/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Pipe I/O Backend * * In order to implement dcmd pipelines, we provide a pipe i/o backend that * can be used to connect two mdb_iob structures (a read and write end). * This backend is selected when mdb_iob_pipe is used to construct a pair of * iobs. Each iob points at the same i/o backend (the pipe i/o), and the * backend manages a circular fixed-size buffer which moves data between * the reader and writer. The caller provides read and write-side service * routines that are expected to perform context switching (see mdb_context.c). * The pipe implementation is relatively simple: the writer calls any of the * mdb_iob_* routines to fill the write-side iob, and when this iob needs to * flush data to the underlying i/o, pio_write() below is called. This * routine copies data into the pipe buffer until no more free space is * available, and then calls the read-side service routine (presuming that * when it returns, more free space will be available). On the read-side, * pio_read() copies data up from the pipe buffer into the read-side iob. * If pio_read() is called and the pipe buffer is empty, pio_read() calls * the write-side service routine to force the writer to produce more data. */ #include #include #include #include #include #include #include #include #include #include #include typedef struct pipe_data { mdb_iobsvc_f *pipe_rdsvc; /* Read-side service routine */ mdb_iob_t *pipe_rdiob; /* Read-side i/o buffer */ mdb_iobsvc_f *pipe_wrsvc; /* Write-side service routine */ mdb_iob_t *pipe_wriob; /* Write-side i/o buffer */ char pipe_buf[BUFSIZ]; /* Ring buffer for pipe contents */ mdb_iob_ctx_t pipe_ctx; /* Context data for service routines */ uint_t pipe_rdndx; /* Next byte index for reading */ uint_t pipe_wrndx; /* Next byte index for writing */ uint_t pipe_free; /* Free space for writing in bytes */ uint_t pipe_used; /* Used space for reading in bytes */ } pipe_data_t; static ssize_t pio_read(mdb_io_t *io, void *buf, size_t nbytes) { pipe_data_t *pd = io->io_data; size_t n, nleft; if (nbytes == 0) return (0); /* return 0 for zero-length read */ for (nleft = nbytes; nleft == nbytes; nleft -= n) { if (pd->pipe_used == 0) { if (pd->pipe_wriob != NULL) { pd->pipe_wrsvc(pd->pipe_rdiob, pd->pipe_wriob, &pd->pipe_ctx); } if (pd->pipe_used == 0) break; } n = MIN(pd->pipe_used, nleft); if (BUFSIZ - pd->pipe_rdndx < n) { /* * Case 1: The amount to read overlaps the end of the * circular buffer. 'n1' will be the amount to copy * from the end of the buffer, and 'n2' will be the * amount to copy from the beginning. Note that since * n <= pipe_used, it is impossible to read past * pipe_wrndx into undefined territory. */ size_t n1 = BUFSIZ - pd->pipe_rdndx; size_t n2 = n - n1; ASSERT(n2 <= pd->pipe_wrndx); bcopy(&pd->pipe_buf[pd->pipe_rdndx], buf, n1); buf = (char *)buf + n1; bcopy(&pd->pipe_buf[0], buf, n2); buf = (char *)buf + n2; } else { /* * Case 2: The easy case. Simply copy the data over * to the buffer. */ bcopy(&pd->pipe_buf[pd->pipe_rdndx], buf, n); buf = (char *)buf + n; } pd->pipe_rdndx = (pd->pipe_rdndx + n) % BUFSIZ; pd->pipe_free += n; pd->pipe_used -= n; } /* * If we have a writer, but pipe_wrsvc failed to produce any data, * we return EAGAIN. If there is no writer, then return 0 for EOF. */ if (nleft == nbytes) { if (pd->pipe_wriob != NULL) return (set_errno(EAGAIN)); else return (0); } return (nbytes - nleft); } static ssize_t pio_write(mdb_io_t *io, const void *buf, size_t nbytes) { pipe_data_t *pd = io->io_data; size_t n, nleft; if (pd->pipe_rdiob == NULL) return (set_errno(EPIPE)); /* fail with EPIPE if no reader */ for (nleft = nbytes; nleft != 0; nleft -= n) { if (pd->pipe_free == 0) { pd->pipe_rdsvc(pd->pipe_rdiob, pd->pipe_wriob, &pd->pipe_ctx); if (pd->pipe_free == 0) break; /* if nothing consumed by reader, exit */ } n = MIN(pd->pipe_free, nleft); if (BUFSIZ - pd->pipe_wrndx < n) { /* * Case 1: The data will overlap the circular buffer * boundary. In this case, 'n1' will be the number of * bytes to put at the end of the buffer, and 'n2' will * be the number of bytes to put at the beginning. * Note that since n <= pipe_free, it is impossible to * overlap rdndx with the initial data. */ size_t n1 = BUFSIZ - pd->pipe_wrndx; size_t n2 = n - n1; ASSERT(n2 <= pd->pipe_rdndx); bcopy(buf, &pd->pipe_buf[pd->pipe_wrndx], n1); buf = (const char *)buf + n1; bcopy(buf, &pd->pipe_buf[0], n2); buf = (const char *)buf + n2; } else { /* * Case 2: The easy case. Simply copy the data into * the buffer. */ bcopy(buf, &pd->pipe_buf[pd->pipe_wrndx], n); buf = (const char *)buf + n; } pd->pipe_wrndx = (pd->pipe_wrndx + n) % BUFSIZ; pd->pipe_free -= n; pd->pipe_used += n; } if (nleft == nbytes && nbytes != 0) return (set_errno(EAGAIN)); return (nbytes - nleft); } /* * Provide support for STREAMS-style write-side flush ioctl. This can be * used by the caller to force a context switch to the read-side. */ static int pio_ctl(mdb_io_t *io, int req, void *arg) { pipe_data_t *pd = io->io_data; if (io->io_next != NULL) return (IOP_CTL(io->io_next, req, arg)); if (req != I_FLUSH || (intptr_t)arg != FLUSHW) return (set_errno(ENOTSUP)); if (pd->pipe_used != 0) pd->pipe_rdsvc(pd->pipe_rdiob, pd->pipe_wriob, &pd->pipe_ctx); return (0); } static void pio_close(mdb_io_t *io) { mdb_free(io->io_data, sizeof (pipe_data_t)); } /*ARGSUSED*/ static const char * pio_name(mdb_io_t *io) { return ("(pipeline)"); } static void pio_link(mdb_io_t *io, mdb_iob_t *iob) { pipe_data_t *pd = io->io_data; /* * Here we take advantage of the IOP_LINK calls made to associate each * i/o backend with its iob to determine our read and write iobs. */ if (io->io_next == NULL) { if (iob->iob_flags & MDB_IOB_RDONLY) pd->pipe_rdiob = iob; else pd->pipe_wriob = iob; } else IOP_LINK(io->io_next, iob); } static void pio_unlink(mdb_io_t *io, mdb_iob_t *iob) { pipe_data_t *volatile pd = io->io_data; /* * The IOP_UNLINK call will be made when one of our associated iobs is * destroyed. If the read-side iob is being destroyed, we simply set * pipe_rdiob to NULL, forcing subsequent pio_write() calls to fail * with EPIPE. Things are more complicated when the write-side is * being destroyed. If this is the last close prior to destroying the * pipe, we need to arrange for any in-transit data to be consumed by * the reader. We first set pipe_wriob to NULL, which forces pio_read * to return EOF when all in-transit data is consumed. We then call * the read-service routine while there is still a reader and pipe_used * is non-zero, indicating there is still data in the pipe. */ if (io->io_next == NULL) { if (pd->pipe_wriob == iob) { pd->pipe_wriob = NULL; /* remove writer */ if (pd->pipe_used == 0 && pd->pipe_ctx.ctx_data == NULL) return; /* no reader and nothing to read */ /* * Note that we need to use a do-while construct here * so that we resume the reader's context at *least* * once. This forces it to read EOF and exit even if * the pipeline is already completely flushed. */ do { if (pd->pipe_rdiob == NULL) break; if (mdb_iob_err(pd->pipe_rdiob) != 0) { if (pd->pipe_ctx.ctx_wptr != NULL) { mdb_frame_pop( pd->pipe_ctx.ctx_wptr, MDB_ERR_ABORT); pd->pipe_ctx.ctx_wptr = NULL; } break; /* don't read if error bit set */ } if (pd->pipe_ctx.ctx_data == NULL || setjmp(*mdb_context_getpcb( pd->pipe_ctx.ctx_data)) == 0) { pd->pipe_rdsvc(pd->pipe_rdiob, pd->pipe_wriob, &pd->pipe_ctx); } } while (pd->pipe_used != 0); if (pd->pipe_ctx.ctx_data != NULL) { mdb_context_destroy(pd->pipe_ctx.ctx_data); pd->pipe_ctx.ctx_data = NULL; } } else if (pd->pipe_rdiob == iob) pd->pipe_rdiob = NULL; /* remove reader */ } else IOP_UNLINK(io->io_next, iob); } static const mdb_io_ops_t pipeio_ops = { pio_read, pio_write, no_io_seek, pio_ctl, pio_close, pio_name, pio_link, pio_unlink, no_io_setattr, no_io_suspend, no_io_resume }; mdb_io_t * mdb_pipeio_create(mdb_iobsvc_f *rdsvc, mdb_iobsvc_f *wrsvc) { mdb_io_t *io = mdb_alloc(sizeof (mdb_io_t), UM_SLEEP); pipe_data_t *pd = mdb_zalloc(sizeof (pipe_data_t), UM_SLEEP); ASSERT(rdsvc != NULL && wrsvc != NULL); pd->pipe_rdsvc = rdsvc; pd->pipe_wrsvc = wrsvc; pd->pipe_free = BUFSIZ; io->io_ops = &pipeio_ops; io->io_data = pd; io->io_next = NULL; io->io_refcnt = 0; return (io); } int mdb_iob_isapipe(mdb_iob_t *iob) { mdb_io_t *io; for (io = iob->iob_iop; io != NULL; io = io->io_next) { if (io->io_ops == &pipeio_ops) return (1); } return (0); }