEXT); } mdb_printf("%p\n", statep); return (WALK_NEXT); } static int pid2state_step(mdb_walk_state_t *wsp) { dtrace_state_data_t *ds = wsp->walk_data; if (mdb_pwalk("file", (mdb_walk_cb_t)pid2state_file, ds, ds->dtsd_proc) == -1) { mdb_warn("couldn't walk 'file' for proc %p", ds->dtsd_proc); return (WALK_ERR); } return (WALK_DONE); } /*ARGSUSED*/ static int dtrace_probes_walk(uintptr_t addr, void *ignored, uintptr_t *target) { dtrace_ecb_t ecb; dtrace_probe_t probe; dtrace_probedesc_t pd; if (addr == 0) return (WALK_ERR); if (mdb_vread(&ecb, sizeof (dtrace_ecb_t), addr) == -1) { mdb_warn("failed to read ecb %p\n", addr); return (WALK_ERR); } if (ecb.dte_probe == NULL) return (WALK_ERR); if (mdb_vread(&probe, sizeof (dtrace_probe_t), (uintptr_t)ecb.dte_probe) == -1) { mdb_warn("failed to read probe %p\n", ecb.dte_probe); return (WALK_ERR); } pd.dtpd_id = probe.dtpr_id; dtracemdb_probe(NULL, &pd); mdb_printf("%5d %10s %17s %33s %s\n", pd.dtpd_id, pd.dtpd_provider, pd.dtpd_mod, pd.dtpd_func, pd.dtpd_name); return (WALK_NEXT); } static void dtrace_probes_help(void) { mdb_printf("Given a dtrace_state_t structure, displays all " "its active enablings. If no\nstate structure is provided, " "all available probes are listed.\n"); } /*ARGSUSED*/ static int dtrace_probes(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { dtrace_probedesc_t pd; uintptr_t caddr, base, paddr; int nprobes, i; mdb_printf("%5s %10s %17s %33s %s\n", "ID", "PROVIDER", "MODULE", "FUNCTION", "NAME"); if (!(flags & DCMD_ADDRSPEC)) { /* * If no argument is provided just display all available * probes. */ if (mdb_readvar(&base, "dtrace_probes") == -1) { mdb_warn("failed to read 'dtrace_probes'"); return (-1); } if (mdb_readvar(&nprobes, "dtrace_nprobes") == -1) { mdb_warn("failed to read 'dtrace_nprobes'"); return (-1); } for (i = 0; i < nprobes; i++) { caddr = base + i * sizeof (dtrace_probe_t *); if (mdb_vread(&paddr, sizeof (paddr), caddr) == -1) { mdb_warn("couldn't read probe pointer at %p", caddr); continue; } if (paddr == 0) continue; pd.dtpd_id = i + 1; if (dtracemdb_probe(NULL, &pd) == 0) { mdb_printf("%5d %10s %17s %33s %s\n", pd.dtpd_id, pd.dtpd_provider, pd.dtpd_mod, pd.dtpd_func, pd.dtpd_name); } } } else { if (mdb_pwalk("dtrace_ecb", (mdb_walk_cb_t)dtrace_probes_walk, NULL, addr) == -1) { mdb_warn("couldn't walk 'dtrace_ecb'"); return (DCMD_ERR); } } return (DCMD_OK); } const mdb_dcmd_t kernel_dcmds[] = { { "id2probe", ":", "translate a dtrace_id_t to a dtrace_probe_t", id2probe }, { "dtrace", ":[-c cpu]", "print dtrace(8)-like output", dtrace, dtrace_help }, { "dtrace_errhash", ":", "print DTrace error hash", dtrace_errhash }, { "dtrace_helptrace", ":", "print DTrace helper trace", dtrace_helptrace }, { "dtrace_state", ":", "print active DTrace consumers", dtrace_state, dtrace_state_help }, { "dtrace_aggstat", ":", "print DTrace aggregation hash statistics", dtrace_aggstat }, { "dtrace_dynstat", ":", "print DTrace dynamic variable hash statistics", dtrace_dynstat }, { "dtrace_options", ":", "print a DTrace consumer's current tuneable options", dtrace_options, dtrace_options_help }, { "dtrace_probes", "?", "print a DTrace consumer's enabled probes", dtrace_probes, dtrace_probes_help }, { NULL } }; const mdb_walker_t kernel_walkers[] = { { "dtrace_errhash", "walk hash of DTrace error messasges", dtrace_errhash_init, dtrace_errhash_step }, { "dtrace_helptrace", "walk DTrace helper trace entries", dtrace_helptrace_init, dtrace_helptrace_step }, { "dtrace_state", "walk DTrace per-consumer softstate", dtrace_state_init, dtrace_state_step }, { "dtrace_aggkey", "walk DTrace aggregation keys", dtrace_aggkey_init, dtrace_aggkey_step, dtrace_aggkey_fini }, { "dtrace_dynvar", "walk DTrace dynamic variables", dtrace_dynvar_init, dtrace_dynvar_step, dtrace_dynvar_fini }, { "dtrace_ecb", "walk a DTrace consumer's enabling control blocks", dtrace_ecb_init, dtrace_ecb_step }, { "pid2state", "walk a processes dtrace_state structures", pid2state_init, pid2state_step }, { NULL } };